
A Hybrid NIPS/NIDS for terabit networks

Fahimeh Alizadeh, Rawi Ramdhan

Mar. 10 2013

Abstract

Mitigating unwanted traffic on the Internet is a technical challenge. The large
amount of traffic and the lack of hardware capable of inspecting this forms
a problem. This paper discusses the limitations of a scalable system with
commodity hardware that is capable of mitigating unwanted traffic on the
Internet. A hybrid system is built that inspects traffic offline and in case of
unwanted traffic triggers an event. This event ensures that traffic, from or to
hosts, belonging to the unwanted traffic are inspected in real time. In order
to disperse the large amount of traffic to single hosts that inspect this traffic,
an OpenFlow switch was used. This paper shows that the load balancing via
the FloodLight software and the OpenFlow protocol does not work. Therefor
the scalabilty of this architecture could not be tested. However, information
regarding traffic type dispersion on the Internet is provided and the traffic
redirection methods are discussed. In conclusion we can say that Floodlight
in combination with OpenFlow can not be used as a load balance mechanism.
The method described to mitigate attacks on the Internet might still work
but have to be tested in a scalable environment.

Contents

1 Introduction 2
1.1 Related work . 2
1.2 Research question . 2
1.3 Outline . 3

2 Proposed Architecture 4
2.1 Traffic patterns on the Internet 4
2.2 Packet Generation . 6
2.3 Detection . 6
2.4 Prevention . 8
2.5 Load balancer . 10

2.5.1 OpenFlow switch . 11
2.5.2 Floodlight controller 11

3 Experimental setups 12
3.1 Pronto switch . 12
3.2 Traffic Type Impact . 16

4 Conclusion 19
4.1 Future Work . 19

A Packet distribution 22

B NIDS product list 22

C Average troughput IX 25

D Realtime flow management using Floodlight 28

1

1 Introduction

The Internet has provided the society with lots of benefits, but childporn [1],
virusses [2] and compromised certificates [3] are just a few examples of the
downside of the Internet. The Netherlands has several agencies, like the
Nederlands Forensisch Instituut (NCSC), to mitigate this kind of Internet
traffic. Recently the minister of safety and security stated that NCSC should
build 24/7 detection networks [5]. No information was given on how this
should look like, but is it even possible? Can we monitor the Internet? And
if we can, can we prevent these things from happening?

Techniques to detect and prevent malicious Internet traffic exist, namely,
Intrusion Detection system (IDS) and Intrusion Prevention system (IPS).
These systems can operate for individual hosts but also for multiple hosts.
The latter is referred to as Network Intrusion Detection System and Network
Intrusion Prevention Systems (NIDS and NIPS).

Not only commercial products (see appendix B) but also open-source
solutions are available (like BRO IDS [21] and Snort [22]). Most of them
have limitations regarding throughput and scalability. Non of the commercial
system scan scan at speeds needed to scan the Internet at a Internet Exchange
(IX). Even though scalable solutions exist, they can scan up to 80Gb/s [8],
a fraction of the data transmitted on a IX. One open-source product exists
that is scalable, BRO Cluster. But is this scalable enough to scan the entire
internet?

1.1 Related work

A lot of research has been done in this area. Optimization via regular ex-
pressions [15], logic [16], offload hardware [17] and clustering [18] have been
researched. The latter describes a scalable NIDS. Our research proposes an
architecture based on their NIDS, expanded with a NIPS.

1.2 Research question

The aim of this research is to understand the technical implications and
bandwidth limitations when building a scalable intrusion detection and pre-
vention system with commodity hardware for networks with multiple terabits
of traffic per second.

In order to do this, the following questions have to be answered. (i) What
algorithm for dispersing traffic over multiple intrusion detection systems has
the highest bandwidth processing capacity, and can OpenFlow [13] be used

2

for this? (ii) Is it possible to precalculate the performance of an IDS with a
given set of variables? (iii) Can BRO be used as an IPS?

1.3 Outline

Chapter two will contain the proposed architecture. This chapter will explain
the possible methods to generate, disperse and inspect traffic. These meth-
ods will be implemented, tested and described in chapter 3 (Experimental
Setups). This will result in conclusions and future work stated in chapter 4.

3

Figure 1: Architecture

2 Proposed Architecture

Figure 1 shows a graphical representation of the proposed architecture. The
architecture is segmented in five areas; Sending, Receiving, Forwarding, De-
tecting and Preventing. The sending area (denoted in the figure as hosts
starting with TX), will generate traffic and send it to the forwarding area.
The forwarding area (two Foundry 15000 switches) will forward the data to
the receiving side (hosts starting with RX). Every forwarded packet will also
be copied to the inspection area. The inspection area consists of multiple
hosts; PXE, Manager and Workers. This section will detect anomalies offline
and inform the forwarding area to redirect traffic for those to the prevention
area. Traffic redirected to the prevention area (SNORT host) will be first
inspected in real time and then forwarded or dropped.

2.1 Traffic patterns on the Internet

Among other things this research describes the bandwidth limitations for a
NIDS. In this research bandwidth is described as the amount of bits traversing
a certain point in the network per second. However, this bandwidth can
consist of a variable amount of packets. For example 1 Gigabit Ethernet
(GbE) can contain anything from 81,274 to 1,488,096 packets per second [4].

4

All these packets can consist of different protocols and payloads. It is not
possible to perform tests on a real Internet Exchange, therefore it is necessary
to create a simulated environment with comparable characteristics. In order
to test the NIDS with different types of bandwidth, full control over packet
creation is needed.

We know the average throughput of different Internet exchange (IX)
points [7] is 135.35 Gb/s (see appendix section C). IXs provide limited in-
formation on the type of traffic they forward. They either do not inspect
traffic or are unwilling to provide this information. Multiple IXs have been
contacted, AMS-IX provided the information on the amount of packets for-
warded (figure: 2).

