
Embedding of External Content

from Non-trusted Sources

Research Project II

Author:

Alexandre Miguel Ferreira
alexandre.miguelferreira@os3.nl

Supervisor:

Steven Raspe
steven.raspe@nl.abnamro.com

8 August 2012

Master System & Network Engineering

Contents

1 Introduction 2

1.1 Research Question . 3

1.2 Scope . 3

1.3 Report Structure . 3

2 Background 4

2.1 Target Applications . 4

2.1.1 e-Commerce . 4

2.1.2 e-Banking . 4

2.2 Inclusion of Content by Third Parties 5

2.2.1 Scripts . 5

2.2.2 Inline frames . 5

2.3 Possible Attacks . 6

2.3.1 Cross Site Scripting (XSS) . 6

2.3.2 Cross Site Request Forgery (CSRF) 6

2.3.3 Phishing . 6

2.4 Cybercrime and Forensics . 6

3 Approach 7

3.1 Target Website . 7

3.2 Testing Methods . 7

3.2.1 Cross-site Scripting Attack . 8

2

3.2.2 Cross-site Request Forgery Attack 8

3.2.3 Phishing Attack . 8

4 Possible Solutions 9

4.1 Web Browsers’ Security . 9

4.1.1 Firefox . 10

4.1.2 Google Chrome . 10

4.1.3 Internet Explorer 8 . 11

4.2 Server-side Security . 12

4.2.1 Cross-site Script Solutions Investigated 12

4.2.2 Cross-site Request Forgery Solutions Investigated 12

4.2.3 Phishing . 13

4.3 Automated Scanners . 14

5 Conclusion 15

5.1 Web Browsers Security & User Intervention 15

5.2 Server-side protection & More Trustable Third Parties 16

5.3 Cybercrime & Forensics Aspects . 16

6 Future Work 17

6.1 More Web Browsers Tested . 17

6.2 More Attacks Tested . 17

6.3 Use of DNSsec . 17

Abstract

On many large websites the content of a website is not provided by a single server
or even a single company. It is becoming more and more common to have websites
republishing content from third parties, such as search engines or advertising net-
works. Some of these parties are reliable but other sources might not have the same
level of security as an internet banking system. Using these sources may bring se-
vere security problems. Examples are republished content running malicious scripts
which can expose the visitors to cross site request forgery (CSRF), cross-site script-
ing (XSS) or phishing attacks, among others. This study gives an insight on how
content provided from non-trusted sources can be securely embed on a website.

Chapter 1

Introduction

Inevitably e-banking and e-commerce websites must be secure. People rely on them
to make transactions, check their account information, change their personal infor-
mation, do payments, etc. These companies have to ensure confidentiality, integrity
and availability of the data and services to their customers. The inclusion of content
coming from third parties (e.g. partner advisers or social networks) can be a big
threat to the trust that the users have in these websites.

Moreover when we reer to security, we cannot forget cybercrime and forensics are
just around the corner. Having non-trusted content embed on a website can also be
considered a global threat. The importance of having content embedded on a secure
way grows and grows everyday. These threats can only be exceeded making sure
that this content is coming from trusted sources.

Other studies have been done, some related to web browsers protection against spe-
cific attacks [11] [10] [8] others related to server-side protections [9] [4]. However,
none of them explain which are the best solutions to protect against the risks that
embedded content from third parties can arise nor how much user intervention is
required from these solutions.

2

CHAPTER 1. INTRODUCTION

1.1 Research Question

From the above reasoning, the research question for this project is:

How to securely embed content from non-trusted sources on a website?

To answer this question, the following sub-questions are answered along this project:

1. Which vulnerabilities have to be secured?

2. How do different browsers handle the problem?

3. What can be secured by the bank server?

4. How much user intervention is required for the different solutions?

5. How to create trusted content from untrusted content?

6. What can the bank do to secure third parties’ servers?

7. What can be done to have a third party being considered trusted?

Additionally a reflection will be performed about the cybercrime and forensics’ con-
sequences that can rise from the insecure embedding of content.

