UNIVERSITY OF AMSTERDAM

SYSTEM & NETWORK ENGINEERING

Linux Open Source Distributed
Filesystem

July, 2013

Authors:
REMCO vAN VUGT remco.vanvugt@os3.nl

Abstract

Ceph is a clustered, distributed open source storage system for the Linux
platform. In this research an assessment is made on the scalability, reliabil-
ity and manageability of Ceph in a large multi-Petabyte environment such
as the environment at SURFsara. Focus lies on the filesystem part of Ceph,
CephF'S. Performance experiments are used as a basis for the assessment of
scalability and to determine the handling of various failure conditions.

Results show that although Ceph delivers promising performance and re-
siliance against various failure conditions, it is not yet ready for produc-
tion use in the environment at SURFsara. Especially the Meta Data Server
(MDS) lacked reliability and did not scale very well.

Contents

1 Introduction

1.1 Related work
1.2 Research question.
1.3 Subquestions
1.4 Research Method
1.5 Scope

2 Ceph architecture

3 Experiments

3.1 Testsetup o
3.1.1 Hardware

3.1.2 Configuration

3.2 Ceph stability experiments
3.2.1 CephFS and MDS stability
3.2.2 Ceph general stability

3.3 Cephscaleability
3.4 Ceph performance

4 Results

4.1 Ceph Stability
4.1.1 CephFS and MDS stability
4.1.2 Ceph general stability
4.1.3 Conclusion on stability 0oL

4.2 Ceph performance
4.2.1 Conclusion on performance

4.3 Ceph scaleability
4.3.1 MON scaleabilityo
4.3.2 OSD scaleability o
4.3.3 MDS scaleability L
4.3.3.1 Single active MDS setup

4.3.3.2 Three active MDSsetup

4.3.3.3 Comparison RBD
4.3.4 Conclusion on scalability

5 Conclusion
6 Limitations and futher work

7 References

with XFS

11
11
11
12
12
14
18
19
19
19
21
21
23
25
27

28

29

30

1 Introduction

SURFsara supports researchers and the academic community in The Netherlands. SURF-
sara provides various computing services to support research, including storage, grid
computing and cloud computing.

Storage needs at SURFsara are in the order of Petabytes and constantly growing. SURF-
sara is looking for a distributed, POSIX compliant filesystem with the following key
requirements:

e Scalability: the filesystem needs to able to expand (virtually) unlimited as long as
storage is added to the cluster. Scalability is required in both size and performance.

e Reliability: the filesystem needs to be able to handle node and disk failures without
affecting availability.

e Manageability: the filesystem needs to be easy manageble in terms of expanding,
decommisioning failed and replaced nodes and other hardware related changes.
This should be handled by the filesystem in an automated manner and without
affecting availability.https://www.sharelatex.com/templates

In this research we try to establish whether the open source Ceph storage system offers
an alternative to traditional proprietary appliance based SAN storage, for running a
large on-disk data archive containing multiple petabytes of data. Ceph is a open source
distributed storage system supporting block, object and file-based storage.

Ceph was created by Sage Weil in 2007 [16]. Ceph is under active development, and is
both supported by the community as well as commercial. Ceph architecture as shown
in figure 1 consists of a distributed object store (RADOS), application library (LIBRA-
DOS), a block device implementation (RBD) and a filesystem component (CephFS).

I APP l l APP l [HOST/VM I l CLIENT l
| J L J | J
+ RADOSGW RBD CEPHFS
A bucket-based Areliable and fully- | A POSIX-compliant
LIBRADOS REST gateway, distributed block distributed file
Alib lowi compatible with S3 device, with a Linux | system, with a
“:;"; ng and Swift kemel clientanda | Linux kemel client
il m““‘" QEMU/KVM driver | and support for
with support for C, EUSE
C++, Java, Python,
Ruby, and PHP

Figure 1: Ceph architecture. Note: adapted from Ceph documentation [2]

CephFS could be a possible candidate for the distributed filesystem that is needed
at SURFsara. CephFS is the latest addition to the Ceph project. According to the
developers, it is suitable for production use with a limited feature set [3]

1.1 Related work

A lot has been written on distributed filesystems in general, however no recent work was
found on Ceph in particular at the time of writing. Ceph is included in a theoretical as-
sessment on performance of distributed storage system by Christopher Olson and Ethan
Miller [9].

The question whether CephF'S is production-ready has come up on mailing lists on sev-
eral occasions, and exact answers are not given. The development team behind CephFS
recently made a blog post on the topic [3] stating that it is production ready for a limited
feature set. The research by Sage Weil [16] is already more than five years old. Ceph has
been under substantial development over the last five years. Therefore a re-assessment
of Ceph and CephF'S as a distributed storage system will contribute to the open source
community and will be useful for SURFsara and organizations facing comparable data
storage challenges.

1.2 Research question

Is the current version of CephFS (0.61.3) production-ready for use as a distributed filesys-
tem in a multi-petabyte environment, in terms of stability, scalability, performance and
manageability?

