

Embedding of External Content
from Non-trusted Sources

Alexandre Miguel Ferreira

University of Amsterdam
Research Project II

July 5, 2012

Agenda

 Introduction
− Research Question

 Background
− How to embed content?

− Most common attacks

 Results
− Testing Methods

− Possible Solutions

 Conclusions
− Futures work

 Questions

Introduction

 Target websites
− e-banking

− e-commerce

 Embedded third-parties
content

− Bank partners advertising

− Social networks

 Not all on the same
trusted degree!

Introduction
Research Question

 How to securely embed content from non-trusted
sources on a website?

− How to create trusted content from untrusted content?

− Which vulnerabilities have to be secured?

− How do different browsers handle the problem?

− How much user intervention is required for the different solutions?

− What can be secured by the bank server?

− What can the bank do to secure third parties’ servers?

− What can be done to have a third party to be considered trusted?

Background
How to embed content?

 Content can be included
with:

− Scripts → <script
type="text/javascript">ajaxinclude
("filename.html")</script>

− Inline frames → <iframe src="
https://www.os3.nl/“></iframe>

 What is an Iframe?
− HTML document embedded

inside another HTML document
on a website

− Behaves as an inline image, but
can be configured independently
from HTML content where it is
embed

− More secure than scripts

https://www.os3.nl/

Background
Most common attacks{1}

 Cross-site Scripting
− OWASP Top Ten Project 2010 (A2)

 Cross-site Request Forgery
− OWASP Top Ten Project 2010 (A5)

 Phishing
− One of the highest visibility problems for e-banking and e-commerce websites

Background
Most common attacks{2}

 Cross-site Scripting
(XSS)

− Allow attackers to execute
malicious JavaScript code,
pretending that the application is
sending the code to the user

− Attacker is able to execute scripts
in the victims browser which can
be used to hijack users sessions,
among others

Background
Most common attacks{3}

 Cross-site Request
Forgery (CSRF)

− Allows an attacker to send
requests on behalf of a client
without knowledge or interaction
from the client

− Attacker can force the victims
browser to perform a hostile
action, benefiting from this

Background
Most common attacks{4}

 Phishing
− Good example of social

engineering

− Attacker attempts to obtain
informations about the user by
misleading him/her

− Done by masquerading as a
trustworthy entity (the bank in this
case)

Results
Testing Methods

 Banking website simulated with some flaws
 Inclusion of tree Iframes with attacks to the website

− XSS attack – Session hijacking by stealing cookies

− CSRF attack – Clickable link that will do a POST request, on behalf of the user,
to do a new transaction

− Phishing attack – Request to change the user's password

 Three web browsers tested:
− Firefox

− Google Chrome

− Internet Explorer 8

Results
Possible Solutions

 Web Browsers’ Security
 Server-side protections
 Autommated scanners

Results
Possible Solutions – Web Browsers’ Security

Web
browser/Attack XSS CSRF Phishing

Firefox Same-origin policy
protection

Use of add-ons
such as:
 CsFire*
 RequestPolicy*
 NoScript*

Phishing Protection
feature*

Google
Chrome

Same-origin policy
protection

HTML5 JavaScript
Sandbox

“Enable phishing
and malware
protection” option*

Internet
Explorer 8

Same-origin policy
protection

SmartScreen Filter*

* User intervention required

Results
Possible Solutions – Server-side Protection

 XSS not tested (tested web browsers handled it)
 CSRF protections

− Filtering proxy

− Double submit (variation of the token identification scheme)

− Apache mod_security module (can be called web application firewall)

 Phishing protections
− Nothing can be done by server-side!

− Alert costumers is the best thing to do!

Results
Possible Solutions – Automated Scanners

 Scans the website for malicious content
 It was considered, but …
 … cannot be considered as protection

− Attacks can be performed in such a way that it can be misled

− It would only function as a problem detection

 Can be a solution to transform untrusted content into
trusted content

− … but then again it can be misled

Conclusions

 Ideally all the vulnerabilities should be protected (XSS, CSRF and Phishing most
common)

 All the tested web browsers are protected against XSS (same-origin policy)

 Most of web browsers' features require user intervention

 Phishing is probably the most difficult vulnerability to prevent

 The use of automated scanners can be a solution to transform untrusted content
into trusted content, though filtering proxies might do a better job

 CSRF difficult to be protected by web browsers, server side solutions (filtering
proxies or double submit) are better

 In order to protect third parties' servers, the same protection methods used by the
bank should be used

 Having third parties being audited by the bank should be enough to consider them
more trustuble

Conclusions
Future Work

 More web browsers tested
− Opera

− Safari

− Android

 More attacks tested
− Pharming

− Man-in-the-Browser (MitB)

Questions

 Thanks to:
− Sander Vos

− Steven Raspe

 Further questions:
− alexandre.miguelferreira@os3.nl

− ferreira.alexandremiguel@gmail.com

mailto:alexandre.miguelferreira@os3.nl

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

