
DNS/DNSSEC loose ends

Karst Koymans & Niels Sijm

Informatics Institute

University of Amsterdam

Friday, September 21, 2012

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 1 / 48

1 Encoding of domain names

2 Wildcards in DNS

3 Denial of existence

Ignoring wildcards

Including wildcard processing

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 2 / 48

Encoding of domain names

Outline

1 Encoding of domain names

2 Wildcards in DNS

3 Denial of existence
Ignoring wildcards
Including wildcard processing

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 3 / 48

Encoding of domain names

Composition of domain names

Domain name is a sequence of labels

Start at leaf

1 www

2 os3

3 nl

Start at root

1 nl

2 os3

3 www

DNS starts at leaf (least signi�cant label)

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 4 / 48

Encoding of domain names

Encoding of domain names

1 Use a delimiter to seperate labels

<label> <delimiter> <label>

www . os3 . nl .

2 Specify length of labels in label encoding

<label> <label>

{3,www} {3,os3} {2,nl} {0,}

3 DNS uses latter way of encoding

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 5 / 48

Encoding of domain names

�Normal label length� encoding

First byte used for length

First 2 bits are �ags

00 means �normal label length�

Remaining 6 specify label length

Hence the maximum label length of 26 − 1 = 63 octets

Remaining bytes contain the label itself

Number of remaining bytes is encoded in �rst byte of label

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 6 / 48

Encoding of domain names

�Normal label length� encoding

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 7 / 48

Encoding of domain names

�Normal label length� encoding

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 8 / 48

Encoding of domain names

Compressed encoding

Domain name with compressed encoding has �xed length of 2 bytes

First 2 bits are �ags

11 means �compressed label�

Remaining 6 bits + 8 subsequent bits are used as pointer

Points to label at other position in packet

Value is o�set from beginning of packet

Saves space when a domain name is used more than once

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 9 / 48

Encoding of domain names

Compressed encoding

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 10 / 48

Encoding of domain names

Compressed encoding

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 11 / 48

Encoding of domain names

Reading domain names

Read �rst 2 bits of domain name �eld:

If values is 00 (normal label length):

1 If label length is 0 (empty label, thus root):

Return sequence of noted labels as domain name

2 Read 6 subsequent bits and determine length of label

3 Read �rst 2 bits of next byte and iterate

If value is 11 (compressed encoding):

1 Read 14 subsequent bits and determine position of domain name

2 Jump to position and decode domain name

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 12 / 48

Encoding of domain names

One more type: extended

First byte value: 01000001

First two bits are 01

De�nes the use of EDSN0

Can be used for binary labels

IPv6 PTR resource records

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 13 / 48

Wildcards in DNS

Outline

1 Encoding of domain names

2 Wildcards in DNS

3 Denial of existence
Ignoring wildcards
Including wildcard processing

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 14 / 48

Wildcards in DNS

Wildcards according to RFC 1034

From RFC 1034, section 4.3.3

The contents of the wildcard RRs follows the usual rules and formats for

RRs. The wildcards in the zone have an owner name that controls the

query names they will match. The owner name of the wildcard RRs is of

the form "*.<anydomain>", where <anydomain> is any domain name.

<anydomain> should not contain other * labels, and should be in the

authoritative data of the zone. The wildcards potentially apply to

descendants of <anydomain>, but not to <anydomain> itself. Another

way to look at this is that the "*" label always matches at least one whole

label and sometimes more, but always whole labels.

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 15 / 48

Wildcards in DNS

Wildcards according to RFC 1034

From RFC 1034, section 4.3.3

Wildcard RRs do not apply:

When the query is in another zone. That is, delegation cancels the

wildcard defaults.

When the query name or a name between the wildcard domain and

the query name is known to exist. For example, if a wildcard RR has

an owner name of "*.X", and the zone also contains RRs attached to

B.X, the wildcards would apply to queries for name Z.X (presuming

there is no explicit information for Z.X), but not to B.X, A.B.X, or X.

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 16 / 48

Wildcards in DNS

Problems with wildcards in RFC 1034

Notions are intuitive, not well-de�ned

When does a domain name �exist�?

How does matching work exactly?

What about empty non-terminals?

RFC 4592 tries to clarify all of this

De�nes �existence of a domain name�

De�nes �asterisk label� and �wildcard domain name�

De�nes �source of synthesis� and �closest encloser�

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 17 / 48

Wildcards in DNS

Wildcard supporting de�nitions

De�nitions

A domain name exists if itself or
any of its descendants has at least one RR

In particular empty non-terminals exist

An asterisk label is a label of length 1
containing as only octet the ASCII equivalent of �*�

A wildcard domain name is a domain name
with an asterisk label as its leftmost label

The closest encloser of a query name
is the longest matching ancestor that exists

The source of synthesis of a query name
is the domain name �*.<closest encloser>� (if it exists)

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 18 / 48

Wildcards in DNS

RFC 4592 example

$ORIGIN example.

example. 3600 IN SOA <SOA RDATA>

example. 3600 NS ns.example.com.

example. 3600 NS ns.example.net.

*.example. 3600 TXT "this is a wildcard"

*.example. 3600 MX 10 host1.example.

sub.*.example. 3600 TXT "... not a wildcard"

host1.example. 3600 A 192.0.2.1

_ssh._tcp.host1.example. 3600 SRV <SRV RDATA>

_ssh._tcp.host2.example. 3600 SRV <SRV RDATA>

subdel.example. 3600 NS ns.example.com.

subdel.example. 3600 NS ns.example.net.