To answer the research question, three sub questions have been defined concentrat-
ing on the main metrics (stability, scalability and performance, manageability) used for
assessing the production-readiness of CephFS.

1.3 Subquestions

o Is Ceph, and an in particular the CephFS component, stable enough for production
use at SURFsara?
The CephFS component of Ceph is under development and not all features are
stable at the moment of writing. We need find out whether the technical limita-
tions that exist in the current implementation are acceptable for production use at
SURFsara. Also, the underlying RADOS component of Ceph needs to be tested
in order see if it is ready for use in a large production environment.

e What are the scaling limits in CephF'S, in terms of capacity and performance?
Performance will be tested on the relatively limited test setup. Tests on Petabyte
level cannot be conducted. A theoretical assessment will be made on scaling and
possible issues.

o Does Ceph(FS) meet the maintenance requirements for the environment at SURF-
sara?
As the projected environment is expected to grow rapidly to a scale of multiple
Petabytes of data, hardware failures are to be expected rather than to be con-
sidered an exception. The system must handle failures in an automated manner,
making the system as low-maintenance as possible. Expanding capacity, and de-
comissioning old hardware must be straightforward and low-risk to data integrity.
Where possible, maintenance tasks must be integrated into existing tooling.

1.4 Research Method

The research will consist of a series of experiments on stability, performance and scal-
ability. The results of these experiments will be used to make an assement on the
production-readiness of Ceph in a multi-petabyte environment such as the enviroment
at SURFsara.

The details of the experiments are explained further in chapter three of this report.

1.5 Scope

The main focus of this research is on CephFS and the underlying RADOS object store,
as this is the main use case of the Ceph project at SURFsara and the latest addition to
the Ceph project. The object storage gateway and the application library (RADOSGW
and LIBRADOS) of the Ceph project are not included in the scope of this research. The
RADOS Block Device (RBD) is not extensively tested, however a quick comparison is
made between CephFS and RBD on performance to assist in drawing conclusions on
possible performance bottlenecks.

2 Ceph architecture

Ceph consists of three node types: Monitor (MON) node, Meta Data Store (MDS) node
and Object Storage Device (OSD). Ceph provides three storage options: Object storage,
Filesystem and Block storage. Object storage is simular to Amazon S3 [1] and can be
a replacement for S3 as the interface is compatible. The filesystem storage can be used
by mounting the filesystem using either a kernel driver or a FUSE implementation. The
filesystem can be mounted by multiple client systems concurrently. The block storage
component provides a kernel block device which can only be mapped to a single client
system at a time.

Monitor nodes establish the cluster quorum by using node majority. This implies an
odd number of MON nodes must be used. As one node does not provide redundancy, a
minimum of three MON nodes must be deployed.

Ceph handles data as objects, which are stored as flat files on the filesystem of an
OSD daemon as shown in figure 2. The underlying filesystem could be ext4, XFS or
BTRFS. XFS is currently advised for production usage.

(o))

Object File Disk

Figure 2: Ceph object based storage. Adapted from Ceph documentation [2]

OSD daemons run on OSD nodes, typically one daemon per physical storage device
(e.g harddisk). Ceph uses the CRUSH algorithm to store data in a pseudo random
manner. CRUSH is an acronym for Controlled Replication Under Scalable Hashing. The
algorithm calculates the location for storing objects in the cluster, which is reversible
by the client. This eliminates the need for a central database to obtain the location of
objects. Therefore, in the CRUSH algorithm lies the key to the scalability of Ceph.

In order to use the CRUSH algorithm, the clients need information on the topology
of the cluster. This is implemented in the CRUSH-map, which is part of the cluster
map. The CRUSH-map holds a list of OSD’s, grouped into buckets as shown in figure
3. Buckets are aggregations of OSD devices, grouped by possible sources of correlated
failure. For example, OSD devices relying on the same machine, power supply, network
or physical location. The CRUSH map can be edited in order to customize the failure
domain behaviour.

rack
Bucket

Bucket Bucket
| | | |

osd osd osd osd
Bucket Bucket Bucket Bucket

Figure 3: Crush buckets. Note: adapted from Ceph Documentation [2]

Data objects are placed in Placement Groups (PGs). PG’s are placed on OSDs, with
one primary OSD and one or more replica’s on other OSDs. The primary OSD for
the given placement group is responsible for accepting write operations from the client
for the objects in that particular PG. The other OSDs in the PG accept only read
operations from clients for objects in that particular PG. When data is written to the
primary OSD for a given PG, data is replicated by the primary OSD to the other OSDs
in the placement group. As soon as this is done, the write operation is acknowledged to
the client. This implies synchronous replication. By offloading the replication from the
client to the OSD, the client implementation is lightweight and relatively simple.

Placement Group #1 Placement Group #2

‘ |
I I } I

‘ OSD #1

‘ OSD #2 ‘ OSD #3 ‘ OsD #4

Figure 4: Crush Placement Groups. Note: adapted from Ceph Documentation [2]

When an OSD fails, a configurable timer is started to allow the OSD to come back up.
If the OSD stays down, and the timer runs out (300 seconds by default) Ceph starts to
restore the degraded PGs by remapping the objects on the failed OSD to another OSD.
Proper balancing of PGs over OSDs is taken into account when rebuilding. If needed

PGs are rebalanced to adapt to achieve a balanced state.