1.2 Scope

In this project only web browsers built-in security and server-side protections will be
considered. There are also client-side solutions, such as Noxes, a Microsoft Windows-
based personal web firewall solution against XSS, or RequestRodeo, a client-side so-
lution against CSRF attacks that identifies http requests that are suspicious to be
CSRF attacks. These are valid alternative routes but will be disregarded.

1.3 Report Structure

The report is structured as following:

• Chapter 2 will reflect on details related to the possible attacks performed when
including content from third parties, how to embed this content and the foren-
sics methods that can be adhered to;

• Chapter 3 will describe the approach and the practical steps executed;

• Chapter 4 will present the results yielded from the followed approach;

• Chapter 5 will give a conclusion and will also reflect on the outcome of the
results. The cybercrime and forensics’ consequences will also be covered here.

Embedding of External Content from Non-trusted Sources 3

Chapter 2

Background

In order to dive into the project, a literature study has been conducted to better
understand the underlying technologies which prepare the foundation of the practical
approach performed in Chapters 3 and 4.

Before start discussing the test methodologies and results, a brief identification of
the tested vulnerabilities, an explanation about the target web applications and how
third parties content can be included in a website will be given in this chapter.

2.1 Target Applications

The main targets of these project are e-Commerce (see section 2.1.1) and e-Banking
(see section 2.1.2). The introduction of content from third parties on these websites is
becoming more and more common which make these websites targets of innumerable
attacks (see section 2.3).

2.1.1 e-Commerce

e-Commerce [19] or Electronic Commerce allows the buying and selling of products
over the Internet. It is drawn on technologies such as electronic funds transfer,
Internet marketing or automated data collection systems. It also facilitates the
financing and payment aspects of business transactions.

2.1.2 e-Banking

e-Banking [20] or Internet Banking allows bank’s customers to perform financial
transactions. Among others, customers can check their bank account details, make
payments to third parties or invest their money in new products. All these actions
are done on a (ideally) secure website operated by the bank.

4

CHAPTER 2. BACKGROUND

2.2 Inclusion of Content by Third Parties

The inclusion of content provided by third parties can be done by means of inline
frames (Iframe) (see section 2.2.2) or scripts (see section 2.2.1). Both have advantages
and disadvantages that will be discussed on this section.

2.2.1 Scripts

Script [14] is a program that can accompany an HTML document or be embedded
directly in it. The scripts are executed on the client’s machine when the document
is loaded or when a link is activated. Scripts can extend HTML documents in highly
active and interactive ways, such as accompany a form to process input as it is entered
or be triggered by events that affect the document (e.g. loading, mouse movement,
etc.), among others.
Cross-side scripting usually refers to the inclusion of a malicious script from an
external website by an attacker.

2.2.2 Inline frames

Inline frames [16] or Iframe is an HTML document embedded inside another HTML
document on a website (see image 2.2.2). Iframes behave as an inline images, however
they can be configured independently from the nester HTML content, since they have
their own Document Object Model (DOM).
Iframes are commonly used to perform attacks such as Clickjacking, where the user is
requested to click an apparently legitimate button that will guide them to malicious
coding or content, by an invisible iFrame.

Figure 2.1: Iframe example

Embedding of External Content from Non-trusted Sources 5

CHAPTER 2. BACKGROUND

2.3 Possible Attacks

There are a lot of attacks performed against these web applications. The Open
Web Application Security Project (OWASP) created a list, OWASP Top 10 Project
2010 [13], where these attacks are explained. However, for this project, only three
attacks were considered, they are Cross Site Scripting (XSS), Cross Site Request
Forgery (CSRF) and Phishing. These vulnerabilities were chosen due to the fact
they are the most relevant attacks performed against the techniques discussed in
this paper (see section 2.1).