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 19 / 48

Wildcards in DNS

RFC 4592 example tree

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 20 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

host3.example. MX

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 21 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

host3.example. MX yes non-empty

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 22 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

foo.bar.example. TXT

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 23 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

foo.bar.example. TXT yes non-empty

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 24 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

host1.example. MX

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 25 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

host1.example. MX no empty

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 26 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

host3.example. A

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 27 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

host3.example. A yes empty

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 28 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

sub.*.example. MX

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 29 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

sub.*.example. MX no empty

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 30 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

_telnet._tcp.host1.example. SRV

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 31 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

_telnet._tcp.host1.example. SRV no no such domain

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 32 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

host.subdel.example. A

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 33 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

host.subdel.example. A no referral

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 34 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

ghost.*.example. MX

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 35 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

ghost.*.example. MX no no such domain

example SOA, NS

* TXT, MX

sub TXT

host1 A

_tcp

_ssh SRV

host2

_tcp

_ssh SRV

subdel NS

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 36 / 48

Wildcards in DNS

RFC 4592 example queries

QNAME QTYPE synthesized? result

host3.example. MX yes non-empty

host3.example. A yes empty

foo.bar.example. TXT yes non-empty

host1.example. MX no empty

sub.*.example. MX no empty

_telnet._tcp.host1.example. SRV no no such domain

host.subdel.example. A no referral

ghost.*.example. MX no no such domain

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 37 / 48

Denial of existence

Outline

1 Encoding of domain names

2 Wildcards in DNS

3 Denial of existence
Ignoring wildcards
Including wildcard processing

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 38 / 48

Denial of existence Ignoring wildcards

Outline

1 Encoding of domain names

2 Wildcards in DNS

3 Denial of existence
Ignoring wildcards
Including wildcard processing

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 39 / 48

Denial of existence Ignoring wildcards

Example zone

apex SOA, NS0

data TXT1 empty

*

leaf TXT2

data TXT3

nxdomain wildcard TXT4

* TXT5 the

matches

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 40 / 48

Denial of existence Ignoring wildcards

Proving �Nodata� with matching NSEC record

�Nodata� means �No Error�, but also no data

So some QTYPE's have data, but the queried QTYPE has not

The NSEC record at the owner contains a bitmap for existing types

Given the query �data.apex A�

Consider the NSEC record

�data.apex NSEC leaf.*.empty.apex TXT�

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 41 / 48

Denial of existence Ignoring wildcards

Proving �Nodata� for empty non-terminals

An empty non-terminal implies �No Error�, but also no data

But now no QTYPE's at all have data

There is no NSEC record for the empty non-terminal

The empty non-terminal is �covered� (skipped) by some NSEC record

Given the query �empty.apex A�

Consider the NSEC record

�data.apex NSEC leaf.*.empty.apex TXT�

Server should include this NSEC record in the answer

Client should verify this NSEC record is the right one

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 42 / 48

Denial of existence Ignoring wildcards

Proving NXDOMAIN (�Name Error� or �No such domain�)

There is no NSEC record for the non-existing domain name

The non-existing domain name is covered by some NSEC record

Given the query �nxdomain.apex A�

Consider the NSEC record

�data.empty.apex NSEC wildcard.apex TXT�

Server should include this NSEC record in the answer

Client should verify this NSEC record is the right one

What is the di�erence with the previous case?

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 43 / 48

Denial of existence Including wildcard processing

Outline

1 Encoding of domain names

2 Wildcards in DNS

3 Denial of existence
Ignoring wildcards
Including wildcard processing

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 44 / 48

Denial of existence Including wildcard processing

NSEC records in the (positive) answer case

If a domain name is synthesized from a wildcard record

we also need proof that this has been done correctly

The �next closer� is the last (non-existing) domain name

on the path to the �closest encloser�

The next closer domain name is covered by some NSEC record

Given the query �matches.the.wildcard.apex TXT�

Consider the NSEC record �*.wildcard.apex NSEC apex TXT�

Server should include this NSEC record in the answer

Client should verify this NSEC record is the right one

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 45 / 48

Denial of existence Including wildcard processing

Proving �Nodata� for wildcard expansions

This is a combination of previous cases

Use the NSEC type bitmap to prove queried QTYPE is not available

Use a covering NSEC RR for the next closer domain name

Given the query �matches.the.wildcard.apex A�

Consider the NSEC record �*.wildcard.apex NSEC apex TXT�

This sole NSEC record works for both requirements above

Server includes and client veri�es this NSEC record

What if the wildcard happens to be an empty non-terminal?

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 46 / 48

Denial of existence Including wildcard processing

Proving NXDOMAIN revisited

Find the NSEC record that covers the next closer domain name

Moreover �nd the NSEC record that covers the

(non-existing) source of synthesis

Given the query �nxdomain.apex A�

Consider the NSEC record

�data.empty.apex NSEC wildcard.apex TXT�

And also the NSEC record

�apex NSEC data.apex SOA NS�

Server includes and client veri�es these NSEC records

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 47 / 48

Denial of existence Including wildcard processing

NSEC3 records

NSEC3 also creates a (circular) chain, but

uses hashes of the original domain names as labels

for the owner domain names of the NSEC3 records

also hashes empty non-terminals

orders the hashes instead of the original domain names

uses the NSEC3PARAM type to specify hashing parameters

and indicate the use of NSEC3 instead of NSEC

de�nes the Opt-Out �ag to exclude insecure delegations from the chain

Karst Koymans & Niels Sijm (UvA) DNS/DNSSEC loose ends Friday, September 21, 2012 48 / 48

	Encoding of domain names
	Wildcards in DNS
	Denial of existence
	Ignoring wildcards
	Including wildcard processing