Clients interact directly with the OSD daemons, avoiding the single point of failure
and the performance bottleneck introduced by a central broker in the I/O path. By
interacting directly with the OSDs, clients and OSDs form a full mesh, maximizing the
utilization of available bandwidth on the client.

3 Experiments

3.1 Test setup

In order to gain hands-on experience with Ceph configuration and operation, a test setup
is constructed. The test setup consists of a total of eight nodes with the following roles
and specifications:

3.1.1 Hardware
2 Monitor and MDS nodes Dell Poweredge R720xd

e Dual Intel Xeon E5-2609 CPU

e 128 GB DDR3 RAM

e 12 x 600GB 15k SAS disk (Seagate ST3600057SS) (not used)

e 2 x 300GB 10k RPM SAS disk (Seagate ST9300605SS) (Operating system)
1 monitor node, 4 OSD nodes, 1 client node Dell Poweredge R720xd

e Dual Intel Xeon E5-2609 CPU

e 64 GB DDR3 RAM

e 12 x 3TB 7.2k RPM SATA disk (Seagate ST33000650NS) (OSD storage)

e 2 x 300GB 10k RPM SAS disk (Seagate ST9300605SS) (Operating system)

The nodes are connected via 10 gigabit Ethernet, using a Juniper EX-4550 switch.
Another Juniper EX-2200 switch is used to connect the management network and
console interfaces. There are 2 seperate 10GbE segments. One segment is used for
client access traffic, whilst the other is exclusively used for heartbeat, replication
and other internal cluster traffic. The topology is shown in 5

Clienfnode

10 GhE data
network

i
0SDpode

3.1.2 Configuration

n
Monit nodg Monitok node Monitoy node
MDF node (activglDF nodd (standby)

10 GhE replication
network

Figure 5: Test setup

The nodes are installed with 64 bits CentOS 6.4 Linux. All nodes are running
the stock kernel (2.6.32-358) except for the client node which is running a custom
compiled kernel (3.9.4) to support the CephFS native kernel driver.

The Dell PERC H710P controller that came with the Poweredge R720xd machines
did not support disabling RAID and running in JBOD mode. As a workaround,
12 RAID-0 sets containing one harddisk each were created. Two partitions were
created on each disk, with a GPT disk layout. A small 10GB parition to hold the
OSD journal, and the rest of the drive to hold the OSD data.

3.2 Ceph stability experiments
3.2.1 CephFS and MDS stability

To test the stability of the CephFS implementation, and the MDS the following
tests will be executed:

Test Description

MDS failure Causing the MDS to fail during heavy I/O operation to test failover
Large file test Create a file of 1TB to test if large files can be handled by the filesystem
Many file test Create an increasing amount of files in a single directory.

Concurrent I/O | Perform file operations in a single directory from multiple clients.

3.2.2 Ceph general stability

To assess the stability of Ceph and RADOS in general the following tests will be
executed. All tests will be executed during random I/O operation.

Test

Description

Monitor failure

Cause a monitor node to fail (power-off)

Object Storage Device (OSD) failure

Cause one OSD node to fail (power-off)

Object Storage Device disk failure

Pull a disk on one OSD.

Object Storage Device data corruption Overwrite part of the files containing stored objects

with random data.

Monitor daemon failure

Stop the monitor daemon non-graceful

Object Storage Device (OSD) daemon failure | Stop the monitor daemon non-graceful

3.3 Ceph scaleability

To assess the scalability of Ceph, the replication and heartbeat protocol will be
studied to determine if there is substantial networking overhead when the number

of OSDs increases.

Also a calculation will be made on scaling in terms of maximum number of OSD
daemons per node, factoring in the load on CPU and RAM.

The following tests serve to gather performance data, used in the theoretical scal-

ability assessment.

Test

Description

Test CephF'S metadata operations

Test various POSIX metadata operations on CephF'S

Test RBD (RADOS Block Device)
metadata operations

Test various POSIX metadata operations on XFS formatted
RBD

Test OSD troughput using OSD
bench

Test individual OSD troughput using RADOS OSD bench-
mark tool

Test OSD harddisk throughput us-
ing hdparm

Test OSD underlying I/O subsystem using hdparm

3.4 Ceph performance

A number of tests will be performed to test the performance of Ceph and CephF'S
under various conditions (normal, degraded and rebalancing). For the benchmarks,

the following tools will be used:

Bonnie++ [4]
RADOS bench [15]
dd [6]

hdparm [13]

dstat [17]

Both IO operations per second as well as troughput in both read and write oper-

ations will be tested.