2.3.1 Cross Site Scripting (XSS)

XSS flaws [18], as they are known, allow attackers to execute malicious JavaScript
code, pretending that the application is sending the code to the user. When a
website is vulnerable to cross site scripting, an attacker is able to execute scripts in
the victims’ browser which can be used to hijack users sessions, spoil web sites or
possibly introduce worms, among others. It was ranked number 2 on the OWASP
Top 10 Project 2010.

2.3.2 Cross Site Request Forgery (CSRF)

A CSRF attack [17], also known as one-click attack, allows an attacker to send
requests on behalf of a client without knowledge or interaction from the client. Sub-
sequently the attacker can force the victims’ browser to perform a hostile action,
benefiting from this. These attacks can be as powerful as the web application that
is being attacked. It reaches the position number 5 on the OWASP Top 10 Project
2010.

2.3.3 Phishing

Phishing [21], is a good example of social engineering. It is an attack where the at-
tacker attempts to obtain informations about the user, such as usernames, passwords
and in this specific case credit card details, by misleading the user. This is done by
masquerading as a trustworthy entity, such as a bank website.

2.4 Cybercrime and Forensics

Cybercrime and Forensics is a continuously evolving topic that addresses the increas-
ing use of computer technology in criminal activity. Attacks on computers occur more
frequently than ever before and such attacks can be time-consuming and expensive
to recover from. The possible suspects are rich in technical skills and have so much
knowledge about technology as the technology’s creators, therefore they know how
to use technology against technology.

6 Alexandre Miguel Ferreira

Chapter 3

Approach

In this chapter the approach taken and the testing methodologies followed during
the project are discussed.

The research question, and consequent sub-questions, arise two main difficulties.
First, which vulnerabilities are the most dangerous and important to be protected
against and secondly, what can be done to be successfully protected against these
attacks. That can only be solved by creating a testing environment to evaluate the
possible solutions.

3.1 Target Website

The approach to this subject (see section 1.1) was to simulate an e-banking website
with some flaws. These flaws were based on the biggest threats against e-commerce
and e-banking websites. This way the selected attacks for these tests were cross-site
scripting, cross-site request forgery and phishing (as explained on section 2.3).

To embed the content on the simulated e-banking website iframes have been chosen.
Unlike scripts, iframes do not have access to the Document Object Model (DOM) [24]
of the parent page, the representation of HTML document layout, which make them
more secure than the use of scripts.

3.2 Testing Methods

The e-banking website created consisted only of a simple login page, username and
password forms, and three iframes. Through these iframes three different the attacks
were performed against the simulate e-banking website. One iframe with a cross-site
scripting attack, other with a cross-site request forgery attack and another with a
phishing attack.

7

CHAPTER 3. APPROACH

3.2.1 Cross-site Scripting Attack

As said above, to recreate the XSS attack an iframe has been embedded on the
website. This iframe had a script (see listing 3.1) running. This script does a
session hijacking by stealing the cookies stored with the username and password
informations, every time the user accesses the website, i.e. every time the user does
a valid login.

1 [...]

2 <script >

3 document.domain = "http :// melon.studlab.os3.nl/";

4 document.write(’http :// melon.studlab.os3.nl/homebanking.html?’+escape

(document.cookie));

5 </script >

6 [...]

Listing 3.1: XSS attack

3.2.2 Cross-site Request Forgery Attack

As the XSS attack, also the cross-site request Forgery attack has been performed by
including an iframe. In this iframe is presented to the costumer a link that, when
clicked, will do a POST request with a new transaction on behalf of the user (see
listing 3.2).

1 [...]

2 <form

3 action="http :// melon.studlab.os3.nl/homebanking.php"

4 method="post" id="data">

5 <input type="hidden" name="value" value="100000"/>

6 </form >

7
8 <script >

9 document.getElementById(’data’).submit ();

10 </script >

11 [...]

Listing 3.2: CSRF attack

3.2.3 Phishing Attack

The third iframe included on the website add a phishing attack. This attack is
performed by using some social engineering skills. This way a form is presented to
the costumer requiring him/her to change his/her password.