Figure 2: Troughput AMS-IX

Because of its size (the number of members [9], the volume of traffic
[10]) and geographically distributed peers [11], are AMS-IX network traffic
patterns a good model for Internet traffic.

AMS-IX provides public information about the frame length distribution
of their packets (see appendix section A, figure: 7 [12]). They do provide
other statistics [14], but no information is provided regarding protocols or
payload.

In order to get more detailed information on the type of Internet traffic
forwarded on the Internet, the ISP Surfnet1 has been contacted. Surfnet,
provides information regarding TCP, UDP and ICMP distribution of their
traffic (see appendix section A, figure: 8). TCP has sessions, keeping track
of sessions may be a tedious job for a NIDS and therefore resource and time
consuming.

1Dutch ISP for research institutes, among others

5

2.2 Packet Generation

Traffic can be generated in multiple ways. By using client/server software
like wget - Apache (HTTP) or dig - bind (DNS). An other option is to use
packet generators such as Ostinato2 or D-ITG3. With client/server software
it is difficult to control the communication speed. Creation of the packets is
not the only limiting factor but also packet processing and disk I/O. Packet
generator provides full control over the speed and payload. Packets can be
created in real-time where speed is limited by the CPU [6]. However, extra
care has to be taken to create live like packet flows.

The generated traffic can be send in multiple ways, directly or replaying
recorded packets. Sending packets directly is slower than replaying recorded
packets. The generated packets have to pass trough the entire TCP/IP
stack in order to be sent out to the network interface card (NIC). When
replaying recorded packets the TCP/IP stack is bypassed which results in
higher performance. However, session based flows are hard to synchronize
this way.

2.3 Detection

There are a lot of commercial NIDSs and NIPSs available (see appendix sec-
tion B). These systems detect events via two methods; Signature recognition,
anomaly detection. The latter performs a statistical analysis on the data and
triggers an event if abnormal patterns are detected. This method is useful to
detect attacks that owe their effectiveness to a sequence of packets. Signature
based recognition requires a ”signature” of the unwanted data, every packet
is compared to all the signatures.
In case of an IX, multiple Gb/s of traffic is sent. A part of this traffic may
be malicious. Due to NAT in IPv4 this traffic does not have to be a single
source but is detected as such. The proposed architecture is designed to pre-
vent traffic up to 1 Gb/s from a single source. The total traffic stream can
consist of multiple sources sending traffic up to 10 Gb/s.
There are different attack types, they try to compromise; Confidentiality,
Integrity, Availability or Control [19]. An attack method to compromise
availability is the a Denial of Service (DOS) attack. These attacks slog up
resources and can be detected via anomaly detection [20]. Viruses for ex-
ample, can be detected via signature based recognition. This requires deep
packet inspecion (DPI) and is therefore less capable of handling high speed
traffic. This research does not aim at a specific attack method but searches

2http://code.google.com/p/ostinato/
3http://traffic.comics.unina.it/software/ITG/

6

Figure 3: Packets inspected by Bro
Cluster in seconds

Figure 4: Percentage of overhead per
worker in the Bro Cluster

for a scalable, signature based NIDS. A signature based NIDS can detect
different attacks, as long as it has a signature for that attack.
The Bro cluster [21] is a free and open source NIDS that supports Signature
recognition and anomaly detection. It is a scalable solution with limited
overhead (Figure 4). Figure 3 shows the performance of Bro cluster. This
test was executed with a single proxy, causing a bottleneck if more than 24
workers [23] are used. All signatures and anomalies can be programmed via
the Bro programming language. This makes Bro a versatile NIDS capable of
detecting a wide range of attacks.

The Bro cluster consists of three different node types; worker, proxy and
a manager. The workers and proxies can be scaled up to multiple systems.

The Worker inspects traffic and generates events for possible attacks or
suspicious patterns. These events are detected according to policies. These
policies are defined using the Bro scripting language. Bro Cluster comes
with a set of scripts to detect unwanted traffic. These events are sent to the
manager. The performance of a worker is mostly limited to its CPU speed
and RAM [18].

The Manager receives messages from the Workers and creates logs out of
this. Its main purpose is to correlate the messages and logs. Getting results
from one worker is not enough, it may be the case that one worker detects
events from one source but the other does not. It is the manager’s task to
decide if that source is suspicious and if so, to contact the forwarding zone
to redirect the traffic to the prevention zone.

The Proxy will establish the inter-worker communication. The need for
proxies comes from the traffic distribution among workers. If the TCP-

7

sessions are not assigned to individual workers, then their status information
has to be shared. The proxy will manage this situation. Every proxy is
connected to a number of workers and all proxies together form a proxy ring
which will result in connection between each pair of workers.

The scalable design of Bro Cluster results in a higher throughput [23].
The design does not scale linearly, the overhead is shown in figure 4.

2.4 Prevention

The detection of events might be useful. However, there are some situations
in which detection is not enough and appropriate action must be taken. In
the case of a NIPS, the action is to drop packets.
Current methods for intrusion prevention system work as standalone devices.
This causes considerable limitations regarding scalability, performance, fault
tolerance and real-time prevention speed. Even though the design (See fig-
ure 1) contains only one NIPS (Snort) instance, multiple can be added.

However, all will operate on a stand alone basis and will not communicate
with each other. Therefore load distribution has to be done on IP basis by
the switches in the forwarding zone. This ensures each session is redirected
to the same IPS.
Snort is one of the most widely used intrusion prevention systems which is
open source and free4. The intrusion prevention process is done in multiple
layers:

1. Packet decoding: First the packets will be collected from different
network interfaces.

2. Preprocessing: In this step, a fraction of incoming traffic will be
selected. The selection is based on packet header information and some
anomalies in packet header will be detected. Also defragmentation will
be done to prepare the incoming packets for the next layer.