Test

Description

Test CephFS IOPS using Bonnie+-+

Test both random and sequential I/O operations using Bon-
nie++

Test CephFS IOPS while degraded
using Bonnie++

Test both random and sequential I/O operations using Bon-
nie4++ with Ceph cluster degraded

Test CephFS IOPS while rebalanc-
ing using Bonnie++

Test both random and sequential I/O operations using Bon-
nie++ with Ceph cluster rebalancing

Test CephFS troughput using RA-
DOS bench

Test read and write troughput using RADOS bench

Test CephFS troughput while de-
graded using RADOS bench

Test read and write troughput using RADOS bench with
Ceph cluster degraded

Test CephF'S troughput while rebal-
ancing using RADOS bench

Test read and write troughput using RADOS bench with
Ceph cluster rebalancing

10

4 Results

4.1 Ceph Stability
4.1.1 CephFS and MDS stability

— MDS failure test Using the fs-metadata test [14] tool from the Linux kernel
source tree, heavy I1/0 is generated on CephFS. The fs-metadata tool creates
a k-tree data structure. A k-tree structure is a transformation of the binary-
tree which has k child nodes instead of 2 in the binary-tree.
fs-metadata does not only test directory’s but also files. Besides k child di-
rectory’s, there are also k files created under a given node.

The fs-metadata test tool was executed with a tree depth of 5, and k=10. It
also has the option to multithread, it was executed using 4 threads.

When the fs-metadata tool runs for 5 minutes, power was cut to the Ceph
node running the MDS using the remote management interface.

Results During the first 5 minutes of the test, metadata operations function
normally. Directory listing and directory traversing in the shell gives adequate
response. As soon as the machine running the MDS is powered off, the clus-
ter responds by promoting the standby MDS to active MDS. The switchover
completes within 5 seconds, making the total failover less than 10 seconds.
Traversing directory’s, or trying to open files from the mounted Ceph volume
on the client-node is not possible. The respective ls and cat commands hang
indefinitely or time-out with an I/O error. In the Ceph realtime monitor I/0O
operations drop to 0 operations per second. After a while, the kernel on the
client node crashes (kernel panic) on a Non Maskable Interrupt (NMI).

This behaviour was reproducable in a second attempt. In a third attempt
without the fs-metadata test running the kernel did not crash but I/O oper-
ations still did not succeed. The fourth attempt however showed a smooth
failover with normal I/O behaviour.

— Large file test Using the Linux dd utility 1 TB of data from /dev/zero is
copied to a file on the mounted CephFS with a block size of 4mb.
Results The file was created without problems.

— Many files test Up to 64.000 files are created in a single directory on the
CephFS.
Results This was tested during the metadata performance tests, up to 64000
files in a single directory. No problem was encountered regarding stability.

— Concurrent I/O test Two threads simultaneously read and write on the
CephFS.
Results No problems were encountered.

11

4.1.2 Ceph general stability

— Monitor failure test While writing to CephFS using dd a monitor node
(not running MDS) is powered down.
Results When the machine is powered down, this is logged on the other
monitor nodes. No impact is noticeable on the I/O operations. The cluster
shows it is running in degraded mode. When the monitor node is restarted
with the dd still running, the cluster calls a new quorum election. The cluster
resumes normal operation without any impact on I/O operations.

— OSD failure test While writing to CephF'S using dd a OSD node is powered
down.
Results When the machine is powered down, within 20 seconds the cluster
log shows the reports from neighbours coming in on the node being down.
The placement groups (PG’s) hosted on the OSD daemons running on the
node which is powered off are showing active+degraded status. After 300
seconds, the cluster marks the OSD instances running on the node as out.
The Ceph cluster starts remapping the PG’s affected to restore redundancy.
The CephF'S automatically shrinks to account for the missing storage space.
When the machine is rebooted, it automatically rejoins the cluster. The per-
centage degraded PG’s drops from around 11 percent to around 1 percent.
The CephFS automatically expands back to 131 Terabyte.

— OSD disk failure test While writing to CephF'S using dd a disk was pulled
from an OSD node, without unmounting cleanly.
Results The removal of the disk caused the OSD daemon using the particular
disk to crash. This was detected by the other OSD’s and reported to the
monitor nodes. The cluster initated a rebuild and returned to a healthy
state.

— OSD data corruption test Some of the flat files of the OSD are corrupted
by appending random data to the files
Results The corruption causes the OSD daemon to crash. The OSD is
marked out of the cluster, and objects are relocated.

— OSD daemon crash test A daemon is killed without allowing it to shut-
down cleanly.
Results The crashed daemon is handled by the cluster without service inter-
ruption.

4.1.3 Conclusion on stability

Failures that were triggered on OSD and MON nodes within the designed fault-
tolerance limits and respective failure domains are all handled without any unde-
sired side-effects. The limits for fault-tolerance in Ceph are configurable by the user

12

by increasing the number of replica’s. The failure domain is also user-configurable
which allows the user to adapt the placement of the replica’s in such way to mini-
mize the risk of all replica’s becoming unavailable.

Failures that were triggered on MDS nodes were not in all cases handled cor-
rectly by the cluster. There were a number of issues regarding MDS failover and
cluster management in general:

— MDS failure, during high I/0 load on CephF'S.
When a MDS daemon crashes when the CephFS is under heavy I/O stress,
the failure is handled by the cluster. However, the client using the kernel
driver either experiences a kernel crash (kernel panic) or a lockup up I/0
subsystem. The client could only remount the CephFS after a reboot.