Since this is a social engineering attack no examples will be provided, however, on a
“real world” phishing attack, the attacking website looks like a legitimate organiza-
tion site, doing it by mimicking the HTML code.

8 Alexandre Miguel Ferreira

Chapter 4

Possible Solutions

To make sure that the content is securely embed on a website various solutions
have been tested. Web browsers’ security (see section 4.1), server-side solutions (see
section 4.2) and the use of automated scanners (see section 4.3) will be discussed on
this chapter.

4.1 Web Browsers’ Security

Nowadays, web browsers already have some built-in security features [24]. In order
to check how reliable these features are, three web browsers were tested. They are
Firefox, Google Chrome and Internet Explorer 8. These three web browsers were
chosen due to the fact that, alike the rest of the world [15], the majority of ABN
AMRO customers use them.

For an easier comparison between the various web browsers security features table 4.1
has been created. For an individual analysis refer to the correspondent section.

Web browser/Attack XSS CSRF Phishing

Firefox Same-origin policy Use of add-ons: Phishing Protection

(see section 4.1.1) protection - CsFire* feature*

- RequestPolicy*

- NoScript*

Google Chrome Same-origin policy HTML5 JavaScript Enable phishing

(see section 4.1.2) protection Sandbox and malware

protection option*

Internet Explorer 8 Same-origin policy SmartScreen Filter*

(see section 4.1.3) protection

* User intervention required

Table 4.1: Table with comparison on how the different tested web browsers protect
against the tested attacks

9

CHAPTER 4. POSSIBLE SOLUTIONS

4.1.1 Firefox

Firefox is a free and open source web browser used by 34.4% of the world’s population
(data from June, 2012 [15]).

As shown on the above table, Firefox1 provides solutions for all the tested attacks.

Provide Solutions Against Cross-site Scripting

Firefox uses the same-origin policy [22] to protect against cross-site scripting. This
feature allows scripts running on pages with the same origin to have access to their
methods and properties (with no restrictions), however pages from different sites
have this access prevented.

Provided Solutions Against Cross-site Request Forgery

Related to cross-site request forgery, Firefox makes use of add-ons to prevent it.
Add-ons such as RequestPolicy, NoScript or CsFire [5] are used. Unfortunately
these methods require user intervention. Apart from this fact, these add-ons can
interfere with the normal operation of many websites.

Provided Solutions Against Phishing

To prevent phishing attacks, Firefox has a Phishing Protection feature. This pro-
tection is based on known phishing sites. However it does not include zero-day
attacks [23]. This means that attacks performed for the first time are not protected
by this feature. Once again user intervention is required to have this feature enabled.

4.1.2 Google Chrome

Google Chrome is a freeware web browser developed by Google that uses a WebKit
layout engine. It is the most used web browser worldwide having 41.7% of the world’s
population using it (figures from June, 2012 [15]).

Such as Firefox, also Google Chrome2 provides solutions against all the attacks per-
formed.

Provide Solutions Against Cross-site Scripting

As Firefox (see section 4.1.1), Google Chrome makes use of same-origin policy to
secure cross-site scripting attacks.

1Tested version: Firefox 13.0.1
2Tested version: Google Chrome 18.0.1025.151

10 Alexandre Miguel Ferreira

CHAPTER 4. POSSIBLE SOLUTIONS

Provided Solutions Against Cross-site Request Forgery

In order to protect against cross-site request forgery, Google Chrome uses an HTML5
JavaScript Sandbox [2]. This sandbox allows control over what can be executed
within an iframe (see section 2.2.2), such as scripts or use of forms. Although it is
used to protect against cross-site request forgery, there are some reports [1] about
how it can help working around other attacks such as Clickjaking and Phishing.