3. Detection: The payload inspection will occur in this phase. Snort
supports two methods to detect and prevent events: Rule-based and
Signature matching. The difference between rules and signatures is how
they are defined. Rules refer to the weakness of the environment and by
applying rules it is tried to cover the vulnerability of the environment
which already motivates the attackers. The signatures refer to regular
expressions matching incoming packet payloads which are defined based
on the attacks done to the system. Rules and signatures will be applied
on the result of the former step.

4http://www.sourcefire.com/security-technologies/open-source/snort

8

Signature matching Both Bro Cluster and Snort, provide the signature
definition feature. In order to detect the same events, it is needed to define
the same pattern matching signatures for them.

In the case of one standalone NIPS, managing all the connections coming
from one source (The incoming traffic rate is the same as the NIPS pro-
cess speed), combination of NIPS and NIDS would perform properly. By
inc‘reasing the number of Snort systems, the NIPS zone will be able to sniff
on multiple sources but the approach is to detect first and then prevent, so
early intrusions will be only detected not prevented.

9

2.5 Load balancer

One of the ways to distribute load on the workers is via a load balancer.
The load balancer will disperse traffic via different mechanisms to the work-
ers. The fact that each NIDS has limitations in inspecting incoming packets,
brings up the need for using a load balancer. The incoming 10Gb/s traffic
can be split among several 1Gb/s workers that communicate their status
and form the detecion area. The load balancing approach could be source-
independent or source-dependent.
Source-dependent load balancing considers the packet header informa-
tion and takes that into account. The distribution could be per-source, per-
destination or per-connection. For example, formula 1 shows how the incom-
ing packets will be distributed per connection among n number of workers.

[Hash(src ip + dst ip + src port + dst port)]%n (1)

Then according to the load balancing method, the number of packet header
fields involved in the former formula can be less or more. In order to choose
the best load balancing method, it is ideal to have prior knowledge about
the incoming traffic. For instance, if the traffic is evenly distributed among
destinations, per-destination method fits the best with the environment.

Source-independent load balancing distributes the incoming traffic
without the consideration of packet header information. There are several
methods that accomplish this, a brief explanation on a few of them;

• Random selection: The load balancer will choose a random physical
port from its outgoing ports set.

• Round-robin: The load balancer keeps the order of outgoing ports and
chooses the outgoing port according to its sequence number.

• Weighted and dynamic round-robin: Two former methods do not take
the incoming traffic information and workers status into account. Ac-
cording to this method, the load balancer keeps the order of outgoing
ports but in a case that the worker is overloaded, the load balancer will
skip that worker. Each worker is monitored continuously and according
to its performance level, the traffic is sent to that worker.

There are two types of load balancers: software and hardware. Either
they use source-dependent or source-independent mechanisms. Although
hardware load balancers work faster but they do cost more. In this research
we work with a Pronto 3290 switch as an openflow enabled switch.

10

2.5.1 OpenFlow switch

OpenFlow is an open standard for network devices. It separates the for-
warding plain from the control plain. One server (the controller) takes the
responsibility of the control plain and instructs the network devices via the
OpenFlow protocol.

The OpenFlow switch keeps one flow table and each flow entry contains
packet characteristics and the corresponding action (drop or forward the
packet). When a packet arrives at an OpenFlow switch, the switch looks at
its flow table. If it can not find the corresponding flow entry, it will redirect
the packet to the controller. The controller will drop or redirect the packet
and will notify the switch. The switch will take the same action for similar
packets from that moment on. This whole process will occur if the switch is
on its reactive method which provides dynamic flow entries but in the case of
proactive method, all required flows will be defined in the switch directly via
the controller before the traffic is sent through the switch. If the incoming
packets do not match the defined flows, they will be dropped.

2.5.2 Floodlight controller

There are some open source options for the controller, such as NOX5, Flood-
light6 and Flowscale7.
Floodlight is a Java based Apache-licensed application which is tested in
real networks and is being supported by a developer community. Floodlight
consists of modules, the main module ”FloodlightProvider” manages commu-
nication with switches and creates OpenFlow messages for receiving devices.
It also interprets the arrived OpenFlow messages for taking appropriate ac-
tion.
Unfortunately at the moment there is no straight-forward solution to make
an OpenFlow enabled switch work as a load balancer. In this project, dif-
ferent methods are developed and tested to make this happen, which are
explained in the following section.

5http://www.noxrepo.org
6http://floodlight.openflowhub.org
7http://www.openflowhub.org/display/FlowScale/FlowScale+Home

11

3 Experimental setups

3.1 Pronto switch

There is no plug-and-play solution to use the Pronto switch as a loadbalancer.
Therefore, some ideas to implement this functionality have been researched.

Load balancer module From December 12, 2012, the floodlight version
in GitHub contains a new module called ”load balancer”. This module is
meant to work on ICMP, TCP and UDP flows. But it is still in development
phase and its compatibility is not tested8. The idea behind this module is
to define one virtual IP address (VIP) and assign a pool to that. The hosts
responsible for the VIP are added to the pool. The hosts pushed in the pool
will respond to the requests sent for that VIP.

