

Linux Open Source Distributed Filesystem Ceph at SURFsara

Remco van Vugt

July 2, 2013

Agenda

- Ceph internal workings
 - Ceph components
 - CephFS
 - Ceph OSD
- Research project results
 - Stability
 - Performance
 - Scalability
 - Maintenance
 - Conclusion
- Questions

Ceph components

Device nodes

CephFS

- Fairly new, under heavy development
- POSIX compliant
- Can be mounted through FUSE in userspace, or by kernel driver

CephFS (2)

Figure: Ceph state of development

CephFS (3)

Figure: Dynamic subtree partitioning

Ceph OSD

- Stores object data in flat files in underlying filesystem (XFS, BTRFS)
- Multiple OSDs on a single node (usually: one per disk)
- 'Intelligent daemon', handles replication, redundancy and consistency

CRUSH

- Cluster map
- Object placement is calculated, instead of indexed
- Objects grouped into Placement Groups (PGs)
- Clients interact direct with OSDs

Placement group

Figure: Placement groups

Failure domains

Figure: Crush algorithm

Replication

Figure: Replication

Monitoring

- OSD use peering, and report about each other
- OSD either up or down
- OSD either in or out the cluster
- MON keeps overview, and distrubutes cluster map changes

OSD fault recovery

- OSD down, I/O continues to secondary (or tertiary) OSD assigned to PG (active+degraded)
- OSD down longer than configured timeout, OSD is down and out (kicked out of the cluster)
- PG data is remapped to other OSD and re-replicated in the background
- PGs can be down if all copies are down

Rebalancing

Research

Research questions

- Research question
 - Is the current version of CephFS (0.61.3) production-ready for use as a distributed filesystem in a multi-petabyte environment, in terms of stability, scalability, performance and manageability?
- Sub questions
 - Is Ceph, and an in particular the CephFS component, stable enough for production use at SURFsara?
 - What are the scaling limits in CephFS, in terms of capacity and performance?
 - Does Ceph(FS) meet the maintenance requirements for the environment at SURFsara?

Stability

- Various tests performed, including:
 - Cut power from OSD, MON and MDS nodes
 - Pull disks from OSD nodes (within failure domain)
 - Corrupt underlying storage files on OSD
 - Killed daemon processes
- No serious problems encountered, except for multi-mds
- Never encountered data loss

Performance

- Benchmarked RADOS and CephFS
 - Bonnie++
 - RADOS bench
- Tested under various conditions:
 - Normal
 - Degraded
 - Rebuilding
 - Rebalancing

RADOS Performance

CephFS Performance

CephFS MDS Scalability

- Tested metadata performance using mdtest
- Various POSIX operations, using 1000,2000,4000,8000 and 16000 files per directory
- Tested 1 and 3 MDS setup
- Tested single and multiple directories

CephFS MDS Scalability (2)

Results:

- Did not multi-thread properly
- Scaled over multiple MDS
- Scaled over multiple directories
- However...

CephFS MDS Scalability (3)

Metadata performance CephFS multi-MDS vs XFS on RBD

Number of files

Ceph OSD Scalability

- Two options for scaling:
 - Horizontal: adding more OSD nodes
 - Vertical: adding more disks to OSD nodes
- But how far can we scale..?

Scaling horizontal

Number of OSDs	PGs	MB /sec	max (MB /sec)	Overhead %
24	1200	586	768	24
36	1800	908	1152	22
48	2400	1267	1500	16

Scaling vertical

OSD scaling

- Add more disks, possibly using external SAS enclosures
- But, each disk adds overhead (CPU, I/O subsystem)

Scaling vertical (2)

Scaling vertical (3)

Scaling OSDs

- Scaling horizontal seems no problem
- Scaling vertical has it's limits
 - Possibly tunable
 - Jumbo frames?

Maintenance

- Built in tools sufficient
- Deployment
- Crowbar
- Chef
- Ceph deploy
- Configuration
- Puppet

Research (2)

- Research question
 - Is the current version of CephFS (0.61.3) production-ready for use as a distributed filesystem in a multi-petabyte environment, in terms of stability, scalability, performance and manageability?
- Sub questions
 - Is Ceph, and an in particular the CephFS component, stable enough for production use at SURFsara?
 - What are the scaling limits in CephFS, in terms of capacity and performance?
 - Does Ceph(FS) meet the maintenance requirements for the environment at SURFsara?

Conclusion

- Ceph is stable and scalable
 - RADOS storage backend
 - Possibly: RBD and object storage, but outside scope
- However: CephFS is not yet production ready
 - Scaling is a problem
 - MDS failover was not smooth
 - Multi-MDS not yet stable
 - Let alone directory sharding
- However: developer attention back on CephFS

Conclusion (2)

Maintenance

- Extensive tooling available
- Integration into existing toolset possible
- Self-healing, low maintenance possible

Questions?