Provided Solutions Against Phishing

To protect against phishing, Google Chrome provides a “Enable phishing and mal-
ware protection” option that is enabled by default, however it can be considered that
user intervention is required here too. This protections is based on a list of sus-
pected malware-infected websites [7]. Zero-day attacks are considered by Chrome.
It is done by analysing the content on the site and, if it seems suspicious, the user
will be warned.

4.1.3 Internet Explorer 8

Internet Explorer 8 is a web browser developed by Microsoft. From the three tested
web browser is the one with less people using it, around 17% (June, 2012 [15]) of the
world’s population.

Unlike the previous web browsers, solutions provided by Internet Explorer 83 have
not been found for all the attacks tested.

Provide Solutions Against Cross-site Scripting

Such as the other two tested web browsers, also Internet Explorer 8 draws its pro-
tection against cross-site request forgery by means of the same-origin policy.

Provided Solutions Against Cross-site Request Forgery

As mention above, some solutions provided by Internet Explorer 8 have not been
found. Security against cross-site request forgery could not be found. It does not
mean these protections do not exist, they were just not found during the execution
of this project.

Provided Solutions Against Phishing

Internet Explorer 8 protects against phishing recurring to the SmartScreen Filter.
This filter is based on a list of spam emails. Alike Firefox this list does not include
zero-day attacks and also here user intervention is required.

3Tested version: 8.0.6001.18702

Embedding of External Content from Non-trusted Sources 11

CHAPTER 4. POSSIBLE SOLUTIONS

4.2 Server-side Security

Being required user intervention to most of the web browser security solutions, which
can arise other problems, some server-side security solutions have been investigated
too. However, not all of the attacks have been tried to be protect server-side.

4.2.1 Cross-site Script Solutions Investigated

Due to the fact that all the tested web browsers handle cross-site scripting attacks
well, there was no need to find server-side solutions. It is important to notice the
fact that, although this attack is handle by the tested web browsers it does not mean
that previous versions of the tested web browsers or other web browsers perform the
same way.

4.2.2 Cross-site Request Forgery Solutions Investigated

In order to protect against cross-site request forgery on the server-side the use of
Filtering Proxies or Double submit identification can be done.

Double Submit Identification

Double Submit is a variation of the token identification. With this option, for every
single form that the user has to fill a token is generated and stored on a cookie. Finally
a validation is made to make sure that the field value (on the server) matches the
cookie value. This means that a form generated by the attacker will not have the
same value (same policy protects against cookies stealing). (See section 4.1.1)

• Apache mod security is a module that analyses client requests before they are
processed by Apache and, furthermore, by analysing server responses after a
request has been processed. It is also known as web application firewall. (See
Figure 4.2.2)

Figure 4.1: Apache mod security example

12 Alexandre Miguel Ferreira

CHAPTER 4. POSSIBLE SOLUTIONS

Filtering Proxy

A proxy is a service that accepts requests made by web browsers for web pages. It
requests and receives the requested pages from the respective web servers and finally
transfers those pages to the web browser. A filtering proxy (see Figure 4.2.2) is a
service that modifies either the requests or the returned information.

Figure 4.2: Filtering proxy example

Filtering proxies can be a good solution to protect against cross-site request forgery
on the server-side. One application of this would be to deny access to a particular
web server by simply not requesting pages from that server (based on the server’s IP
address or name).

4.2.3 Phishing

Concerning to Phishing, nothing can be server-side. Since the moment the user is
misled by the attacker all the information sent will never reach the servers of the
falsified entity. The only thing that can be done is alert the customers for the hazard
of this kind of attacks.

Embedding of External Content from Non-trusted Sources 13

CHAPTER 4. POSSIBLE SOLUTIONS

4.3 Automated Scanners

Automated scanners, also known as penetration testing tools, are software developed
to assist professionals during a penetration test. This could either mean tools that
accomplished specific automated tasks or fully automated point-and-shoot solutions
that, without human intervention, crawls the functionality in an application before
trying to detect vulnerabilities.