The following shows the commands that are used in the controller server
to create one virtual IP address which will respond to PING echo-requests:

curl -X POST -d ’{"id":"1", "name":"vip1", "protocol":"icmp",

"address":"192.168.100.100", "port":"8"}’ http://localhost

:8080/quantum/v1.0/vips

curl -X POST -d ’{"id":"1", "name":"pool1", "protocol":"icmp

", "vip_id":"1"}’ http://localhost:8080/quantum/v1.0/pools

curl -X POST -d ’{"id":"1", "address":"192.168.100.2", "port

":"8", "pool_id":"1"}’ http://localhost:8080/quantum/v1.0/

members

curl -X POST -d ’{"id":"2", "address":"192.168.100.10", "port

":"8", "pool_id":"1"}’ http://localhost:8080/quantum/v1.0/

members

This module is still under development and its functionality is not fully
guaranteed. This configuration does not work for the proposed architec-
ture. When one host sends an ICMP echo request to the virtual address
”192.168.100.100”, the ICMP requests remain without any response. Also
TCP and UDP protocol pools are created. The VIP is set to the IP address
of the receiver and all Bro workers are pushed in the corresponding pools.
They do not operate as it is explained in this module’s description.

Unknown unicast means the switch replicates the incoming traffic to all
outgoing ports. In this case, all workers receive the same traffic and they are
responsible to take their part of the traffic. Unknown unicast needs more

8http://www.openflowhub.org/display/floodlightcontroller/Load+Balancer

12

complicated workers, capable of packet filtering. In comparison to a case
that each worker receives its part of the incoming traffic, this method will
operate in lower performance levels because each worker has to check all
the packets and take its part. For this project it is not possible to use this
method because the traffic is brought to the device in 10Gb/s and none of
the workers can handle that rate. Hence the workers can receive the traffic
up to 1Gb/s, the data loss and scalability issue would be challenging in this
case.

Even if the incoming and outgoing ports were transferring in the same
rate, there would be a problem with this method. Using unknown unicast, it
can not be guaranteed that the amount of traffic put on each outgoing port
is the same. This will result an unreliable situation which all workers do not
reach their highest efficiency.

StaticFlowEntryPusher module Using this module, the flows are in-
serted manually. The Forwarding module is also disabled to prevent any
packet transfer without matching the inserted flows. It is tested if the Open-
Flow switch performs as a load balancer by modifying the inserted static
flows and traffic distribution. Using this module, two methods are proposed
which are explained:

1. Real time flow management: According to this mechanism, at first
all the flows between the workers, the proxies and the manager are
set and will remain unchanged. On the other side, flows are defined
periodically from input physical ports set to the workers set. This
flow definition process has to be done in an infinite loop and specific
time span. As it is shown in figure 5, the gray lines indicate the fixed
connections between components in the Bro Cluster. The dotted lines
are the ones will be deleted and created to pass incoming traffic to the
workers.

There are multiple ways to define flows on the OpenFlow switch. One
of them is to use the ”curl” command. The following commands show
two example flows from port 1 to port 2. The first flow only replicates
the incoming traffic to port 1 into port 2 and does not check extra
conditions. Second flow only replicates the packets with destination
port number 80.

curl -d ’{"switch": "00:00:01:00:42:04:30:02", "name":"

flow-1-2_v1","cookie":"0","ingress-port":"1","active":"

true", "actions":"output=2"}’ http://127.0.0.1:8080/wm/

staticflowentrypusher/json

13

curl -d ’{"switch": "00:00:01:00:42:04:30:02", "name":"

flow-1-2_v2","cookie":"0","ether-type":"0x0800","

protocol":"6","dst-port":"80","ingress-port":"1","

active":"true", "actions":"output=2"}’ http

://127.0.0.1:8080/wm/staticflowentrypusher/json

Figure 5: Realtime flow management

Before implementing this method, it was tried to set flows in a way that
they contain real-time changing variables. In the flow definition, there
is a field called ”actions” which will be applied when it satisfies the
condition. The egress port number is set in this field. To distribute the
incoming traffic among the workers, it would be ideal if the egress port
number could be set in real time. For example formula 2 distributes
the incoming traffic per-destination (n shows number of workers). The
module StaticFlowEntryPusher does not provide dynamic flows. The
flows have to be defined first then they will apply the corresponding
actions.

[Hash(dst ip + dst port)]%n (2)

Therefore the only option for this project is to add and remove the flows
as it is explained before. One python program is implemented for this
purpose and is run in the controller server (See appendix section D).
There are two 10Gb/s ports on the switch which are meant to transmit
the traffic into the Bro Cluster. The workers are connected via 1Gb/s
ports. The switch first removes the flows which their ingress-port is one
of the 10Gb/s ports and then chooses the next worker according to the

14

Expected gap duration Real gap duration
1000 1030.199 1030.301 1030.694 1032.045 1039.184 1039.535
500 531.727 533.120 542.854 551.444 552.387 560.277
100 103.688 126.954 127.751 139.977 141.676 148.764
1 9.185 27.210 28.257 29.052 36.094 41.430

Table 1: Gap values with different time spans in miliseconds

load balancer algorithm(such as random or round-robin) and creates
flows for that.

To run this 2-step process (delete the flows, create the new ones), the
time span has to be tuned. The traffic is generated containing 20000
packets per seconds. Tests are run with different time span to check the
required accuracy. Table 1 shows the gaps that occurred in one worker
with different time spans. Each row shows the exact duration when
a flow is deleted for that worker. First column indicates the expected
gap duration in milliseconds. Columns 2 to 7 show tested gap duration
in milliseconds. For example, row 1 shows the gap values for 1-second
time span. It is not expected to see exactly 1 second gap. Although
the time span is set in python program but the program will still need
to run some other instructions which makes the gap a bit longer. But
ideally it is expected to see the same value for each gap in one row
which is not happening. As an example 1030.199 and 1039.184 are two
different gap values from row 1 and their difference accuracy is about
10 milliseconds.

The 1-millisecond test states a very clear answer for the question: ”Can
real-time flow management be used as a load balancing mechanism?”.
As it is shown in the table, the gap values in this case follow a chaotic
behavior. They increase as the time passes and get further from the
expected value which is 1 millisecond.