— Multi-MDS, random crashes.
As described in the CephFS documentation, the use of multiple active MDS
servers is not considered to be stable at the moment of writing. Several
crashes of MDS daemons were observed during testing

— Scaling back from multiple active MDS to a single MDS.
After testing multiple active MDS, it was not possible to scale back to single
MDS. The cluster keeps indicating an unhealthy state. The only way to
revert to a single MDS was deleting the CephFS data and metadata pools
from RADOS. This means all data on the CephF'S is lost.

13

4.2 Ceph performance

CephFS IOPS using Bonnie++ Using the Bonnie++ tool on the CephFS
mount point with a 125 GB filesize to avoid cache, a sequential write troughput of
534 megabyte / sec and a sequential read troughput of 451 megabytes /sec
were recorded. Random I/O operations were handled at 2908 IOPS.

CephFS IOPS while degraded using Bonnie++ To avoid Ceph to start
rebuilding and rebalancing automatically, we set the noout flag on the cluster.
This way, the OSD’s we take down are not marked out of the cluster and therefore
no rebuild will be triggered automatically. We then shutdown node 5, and start
testing with Bonnie++.

Using the Bonnie4++ tool on the CephFS mount point with a 125 GB filesize
to avoid cache, a sequential write trougput of 555 megabyte / sec and a se-
quential read troughput of 443 megabyte / sec were recorded. Random I/O
operations were handled at 1224 IOPS.

CephF'S I0OPS while rebalancing using Bonnie++ To force Ceph to start
rebalancing, three OSD’s are marked out of the cluster. The cluster starts rebuild-
ing using the OSD’s still in the cluster. Once done, the three OSD’s are marked
in the cluster. The cluster now starts rebalancing to spread the PG’s and objects
equal over the OSD’s.

Using the Bonnie4++ tool on the CephFS mount point with a 125 GB filesize
to avoid cache, a sequential write troughput of 396 megabyte / sec and a se-
quential read troughput of 275 megabyte / sec were recorded. Random I/O
operations were handled at 2180 IOPS.

14

Bonnie throughput and IOPS

3000

W Read megabytes / seq
B Write megabytes /sec
O IoPS

2500
1

1500 2000
1 1

1000
|

500
|

Normal Degraded Rebalancing

Figure 6: Bonnie++ benchmark troughput and IOPS test results

CephF'S troughput using dd

Using the Linux dd tool, a total of 125 GB was written from /dev/zero to a file
on the CephFS. A block size of 4 megabyte was used. A write throughput of 640
megabyte /sec was recorded. The test was repeated to test read throughput,
reading the contents of the created file to /dev/null. The cache was cleaned before
running the test. A read throughput o 358 megabyte / sec was recorded.

RADOS troughput using RADOS bench
Using the RADOS benchmark tool, 16 concurrent writes of 4 megabyte in size
are being executed for 900 seconds. This resulted in an average troughput of 840
megabytes / sec. This figure was consistent with a standard deviation of 37
megabytes / sec over 189005 write operations.

15

Sequential read troughput was tested using the data written in the RADOS bench-
mark write test, executed for 900 seconds. This resulted in an average throughput
of 541 megabytes / sec over 121992 read operations.

RADOS troughput using RADOS bench when degraded

Using the RADOS benchmark tool, 16 concurrent writes of 4 megabytes in size
are being executed for 900 seconds. This resulted in an average throughput of 951
megabytes / sec. This figure was consistent with a standard deviation of 54
megabytes /sec over 214200 write operations.

Sequential read throughput was tested using the data written in the RADOS bench-
mark write test, executed for 900 seconds. This resulted in an average troughput
of 514 megabytes / sec over 115777 read operations.

RADOS troughput using RADOS bench when rebalancing

Using the RADOS benchmark tool, 16 concurrent writes of 4 megabytes in size
are being executed for 900 seconds. This resulted in an average throughput of 489
megabytes / sec. This figure was consistent with a standard deviation of 76
megabytes /sec over 110152 write operations.

Sequential read throughput was tested using the data written in the RADOS bench-
mark write test, executed for 900 seconds. This resulted in an average troughput
of 410 megabytes / sec over 92376 read operations.

RADOS troughput using RADOS bench when rebuilding

A rebuild was triggered by removing an OSD with the no-out flag set to avoid
rebalancing. The OSD was formatted and reinserted into the cluster.

Using the RADOS benchmark tool, 16 concurrent writes of 4 megabytes in size
are being executed for 900 seconds. This resulted in an average throughput of 478
megabytes / sec. This figure was consistent with a standard deviation of 82
megabytes /sec over 107501 write operations.

Sequential read throughput was tested using the data written in the RADOS bench-

mark write test, executed for 900 seconds. This resulted in an average troughput
of 460 megabytes / sec over 103755 read operations.