The use of software has been considered, however the attacks previously mentioned
(section 2.3) can be performed in such a way that the automated client can be
mistaken, returning false-positive or false-negative results, and after all not detect
the attacks [6].

Since automated scanners can be mistaken, their use can be rather considered prob-
lem detection instead of a protection.

14 Alexandre Miguel Ferreira

Chapter 5

Conclusion

How to securely embed content from non-trusted sources on a website?

Throughout this research multiple sub-questions have been answered in order to
conclude on the above question. It can be concluded that embed content from third
parties in a secure way is possible.

Ideally all the vulnerabilities should be secured. Notwithstanding there are vulner-
abilities that are more common and easier to explore than others, such as cross-site
scripting, cross-site request forgery or Phishing. These vulnerabilities are largely
related to Microsoft’s security laws [12].

Law #1: If a bad guy can persuade you to run his program on your computer, it’s
not your computer any more.

5.1 Web Browsers Security & User Intervention

The web browsers tested had different solutions for the different problems explained
in this project, however all of them use the same protection against cross-site script-
ing, the same-origin policy. It is important to mention the fact that, although the
tested web browsers proved to be protected against cross-site scripting it does not
mean that previous versions of these web browsers also use the same way to protect
against these attacks. Also to notice that there are a big variety of cross-site scripting
attacks that, unfortunately, were not tested during the execution of this project.

Related to cross-site request forgery, it can be conclude that it is difficult to be
protected by the tested web browsers. While Firefox requires user intervention,
Google Chrome makes use of a protection that can arise other problems and bring
up different attacks. About Internet Explorer 8 protections against this attack no
solutions were found, but once again it does not mean they do not exist.

Talking about phishing, it can be conclude that this is probably the most difficult
vulnerability to prevent. The majority of web browsers’ features require user inter-

15

CHAPTER 5. CONCLUSION

vention and do not cover all the possibilities. Nevertheless Microsoft’s security laws
are applicable once again (with the appropriate differences).

Law #8: An out of date virus scanner is only marginally better than no virus scanner
at all

5.2 Server-side protection & More Trustable Third
Parties

Although cross-site scripting server-side protections were not tested, there are some
solutions available, such as the one presented by Jovanovic et al. [9]

Concerning server-side solutions against cross-site request forgery, it is important to
notice, once again, that not all the possible attacks have been tested, however the
tested ones give a good indication that these kind of attacks can be protect by using
filtering proxies or double submit tokens. The same protection methods used by to
protect against these attacks can be used to protect third parties’ servers. This way,
and having third parties being audited by the embedding company, should be enough
to consider third parties more trustable too.

In order to transform untrusted content into trusted content the use of automated
scanners could be considered, although filtering proxies might do a better job since,
as explained before, automated scanners can be eluded by the attackers.

Finally the server-side. Nothing can be done against phishing attacks, this social
engineering attack cannot be protected, but can be alerted by making the costumer
aware of this fact. And yet Microsoft’s security laws prove to be right again.

Law #10: Technology is not a panacea

5.3 Cybercrime & Forensics Aspects

Cybercriminals continue to use deceptive social engineering techniques to undermine
fragile new web users. Whether it is done via an email that appears to be from a
trustworthy bank or by an advertisement or a link in an embed iframe, everything
has been tried. The solutions proposed on this report can be important to refrain
the attackers’ thirst of new victims.

Having the entities logging every single request made to their servers and inspecting
the content coming from the malicious sources can be really useful in a forensics
investigation too. And as RFC3227 says [3] it has to be transparent:

The methods used to collect evidence should be transparent and reproducible. You
should be prepared to reproduce precisely the methods you used, and have those meth-
ods tested by independent experts.

16 Alexandre Miguel Ferreira

Chapter 6

Future Work

6.1 More Web Browsers Tested

During this project only Internet Explorer, Firefox and Chrome were tested (as
explained before 4.1). It would be interesting to see how other web browsers, such
as Safari, Opera or Android, behave under the same tested situations.