The time span for the OpenFlow switch has to be in milliseconds to
disperse incoming 10Gb/s traffic among 1Gb/s receiving ports. But as
it has been shown, it is not possible with current OpenFlow technology.

2. Port based flows: It is necessary to create a method for the OpenFlow
switch to make it work as a dynamic decision-maker load balancer. In
order to do this and also to provide a suitable representative for Internet
traffic, the random distribution could be in the incoming traffic or in
the created flows.

15

The idea behind this method is to add all the flows before traffic trans-
mission is started. The flows differ in their source port, destination
port, ingress port and egress port. The port numbers are chosen from
different sets. The ingress and egress ports show the port numbers on
the switch. The ingress port is one of the two 10Gb/s ports and the
egress port shows 1Gb/s ports connected to the workers. The source
port and destination port number is any number from 1 to 65536.

In the case that source and destination port numbers are distributed
randomly among flows, the OpenFlow switch works properly as a load
balancer. For this purpose, the number of flows created in the switch
has to be 65536. But there is a limitation in the number of flows can
be inserted in the switch. There is a Python program written for this
project to create 65536 flows in the switch and distribute the source
and the destination port numbers among defined flows. In the pronto
switch around 2000 flows can be inserted which is not enough for 65536
flows needed.

3.2 Traffic Type Impact

To test the impact of different traffic types on the IDS, multiple traffic flows
have been generated. Because load could not be dispersed via the OpenFlow
switch, impact has been tested on one worker. Five different types of traf-
fic have been transmitted. Small and large TCP packets, small and large
UDP packets and HTTP sessions. The packets are created with Ostinato9,
captured via TCPDump10 and transmitted via TCPReplay11. This provides
full control over the packet headers and increased throughput. All packets
created via Ostinato contain the same payload (all zero). The TCP packets
sent via Ostinato are dropped on the receiving side, no response is sent. The
frame length described in table includes the Frame Check Sequence (FCS).
The amount of traffic (in Mb/s) sent in table 2 is measured on the interface
of the switch (Foundry in figure 1. For the HTTP session this also includes
the reply. The sessions are created via Apache Benchmark (AB) and Apache
server. AB sends a thousand HTTP-Get requests per second to the Apache
server, which responds with the default ”It works” page. This entire session
is inspected by Bro.

Data represented in table 2 is captured via Capstat12, run on the manager.

9http://code.google.com/p/ostinato/
10http://www.tcpdump.org/
11http://tcpreplay.synfin.net/
12http://bro-ids.org/download/README.capstats.html

16

http://bro-ids.org/download/README.capstats.html

Traffic Type Mb/s Sent Mb/s Captured KPPS Captured
UDP Packet with 64 Bytes 602 234 636
TCP Packet with 64 Bytes 340 212 575
UDP Packet with 1518 Bytes 7301 973 81
TCP Packet with 1518 Bytes 6152 973 81
HTTP Session 342 236 298

Table 2: Capture speeds by Bro node

Figure 6: Traffic dispersion

The Bro host has a 1000BASE-T NIC. This explains the maximum captured
traffic for large packets (1518 bytes), tests with a 10GBASE-T NIC should
provide information on the maximum capture speed for large packets. For
small packets (64 bytes) the maximum capture speed is 220 Mb/s. There is
no significant difference in speed, for small packets regarding TCP or UDP.

The packets generated do not contain any payload that causes an action.
Tests have shown that a worker can send a maximum of 1000 events per
second where a script is called within 1 second. The script is called via the
event triggered by Bro.

17

redef Notice::policy += {

[$pred(n: Notice::Info) = {

if (n$note == TCP::TEST)

{

local cmd = fmt("/usr/local/bro/share/bro

/site/acl.sh");

piped_exec(cmd, fmt("%s", nidorig_h));

}

return F;

},

$action=Notice::ACTION_NONE]

};

The Notice policy will define the action to apply after one signature is
detected in the Bro cluster. As it is explained before, for each signature de-
tection there must be a mechanism to redirect the packets from that specific
source to the prevention area.

This scripts overrides the Notice policy. When the notice policy is trig-
gered the file acl.sh is executed. This file contains a telnet script that adds a
static route for the IP-address causing the notice. Then the packets coming
from the source identified with that IP address will not be copied any more
and will be sent directly to the prevention area.

18

4 Conclusion

This research is set out to understand the technical implications and band-
width limitations by building a scalable intrusion detection and prevention
system with commodity hardware for networks with multiple terabits of traf-
fic per second.

A method has been used that provides full control over packet content
and ensures high traffic throughput. In order to disperse this traffic over
multiple inspection nodes, different load balancing algorithms and techniques
have been researched. The combination of Openflow and Floodlight does not
provide any working method for loadbalancing at this moment.

The impact of TCP and UDP traffic has been measured on a single in-
spection node. There is no significant difference in TCP or UDP traffic.
The maximum amount of bandwidth that can be inspected is defined by the
packet size. Small packets (64 bytes) can be inspected at a maximum rate of
220 Mb/s. The maximum Mb/s for large packets (1518 bytes) could not be
determined because the NIC limited the inspection speed. However, we can
conclude that the maximum Mb/s that can be inspected is equal or higher
than 975 Mb/s.

There is no technical limitation to make BRO work as a NIDS. Currently
there is no NIDS version of BRO known. The proposed architecture to
combine a NIDS with a NIPS could not be tested with multiple inspection
nodes. With a single inspection node a static route could be inserted to
redirect traffic to a NIPS.

4.1 Future Work

Multiple load balancing algorithms have been researched. Further research
has to be done in order to create a load balancing algorithm via OpenFlow.
The scalabilty of Bro for multiple terabits of traffic could not be tested.
Further research is needed to determine the overhead with multiple proxies.
Because of the 1000Base-T NICs the maximum bandwidth that can be in-
spected with large (1518 bytes) packets could not be determined. Tests with
faster NICs are needed to determine this.