16

Normal Read Write 10PS
Bonnie++ 451 534 1224
RADOS bench 541 840
Degraded Read Write 10PS
Bonnie+-+ 443 555 2908
RADOS bench 541 840
Rebalancing Read Write 10PS
Bonnie+-+ 275 396 2180
RADOS bench 410 489

Table 1: Benchmark troughput in megabytes / sec and IOPS using Bonnie++ and
RADOS-bench

RADOS throughput
[
=]
o
- B Read
B Write
=
=] —i
[T
=] =
g 3
g
=
=]
&
E E_ ' I
[
=]
[
D —_—
MNormal Degraded Rebalancing Rebuilding

Figure 7: RADOS bench troughput test results

17

4.2.1 Conclusion on performance

As shown in figure 7 and table the overall write performance is better than read
performance. This in contradiction to the fact that read can be distributed over
multiple OSD nodes to avoid hardware limits. It is assumed that the difference is
caused by controller write cache on the OSD nodes, and by the fact that the OSDs
cache in memory. Once written to the OSD journal, the write is acknowledged.

The overall throughput on CephFS is lower than the throughput measured with
RADOS bench. This can be contributed to the fact that CephFS comes with some
overhead. Moreover, Bonnie++ measures both sequential as well as random 1/0.
Another limitation on RADOS bench is the fact that it only appends new data
to a pool, in 4 megabyte blocks. 4 megabyte is the default object size for storing
objects on the OSD filesystem. Therefore, RADOS bench is a more theoretical
benchmark whereas Bonnie++ is a more real world scenario.

From figure 7 it is clear that when the Ceph cluster is under some sort of main-
tenance (rebalancing or rebuilding) there is an impact on performance. Write
performance is affected the most. One possible explanation is memory usage on
the OSD nodes. The Ceph developer documentation [2] states that memory usage
on OSD nodes increases when rebuilding or rebalancing. As a result of this, there
might be less memory available for caching on the OSD nodes. Another factor
is disk usage: random seek behaviour during the rebuild operation decreases per-
formance. Overall, performance is in line with hardware capabilities. Because of
time constraints, this research is limited to fairly default configuration parameters.
With additional tuning of parameters, performance can possibly be improved.

18

4.3 Ceph scaleability

Based on the results of the performance tests, a theoretical assesment of the
scaleability of a Ceph setup will be made.

4.3.1 MON scaleability

The MON nodes in a Ceph cluster are lightweight daemons. No significant load
on the systems running the monitor deamons was observed during any of the
experiments. No foreseeable scaling issues are identified with the MON component.

4.3.2 OSD scaleability

OSD nodes can be scaled both vertical and horizontal.

Vertical scaling OSD nodes can be scaled vertical by adding more storage to the
node and therefore increasing the capacity of the cluster. Each disk runs an OSD
daemon, which comes with a certain overhead. In the benchmarks, two factors
have been identified which can limit scalability:

— Host CPU usage: CPU usage on the hosts increases with the number of OSDs
active. As seen in figure 9 already 70 % of the CPU capacity is used when
the OSD node is under heavy I/0 load.

— Host I/O subsystem: As identified in Figure 8 the performance decreases as
the number of disks increases.

Horizontal scaling

Using RADOS bench, the individual OSDs running on one node can be bench-
marked. This benchmark measures the local troughput to each disk.

A benchmark was executed writing 1024 megabytes in 4 megabyte blocks to the
individual OSDs. This was executed in parallel over all 48 OSDs in the cluster.
This resulted in an average write throughput of 64 megabytes / second per
OSD (harddisk) with a standard deviation of 8 megabytes / second.

With the write maximum of 64 megabytes / second per OSD, this comes down to
a theoretical maximum of 3072 megabytes / second over all OSD daemons in the
cluster. With a replication level of 2, the theoretical maximum is 1500 megabytes
/second as replicas are written synchronously.

Number of OSDs ‘ PGs ‘ Throughput (MB /sec) ‘ Theoretical max (MB /sec) ‘ Overhead %

24 1200 | 586 768 24
36 1800 | 908 1152 22
48 2400 | 1267 1500 16

19

100
I

Write throughput megabyte/sec
60 70 80
|

40
|

M -
s -
-
o -
o
1
=
w -
a_
o

Number of disks

Figure 8: Troughput (1024M writes, 4M blocks) per disk on one node, in MB/sec

s
- “p
= = gsiem
(s3]
= |
[-=]
< _|
g
£ 8
@
j=2]
S (=
['s]
=
2
o (=
SR
=
L]
=
ol
=
o
T T T
4 8 12

Number of OSD daemons

Figure 9: CPU usage over 8 CPU cores, against number of OSD daemons on one node

20

4.3.3 MDS scaleability

Because of the current limitations in the MDS design, the scaleability of the MDS
is critical factor in the overall scaleability of CephF'S. To test the metadata aspect
of the filesystem, we use mdtest and Metarates as a benchmark tool. Mdstat car-
ries out the following metadata operations using posix filesystem calls:

— Create directory

— Stat directory

— Remove directory

— Create file

— Stat file

— Remove file

— Create directory tree
— Remove directory tree

The benchmark was carried out using 1000,2000,4000,8000,16000 and 32000 files
in a single directory. In some cases the benchmark runs did not finish, in that case
16000 or 32000 files in a single directory is omitted from the results. The test was
executed 10 times for each number of files. The mean was calculated from the 10
samples. Both the single MDS, as well as the non-supported three active MDS
setup was tested. The code for this feature is not yet stable, but still included in
the distribution.