6.2 More Attacks Tested

As explained in section 2.3 only XSS, CSRF and Phishing attacks were tested, but
there are other attacks such as Pharming and Man-in-the-Browser that can and
should be tested due to their up growth and hazard.

6.3 Use of DNSsec

The use of DNSsec was not covered during the execution of this project. So further
research on this field would be interesting.
However, as a mere opinion, the use of DNSsec would not influence the security of
the website against iframe attacks, since the only thing that would happen here is
the fact that the content of the iframe is secured by DNSsec, which does not mean
the content is not malicious. This way we would only have malicious content secured
by DNSsec.

17

Acknowledgments

I would like to thank my supervisor Steven Raspe for his time, effort and insight put
into this research project. As well I would also like to Sander Vos for his valuable
feedback and help when needed.

18

Bibliography

[1] Security in depth: Html5’s @sandbox. http://www.idontplaydarts.com/

2011/05/clickjacking-and-phishing-with-help-from-the-html5-javascript-sandbox/,
2012. [Online; accessed 04-July-2012].

[2] Web app security. http://blog.chromium.org/2010/05/

security-in-depth-html5s-sandbox.html, 2012. [Online; accessed 04-
July-2012].

[3] Brezinski, D., and Killalea, T. RFC3227: Guidelines for Evidence Collec-
tion and Archiving. RFC Editor United States (2002).

[4] Burns, J. Cross site reference forgery: An introduction to a common web
application weakness. Security Partners, LLC (2005).

[5] De Ryck, P., Desmet, L., Heyman, T., Piessens, F., and Joosen, W.
Csfire: Transparent client-side mitigation of malicious cross-domain requests.
Engineering Secure Software and Systems (2010), 18–34.

[6] Ferreira, A. M., and Kleppe, H. Effectiveness of Automated Applica-
tion Penetration Testing Tools. http://staff.science.uva.nl/~delaat/rp/
2010-2011/p27/report.pdf, 2011.

[7] Google. Phishing and malware detection. https://support.google.com/

chrome/bin/answer.py?hl=en&answer=99020&p=cpn_safe_browsing, 2012.
[Online; accessed 11-July-2012].

[8] Jim, T., Swamy, N., and Hicks, M. Defeating script injection attacks with
browser-enforced embedded policies. In Proceedings of the 16th international
conference on World Wide Web (2007), ACM, pp. 601–610.

[9] Jovanovic, N., Kirda, E., and Kruegel, C. Preventing cross site request
forgery attacks. In Securecomm and Workshops, 2006 (2006), IEEE, pp. 1–10.

[10] Louw, M., and Venkatakrishnan, V. Blueprint: Robust prevention of
cross-site scripting attacks for existing browsers. In Security and Privacy, 2009
30th IEEE Symposium on (2009), IEEE, pp. 331–346.

[11] Maes, W., Heyman, T., Desmet, L., and Joosen, W. Browser protection
against cross-site request forgery. In Proceedings of the first ACM workshop on
Secure execution of untrusted code (2009), ACM, pp. 3–10.

[12] Microsoft. 10 Immutable Laws of Security. http://technet.microsoft.

com/library/cc722487.aspx, 2011. [Online; accessed 11-July-2012].

19

http://www.idontplaydarts.com/2011/05/clickjacking-and-phishing-with-help-from-the-html5-javascript-sandbox/
http://www.idontplaydarts.com/2011/05/clickjacking-and-phishing-with-help-from-the-html5-javascript-sandbox/
http://blog.chromium.org/2010/05/security-in-depth-html5s-sandbox.html
http://blog.chromium.org/2010/05/security-in-depth-html5s-sandbox.html
http://staff.science.uva.nl/~delaat/rp/2010-2011/p27/report.pdf
http://staff.science.uva.nl/~delaat/rp/2010-2011/p27/report.pdf
https://support.google.com/chrome/bin/answer.py?hl=en&answer=99020&p=cpn_safe_browsing
https://support.google.com/chrome/bin/answer.py?hl=en&answer=99020&p=cpn_safe_browsing
http://technet.microsoft.com/library/cc722487.aspx
http://technet.microsoft.com/library/cc722487.aspx

CHAPTER 6. BIBLIOGRAPHY

[13] OWASP. Open Web Application Security Project OWASP: OWASP Top Ten
Project. http://www.owasp.org/index.php/Top_10_2010-Main, 2010. [On-
line; accessed 12-June-2012].