19

References

[1] Child Pornography - First report of the Dutch National Rapporteur.
Bureau of the Dutch National Rapporteur, The Hague. 2011.

[2] Online threats in the last moth [Online] Available: http://www.

securelist.com/en/statistics#/en/top20/wav/month

[3] Black Tulip - Report of the investigation into the DigiNotar Certificate
Authority breach. Fox IT, Delft. 2012.

[4] Bandwidth, Packets Per Second, and Other Network Performance
Metrics [Online]. Available: http://www.cisco.com/web/about/

security/intelligence/network_performance_metrics.html

[5] NCSC moet netwerken overheid 24/7 gaan monitoren [On-
line]. Available: http://tweakers.net/nieuws/86792/

ncsc-moet-netwerken-overheid-24-7-gaan-monitoren.html

[6] Foong, Annie P., et al. ”TCP performance re-visited.” Performance
Analysis of Systems and Software, 2003. ISPASS. 2003 IEEE Interna-
tional Symposium on. IEEE, 2003.

[7] List of Internet exchange points by size [Online]. Available: http://en.
wikipedia.org/wiki/List_of_Internet_exchange_points_by_size

[8] Cisco ASA 5500 Series Next Generation Firewalls [Online]. Available:
http://www.cisco.com/en/US/products/ps6120/index.html

[9] Network (AS number) statistics [Online]. Available: https://www.

ams-ix.net/connected_parties

[10] Statistics [Online]. Available: https://www.ams-ix.net/technical/

statistics

[11] Peering around the globe [Online]. Available: https://www.ams-ix.

net/connect-to-ams-ix/peering-around-the-globe

[12] Frame size distribution [Online]. Available: https://www.ams-ix.net/
technical/statistics/sflow-stats/frame-size-distribution

[13] What is OpenFlow? [Online] Available: http://www.openflow.org/

wp/learnmore/

[14] sFlow Stats [Online]. Available: https://www.ams-ix.net

20

http://www.securelist.com/en/statistics#/en/top20/wav/month
http://www.securelist.com/en/statistics#/en/top20/wav/month
http://www.cisco.com/web/about/security/intelligence/network_performance_metrics.html
http://www.cisco.com/web/about/security/intelligence/network_performance_metrics.html
http://tweakers.net/nieuws/86792/ncsc-moet-netwerken-overheid-24-7-gaan-monitoren.html
http://tweakers.net/nieuws/86792/ncsc-moet-netwerken-overheid-24-7-gaan-monitoren.html
http://en.wikipedia.org/wiki/List_of_Internet_exchange_points_by_size
http://en.wikipedia.org/wiki/List_of_Internet_exchange_points_by_size
http://www.cisco.com/en/US/products/ps6120/index.html
https://www.ams-ix.net/connected_parties
https://www.ams-ix.net/connected_parties
https://www.ams-ix.net/technical/statistics
https://www.ams-ix.net/technical/statistics
https://www.ams-ix.net/connect-to-ams-ix/peering-around-the-globe
https://www.ams-ix.net/connect-to-ams-ix/peering-around-the-globe
https://www.ams-ix.net/technical/statistics/sflow-stats/frame-size-distribution
https://www.ams-ix.net/technical/statistics/sflow-stats/frame-size-distribution
http://www.openflow.org/wp/learnmore/
http://www.openflow.org/wp/learnmore/
https://www.ams-ix.net

[15] Vasiliadis et al, ”Regular Expression Matching on Graphics Hardware
for Intrusion Detection,” Saint-Malo, France. 2009.

[16] Clark, Christopher, and David Schimmel. ”Efficient reconfigurable logic
circuits for matching complex network intrusion detection patterns.”
Field Programmable Logic and Application (2003).

[17] Song, Haoyu, et al. ”Snort offloader: A reconfigurable hardware NIDS
filter.” Field Programmable Logic and Applications, 2005. International
Conference on. IEEE, 2005.

[18] Vallentin, Matthias, et al. ”The NIDS cluster: Scalable, stateful net-
work intrusion detection on commodity hardware.” Recent Advances in
Intrusion Detection. Springer Berlin/Heidelberg, 2007.

[19] Kumar, Sailesh. ”Survey of current network intrusion detection tech-
niques.” (2007): 1-18.

[20] Lakhina, Anukool, Mark Crovella, and Christophe Diot. ”Mining
anomalies using traffic feature distributions.” ACM SIGCOMM Com-
puter Communication Review. Vol. 35. No. 4. ACM, 2005.

[21] The Bro Network Security Monitor. [Online] Available: http://www.

bro-ids.org/

[22] What is Snort? [Online] Available: http://www.snort.org/

[23] Weaver, Nicholas, and Robin Sommer. ”Stress testing cluster Bro.” DE-
TER workshop. 2007.

21

http://www.bro-ids.org/
http://www.bro-ids.org/
http://www.snort.org/

A Packet distribution

B NIDS product list

22

Figure 7: Frame size distribution in AMS-IX

Figure 8: Network protocol distribution in Surfnet

23

 Intrusion Prevention Comparison Guide

Copyright © 2007, Tippit, Inc., All Rights Reserved.