4.3.3.1 Single active MDS setup Single threaded benchmark, single di-
rectory

Files Dir. ‘ Dir. ‘ Dir. ‘ File ‘ File ‘ File ‘ File ‘ Tree ‘ Tree
(qty) create stat remove create stat read remove create remove
1000 1205 166733| 1398 1546 168602| 109516 | 1244 549 11
2000 982 159981 | 1090 578 162621 | 105630| 954 616 3

4000 | 503 158215| 1053 | 228 160224 | 105375| 872 759 13
8000 248 159412 955 335 160820| 102233 | 761 670 6
16000 | 487 159996 | 783 174 160346 | 100277| 288 598 6
32000 | 360 162566 | 222 76 160684 | 103171| 93 475 65

Table 2: POSIX filesystem operations per second with 1 active MDS in a single directory,
single threaded

21

800 e A

750

F00

B350

00

550

500

450

During the benchmarks, the test setup was monitored using Munin. While running
the mdtest benchmark on the single MDS setup, the CPU usage shown in Figure
10 was observed.

CPU usage - from Tue Jun 18 10:00:00 2013 to Tue jun 18 14:00:00 2013

WIALTO [BOL /100109

400

350

300

250

200

150

1o0

50

Q

10:00 10:20 10:40 1140 12:00 12:40 13:00 3
cur: Min: Avg: Maix:
B system .61 .45 3.74 13.25
W user 1.08 1.01 54.52 1e3. 18
B nice 0.00 0. 00 0.00 0. 00
W oidle 793.25 685. 21 738.83 800. 26
B iowait .01 0. 00 0.27 9.38
W irg 0.08 0.08 0.01 e.es
" softirg 0.00 0. 00 0.21 1.31
W steal 0.08 0.08 0.08 .00
B guest 0.00 0. 00 0.00 0. 00
Last update: Tue Jun 18 14:05: 04 2013
Munin 2.0.6-4

Figure 10: MDS aggrated CPU usage

The CPU usage in Figure 10 is aggregated over 8 cores, with 800 % being the
maximum. Analysis showed the Ceph MDS daemon process besides using multi-
threading was not able to use more than one processor core at a time. The scaling
limit observed in the benchmark results in table seems to be imposed by the max-
imum CPU usage of one processor core in the system.

Multithreaded benchmark

In order to simulate multiple clients writing to the CephFS simultaneously, 8
concurrent threads of the mdstat benchmark are executed simultaneously using
mpirun from Open MPI [7].

22

Files Dir. ‘ Dir. ‘ Dir. ‘ File ‘ File ‘ File ‘ File ‘ Tree ‘ Tree
(qty) create stat remove create stat read remove create remove
1000 1037 540450 | 1399 1339 317928 | 90025 | 1257 492 10
2000 824 180429 | 1123 610 97405 | 89590 | 959 534 3

4000 | 678 158984 | 996 387 138067 | 134101| 776 570 4

8000 433 145529 | 772 467 150105| 130510| 707 446 5
16000 | 588 141363 | 699 224 139629 | 124187 291 590 9

Table 3: POSIX filesystem operations per second with 1 active MDS in a single directory,
multi- threaded

Multithreaded benchmark, multiple directory

Files | Dir. Dir. Dir. File File File File Tree Tree
(qty) create stat remove create stat read remove create remove
1000 | 2526 | 94663 | 1990 | 3704 | 95429 | 84994 | 2638 | 25 4

2000 2235 93266 | 2185 2003 104394 | 86049 | 1886 31 3

4000 1798 92626 | 2265 1253 85862 | 79982 | 2272 17 2

8000 1095 90800 | 2557 1621 85670 | 77292 | 1801 20 4
16000 | 1237 87280 | 2407 406 85731 | 78112 | 1211 17 2
32000 | 1594 | 87428 | 971 483 93549 | 89105 | 1019 17 5

Table 4: POSIX filesystem operations per second with 1 active MDS in multiple direc-
tories, multi- threaded

4.3.3.2 Three active MDS setup Single threaded benchmark, single di-
rectory

This benchmark measures the basic scenario of one client using the CephFS in a
single directory. One thread of the mdstat benchmark is executed.