[14] W3C. Scripts. http://www.w3.org/TR/html4/interact/scripts.html, 2012.
[Online; accessed 25-June-2012].

[15] w3schools. Browser Statistics. http://www.w3schools.com/browsers/

browsers_stats.asp, 2012. [Online; accessed 12-July-2012].

[16] WhatIs.com. Iframe (Inline Frame). http://whatis.techtarget.com/

definition/IFrame-Inline-Frame, 2012. [Online; accessed 25-June-2012].

[17] Wikipedia. Cross-site request forgery — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Cross-site_request_forgery, 2012. [On-
line; accessed 25-June-2012].

[18] Wikipedia. Cross-site scripting — Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/wiki/Cross-site_scripting, 2012. [Online; accessed
25-June-2012].

[19] Wikipedia. Electronic commerce — Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/wiki/Electronic_commerce, 2012. [Online; accessed 30-
June-2012].

[20] Wikipedia. Internet banking — Wikipedia, the free encyclopedia. http://

en.wikipedia.org/wiki/Internet_banking, 2012. [Online; accessed 30-June-
2012].

[21] Wikipedia. Phishing — Wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/Phishing, 2012. [Online; accessed 25-June-2012].

[22] Wikipedia. Same origin policy — Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/wiki/Same_origin_policy, 2012. [Online; accessed 02-
July-2012].

[23] Wikipedia. Zero-day attack — Wikipedia, the free encyclopedia. http://

en.wikipedia.org/wiki/Zero-day_attack, 2012. [Online; accessed 04-July-
2012].

[24] Zalewski, M. Browser Security Handbook. http://code.google.com/p/

browsersec/, Undefined. [Online; accessed 28-May-2012].

20 Alexandre Miguel Ferreira

http://www.owasp.org/index.php/Top_10_2010-Main
http://www.w3.org/TR/html4/interact/scripts.html
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://whatis.techtarget.com/definition/IFrame-Inline-Frame
http://whatis.techtarget.com/definition/IFrame-Inline-Frame
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Electronic_commerce
http://en.wikipedia.org/wiki/Electronic_commerce
http://en.wikipedia.org/wiki/Internet_banking
http://en.wikipedia.org/wiki/Internet_banking
http://en.wikipedia.org/wiki/Phishing
http://en.wikipedia.org/wiki/Phishing
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Zero-day_attack
http://en.wikipedia.org/wiki/Zero-day_attack
http://code.google.com/p/browsersec/
http://code.google.com/p/browsersec/

	Introduction
	Research Question
	Scope
	Report Structure

	Background
	Target Applications
	e-Commerce
	e-Banking

	Inclusion of Content by Third Parties
	Scripts
	Inline frames

	Possible Attacks
	Cross Site Scripting (XSS)
	Cross Site Request Forgery (CSRF)
	Phishing

	Cybercrime and Forensics

	Approach
	Target Website
	Testing Methods
	Cross-site Scripting Attack
	Cross-site Request Forgery Attack
	Phishing Attack

	Possible Solutions
	Web Browsers' Security
	Firefox
	Google Chrome
	Internet Explorer 8

	Server-side Security
	Cross-site Script Solutions Investigated
	Cross-site Request Forgery Solutions Investigated
	Phishing

	Automated Scanners

	Conclusion
	Web Browsers Security & User Intervention
	Server-side protection & More Trustable Third Parties
	Cybercrime & Forensics Aspects

	Future Work
	More Web Browsers Tested
	More Attacks Tested
	Use of DNSsec