COMPANY CONTACT PRODUCT DESCRIPTION

TippingPoint
(A 3Com
company)

512-681-8000
888-878-3477
www.tippingpoint.com

TippingPoint IPS

Produces a widely-deployed
device that is based on the
company’s own Threat
Suppression Engine, custom
ASICs and single vulnerability
security filters

McAfee
800-338-8754
www.mcafee.com/us/

IntruShield
Network IPS +
Host Intrusion
Prevention

Host solution uses a single
software agent for both desktop
and server protection in concert
with Microsoft Windows stateful
firewalls

Internet
Security
Systems
(An IBM
company)

404-236-2700
www.iss.net Proventia

One of the oldest security
companies with a product that
allows in-line simulation to
determine what the best
blocking behavior is before
activating the blocking

Sourcefire
800-917-4143
www.sourcefire.com

Sourcefire
Intrusion Sensor

Sourcefire devices use the
popular open-source Snort
engine, which was created by
the company’s founder

Juniper
Networks

408-745-2000
www.juniper.net

Juniper Networks
IDP and ISG
series

An IP network systems
provider, its IPS systems also
provide views of network and
application-level activity to help
determine the cause of attacks

Top Layer
Networks

508-870-1300
www.toplayer.com IPS 5500 series

Offers systems that content
based IPS with stateful firewalls
and mitigation algorithms to
defend against content, access
and rate-based attacks at the
same time

Cisco Systems
408-526-4000
www.cisco.com

Cisco Intrusion
Prevention
Solution

The top network infrastructure
provider, the company’s IPS is
an integral part of Cisco’s
network security system

Check Point
Software

800-429-4391
www.checkpoint.com

IPS-1 and
InterSpect

One of the leading firewall
vendors, Check Point provides
IPS either as a dedicated
solution or combined with
network access control

Force 10
408-571-3500
www.force10networks.com P-Series

A provider of network systems,
Force 10 several years ago
acquired the first IPS solution
capable of 10 Gbps line-rate
performance

Enterasys
978-684-1000
www.enterasys.com Dragon

Founded in 1983, the company
now develops secure network
technology with IPS delivered
either as host or network-based
defense

C Average troughput IX

25

Short	 name Name Throughput	 (Gbit/s)	 maximumThroughput	 (Gbit/s)	 averageValues	 updated
BNIX Belgium	 National	 Internet	 eXchange[99]51[101] N/A 41171
DIX Danish	 Internet	 Exchange	 Point[129]29[129] N/A 41171
DTEL-‐IX Digital	 Telecom	 Internet	 eXchange[127]30 N/A 40774
INXS Internet	 Exchange	 Point	 Munich[143]21[145] N/A 41171
RheintalIX Rheintal	 Internet	 Exchange[207]N/A N/A 41310
SFINX Service	 for	 French	 Internet	 eXchange[111]38[113] N/A 41171
CATNIX Catalunya	 Neutral	 Internet	 Exchange	 Point[212]1[214] 1[214] 40919
CIXP CERN	 Internet	 Exchange	 Point[204]2[206] 1[206] 40518
JINX Johannesburg	 Internet	 Exchange[215]2[217] 1[217] 40782
Moebius PTT	 Moebius[201]2[203] 1[203] 40581
Pacific	 Wave Seattle	 Network-‐to-‐Network	 Access	 Point[178]8[180] 1
VSIX North	 East	 Neutral	 Access	 Point[209]1[211] 1[211] 40449
GN-‐IX Groningen	 Internet	 Exchange[181]7[184] 2[185] 40528
IIX Israeli	 Internet	 Exchange[198]3[200] 2[200] 40549
TIX Telehouse	 Internet	 Exchange[192]4[194] 2
TWIX Taiwan	 Internet	 Exchange[195]3[197] 2[197] 40549
AtlantaIX Atlanta	 Internet	 Exchange[169]9[171] 3
Kh-‐IX Kharkov	 Internet	 Exchange	 Point[189]5[191][27] 3[191] 40488
LAIIX Los	 Angeles	 International	 Internet	 eXchange[172]9[174] 4[174] 40549
PIRIX PIRIX	 Internet	 Exchange[186]7[188] 4[188] 40687
ALP-‐IX ALPs	 Internet	 Exchange[160]13[162] 5[162] 40606
EKT-‐IX Ekaterinburg	 Internet	 eXchange[175]9[177] 5 40687
NFX Neutral	 czFree	 eXchange[149]16[151] 7[151] 41171
RoNIX Romanian	 Network	 for	 Internet	 eXchange[166]11[168] 7[168] 40549
BCIX Berlin	 Commercial	 Internet	 Exchange[114]35[116] 8 41117
GigaPix Gigabit	 Portuguese	 Internet	 eXchange[163]13[165][27] 8 41310
GR-‐IX Greek	 Internet	 eXchange[140]21[142] 8[142] 41171
LONAP London	 Network	 Access	 Point[134]25[136] 8 40969
NaMeX Nautilus	 Mediterranean	 eXchange	 point[146]21[148] 8[148] 41171
NIXI National	 Internet	 Exchange	 of	 India[155]14[157] 9[157] 40650
TOP-‐IX Torino	 Piemonte	 Internet	 point	 eXchange[120]33[122] 10[122] 40549
InterLAN Romanian	 Internet	 Exchange[131]25[133][27] 11 40549
PARIX Paris	 Internet	 eXchange[152]15[154] 11 38989
INEX Internet	 Neutral	 Exchange[137]24[139] 13[139] 40708
Pipe	 IX Pipe	 IX[158] 13[159] 13
SIX Slovenian	 Internet	 Exchange[117]35[119] 16[119] 40979
FICIX Finnish	 Communication	 and	 Internet	 Exchange[123]31[126][125] 18[125] 41171
NIX Norwegian	 Internet	 eXchange[105]39[107] 20 40657
SPB-‐IX Saint-‐Petersburg	 Internet	 Exchange[108]39[110] 20 40687
SwissIX Swiss	 Internet	 eXchange[102]43[104] 22.5[104] 41017
SIX Slovak	 Internet	 eXchange[93]59[95] 26 41171

