

Embedding of External Content
from Non-trusted Sources

Alexandre Miguel Ferreira

University of Amsterdam
Research Project II

July 5, 2012

Agenda

 Introduction
− Research Question

 Background
− How to embed content?

− Most common attacks

 Results
− Testing Methods

− Possible Solutions

 Conclusions
− Futures work

 Questions

Introduction

 Target websites
− e-banking

− e-commerce

 Embedded third-parties
content

− Bank partners advertising

− Social networks

 Not all on the same
trusted degree!

Introduction
Research Question

 How to securely embed content from non-trusted
sources on a website?

− How to create trusted content from untrusted content?

− Which vulnerabilities have to be secured?

− How do different browsers handle the problem?

− How much user intervention is required for the different solutions?

− What can be secured by the bank server?

− What can the bank do to secure third parties’ servers?

− What can be done to have a third party to be considered trusted?

Background
How to embed content?

 Content can be included
with:

− Scripts → <script
type="text/javascript">ajaxinclude
("filename.html")</script>

− Inline frames → <iframe src="
https://www.os3.nl/“></iframe>

 What is an Iframe?
− HTML document embedded

inside another HTML document
on a website

− Behaves as an inline image, but
can be configured independently
from HTML content where it is
embed

− More secure than scripts

https://www.os3.nl/

Background
Most common attacks{1}

 Cross-site Scripting
− OWASP Top Ten Project 2010 (A2)

 Cross-site Request Forgery
− OWASP Top Ten Project 2010 (A5)

 Phishing
− One of the highest visibility problems for e-banking and e-commerce websites

Background
Most common attacks{2}

 Cross-site Scripting
(XSS)

− Allow attackers to execute
malicious JavaScript code,
pretending that the application is
sending the code to the user

− Attacker is able to execute scripts
in the victims browser which can
be used to hijack users sessions,
among others

Background
Most common attacks{3}

 Cross-site Request
Forgery (CSRF)

− Allows an attacker to send
requests on behalf of a client
without knowledge or interaction
from the client

− Attacker can force the victims
browser to perform a hostile
action, benefiting from this

Background
Most common attacks{4}

 Phishing
− Good example of social

engineering

− Attacker attempts to obtain
informations about the user by
misleading him/her

− Done by masquerading as a
trustworthy entity (the bank in this
case)

Results
Testing Methods

 Banking website simulated with some flaws
 Inclusion of tree Iframes with attacks to the website

− XSS attack – Session hijacking by stealing cookies

− CSRF attack – Clickable link that will do a POST request, on behalf of the user,
to do a new transaction

− Phishing attack – Request to change the user's password

 Three web browsers tested:
− Firefox

− Google Chrome

− Internet Explorer 8

Results
Possible Solutions

 Web Browsers’ Security
 Server-side protections
 Autommated scanners

Results
Possible Solutions – Web Browsers’ Security

Web
browser/Attack XSS CSRF Phishing

Firefox Same-origin policy
protection

Use of add-ons
such as:
 CsFire*
 RequestPolicy*
 NoScript*

Phishing Protection
feature*

Google
Chrome

Same-origin policy
protection

HTML5 JavaScript
Sandbox

“Enable phishing
and malware
protection” option*

Internet
Explorer 8

Same-origin policy
protection

SmartScreen Filter*

* User intervention required

Results
Possible Solutions – Server-side Protection

 XSS not tested (tested web browsers handled it)
 CSRF protections

− Filtering proxy

− Double submit (variation of the token identification scheme)

− Apache mod_security module (can be called web application firewall)

 Phishing protections
− Nothing can be done by server-side!

− Alert costumers is the best thing to do!

Results
Possible Solutions – Automated Scanners

 Scans the website for malicious content
 It was considered, but …
 … cannot be considered as protection

− Attacks can be performed in such a way that it can be misled

− It would only function as a problem detection

 Can be a solution to transform untrusted content into
trusted content

− … but then again it can be misled

Conclusions

 Ideally all the vulnerabilities should be protected (XSS, CSRF and Phishing most
common)

 All the tested web browsers are protected against XSS (same-origin policy)

 Most of web browsers' features require user intervention

 Phishing is probably the most difficult vulnerability to prevent

 The use of automated scanners can be a solution to transform untrusted content
into trusted content, though filtering proxies might do a better job

 CSRF difficult to be protected by web browsers, server side solutions (filtering
proxies or double submit) are better

 In order to protect third parties' servers, the same protection methods used by the
bank should be used

 Having third parties being audited by the bank should be enough to consider them
more trustuble

Conclusions
Future Work

 More web browsers tested
− Opera

− Safari

− Android

 More attacks tested
− Pharming

− Man-in-the-Browser (MitB)

Questions

 Thanks to:
− Sander Vos

− Steven Raspe

 Further questions:
− alexandre.miguelferreira@os3.nl

− ferreira.alexandremiguel@gmail.com

mailto:alexandre.miguelferreira@os3.nl

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