SVAO-‐IX SVAO-‐IX[87] 61[89] 28[89] 41171
BalkanIX Balkan	 Internet	 eXchange[96]55[98] 30[98] 41171
Home-‐IX Home-‐IX[90] 60[92] 31[92] 41171
BIX.BG Bulgarian	 Internet	 eXchange[81]79[83] 40[83] 41171
MIX Milan	 Internet	 eXchange[77]94[79][80] 40[80] 40865
VIX Vienna	 Internet	 eXchange[84]73[86] 42 41171
PTT	 Metro PTT	 Metro[74]100[76] 60[76] 41015
ECIX European	 Commercial	 Internet	 Exchange[71]107[73] 64 41043
TorIX The	 Toronto	 Internet	 Exchange[68]113[70] 70 41300
HKIX Hong	 Kong	 Internet	 eXchange[52]182[55] 71 40865
BIX Budapest	 Internet	 Exchange[59]160[61] 75[61] 40865
SIX Seattle	 Internet	 Exchange[65]155[67] 78[67]
France-‐IX France-‐IX[62]158[64] 86[64] 41277
JPIX Japan	 Internet	 Exchange[56]167[58] 88 40864
NYIIX New	 York	 International	 Internet	 eXchange[46]282[48] 93[48] 40864
Any2 Any2	 Exchange[43]250[45] 100 40865
NL-‐ix Netherlands	 Internet	 Exchange[49]188[51] 113[51] 41095
NIX.CZ Neutral	 Internet	 eXchange	 of	 the	 Czech	 Republic[40]250[42] 121 41232
PLIX Polish	 Internet	 eXchange[37]220[39] 132[39] 40958
ESPANIX Spain	 Internet	 Exchange[32]259[34] 159 40966
UA-‐IX Ukrainian	 Internet	 Exchange	 Network[24]369[26][27] 197[26] 40865
JPNAP Japan	 Network	 Access	 Point[28]363[31][30] 203[30] 41314
NL-‐ix Netherlands	 Internet	 Exchange226[36] 220[36] 41314
Netnod Netnod	 Internet	 Exchange	 in	 Sweden[20]515[23][22] 290[22] 41314
MSK-‐IX Moscow	 Internet	 Exchange[17]903[19] 417[19] 40986
Data	 IX Data	 IX[14] 1100[16] 756[16] 41289
Equinix Equinix	 Exchange[11]1409[13] 990[13] 40954
LINX London	 Internet	 Exchange[8]1574[10] 1040[10] 41218
DE-‐CIX Deutscher	 Commercial	 Internet	 Exchange[1]2232[3] 1369[3] 41218
AMS-‐IX Amsterdam	 Internet	 Exchange[4]2091[7] 1379[7] 41218

Average:	 135.35

D Realtime flow management using Flood-

light

#!/usr/bin/python

from random import randrange

import time

import os

class Load_Balancer:

worker_ports = []

worker_order = []

in_port1 = 50

in_port2 = 50

rand = 0

time_span = 1000000

pronto_mac = "00:00:01:00:42:04:30:02"

index_flow = 0

def __init__(self):

self.time_span = raw_input("Please enter the

time span(in seconds) you want to change the

flows:\n")

self.rand = raw_input("Do you like random load

balancing? 1/0\n")

worker_port = raw_input("worker port (If you

have added all of them, enter -1): \n")

while worker_port != "-1" :

self.worker_ports.append(worker_port.

rstrip(’\r\n’))

worker_port = raw_input()

initializing the worker_order array

self.worker_order = [None] * len(self.

worker_ports)

if self.rand == "1":

self.random_order()

else:

self.round_robin_order()

self.flows_in_timespan()

This function changes the order of worker ports in a random

way

def random_order(self):

28

ind = 0 # indexes start from 0 in python

while (ind < len(self.worker_ports)):

self.worker_order[ind] = randrange(0, len

(self.worker_ports))

ind = ind + 1

ind = 0

while (ind < len(self.worker_ports)):

wp = self.worker_ports[self.worker_order[

ind]]

self.worker_order[ind] = wp

ind = ind + 1

This function puts the worker ports in the order user

entered them

def round_robin_order(self):

I keep the order of worker ports as it is

entered by user

ind = 0

while (ind < len(self.worker_ports)):

self.worker_order[ind] = self.

worker_ports[ind]

ind = ind + 1

This function will clear the switch from flows, create new

one for the specific worker

def flow_management(self):

worker = self.worker_order[self.index_flow]

name = str(self.in_port1) + "_" + worker

create_flows = "curl -d ’{\"switch\": \"" + self

.pronto_mac + "\", \"name\":\"" + name + "

\",\"cookie\":\"0\", \"ingress-port\":\"" +

str(self.in_port1) + "\",\"active\":\"true

\",\"actions\":\"output=" + worker + "\"}’

http://127.0.0.1:8080/wm/

staticflowentrypusher/json"

os.system("curl http://127.0.0.1:8080/wm/

staticflowentrypusher/clear/"+ str(self.

pronto_mac) +"/json")

os.system(create_flows)

if self.rand == "1" and self.index_flow == len(

self.worker_ports):

29

self.random_order()

if self.index_flow == len(self.worker_ports) -1

:

self.index_flow = 0

else:

self.index_flow = self.index_flow + 1

This function will do the job in an infinite loop

def flows_in_timespan(self):

while True:

self.flow_management()

time.sleep(float(self.time_span))

##########################

x = Load_Balancer()

30

	Introduction
	Related work
	Research question
	Outline

	Proposed Architecture
	Traffic patterns on the Internet
	Packet Generation
	Detection
	Prevention
	Load balancer
	OpenFlow switch
	Floodlight controller

	Experimental setups
	Pronto switch
	Traffic Type Impact

	Conclusion
	Future Work

	Packet distribution
	NIDS product list
	Average troughput IX
	Realtime flow management using Floodlight