Files | Dir. | Dir. |Dir. |File |File |File |File | Tree | Tree
(aty) create stat remove create stat read remove create remove
1000 1221 170222 | 1404 1504 173180| 111041| 1137 590 29
2000 1061 170559 | 1122 1010 171485| 109975| 897 624 40
4000 961 168690 | 905 879 170006 | 109600| 785 500 12
8000 696 165873 | 714 744 166670| 103785| 518 721 73
16000 | 549 163780| 400 375 148981 | 103626 | 175 779 166

Table 5: POSIX filesystem operations per second with 3 active MDS in a single directory,
single threaded

23

Multithreaded benchmark, single directory

In order to simulate multiple clients using the CephF'S simultaneously in a single
directory, 8 concurrent threads of the mdstat benchmark are executed simultane-
ously using mpirun from the C multiprocessing framework.

Files | Dir. |Dir. |Dir. |File |File |File |File | Tree | Tree
(qty) create stat remove create stat read remove create remove
1000 1136 315469 | 229 238 328894 | 26341 | 365 144 84
2000 1017 408722| 1167 1067 172327 123935 857 728 51
4000 812 462008 | 767 838 242341 199597 | 802 658 41
8000 728 284743 675 607 244787 189827| 639 788 39
16000 | 554 250655 | 553 397 264596 | 206027 | 193 842 120

Table 6: POSIX filesystem operations per second with 3 active MDS in a single directory,
multi-threaded

Multithreaded benchmark, multiple directory

The mdstat benchmark was also executed using a separate directory for each
thread. This tests a more realistic scenario in which several users are perform-
ing I/O operations (causing metadata operations) in different directory’s at the
same time.

Files Dir. ‘ Dir. ‘ Dir. ‘ File ‘ File ‘ File File ‘ Tree ‘ Tree

(qty) create stat remove create stat read remove create remove
1000 3470 140241 2755 3527 124413| 111687| 2410 27
2000 2692 429770 2879 2474 201078| 120170| 2807 37
4000 | 2456 134531 2417 | 2143 169385 | 128842 2337 | 26
8000 2116 144180 2475 1507 145683 | 120112| 2712 19
16000 | 1336 | 91855 | 2094 | 1316 | 214681 | 160614 | 1503 19
32000 | 1248 128293 | 1110 646 88410 | 141731 796 18

o = N IUIN - NN

Table 7: POSIX filesystem operations per second with 3 active MDS in multiple direc-
tory’s, multi-threaded

24

Metadata performance single vs multiple MDS

=
=
=
=+
i — Single MDS, directory creation
i —— Multi MD3, directory creation
---- Single MDSE, file creation
o ---- Multi MDS, file creation
=
=
[]
=
=
3
A
a 8 |
2 &
2
I —
£ —
@ o
o] —
[} T
= | . TrEa
=] . Tl
c —

I] I I I I 1
0 5000 10000 15000 20000 25000 30000

Mumber of files

Figure 11: MDS performance comparison, single vs multiple active MDS

4.3.3.3 Comparison RBD with XFS To establish which component is causing
the metadata bottleneck (the MDS or underlying OSD’s) the same benchmark is
executed on a XFS formatted volume on top of a Rados Block Device (RBD).

25

Files Dir. Dir. File File File Tree Tree
(qty) create remove create read remove create remove
1000 26420 25499 18210 1236646 | 25511 13559 924
2000 25632 25225 18440 1252662 | 25522 13752 482
4000 24116 24785 18932 1021544 | 26331 12768 279
8000 23925 24501 20565 1236924 | 25604 11054 133
16000 23851 24756 20811 1278445 | 23892 11569 72
32000 23190 24490 20671 1253322 | 23963 12775 36

Cperations per second

Metadata performance CephFS multi-MDS vs XFS on RBD

Table &: Metadata benchmark XFS on RBD

= S
= .
21 o
™ o -
o]
=
=
=
(48]
o]
[}
=
o
o]
[}
s 4
=
RBD xFS, dir. creatio
— Multi MDS, dir. creatio
e | RBD XFS, file creation
= - Multi MDS, file creatio
S
o
T T T T T T T
0 5000 10000 15000 20000 25000 30000

Mumber of files

Figure 12: CepF'S multi-MDS vs XFS on RBD metadata performance comparison, single
directory

26

4.3.4 Conclusion on scalability

The OSD benchmark results show a near linear horizontal scaling of the OSDs.
The troughput measured in benchmarks is close to the theoretical troughput, with
a 15% to 20% overhead. This overhead is in the network stack and the replica
processing.

Vertical scaling is more limited by the OSD host cpu power, and I/O subsystem.
It is outside the scope of this research to investigate tuning options to improve
vertical scalability. Possible options are using jumbo frames to lower the number
of network interrupt requests and therefore lower the CPU usage The Dell PERC-
raid controller used in this test setup, did not support attaching the harddisks
without using the RAID capabilities (JBOD-mode). Therefore, 12 RAID-0 arrays
were used to simulate this behaviour. This might have added some overhead which
caused the effect demonstrated in figure 8. Disk, and disk controller throughput is
dependent on controller model, file system and RAID mode as concluded by Mark
Nelson [8].

The scalability of the MDS is limited by the fact that threads are not balanced
across CPU cores as shown in figure 10, and by the fact that scaling horizontally is
not yet considered stable. With todays multicore CPUs true multithreading would
have given the single MDS setup more room to scale and make it more usable
considering it’s current single-MDS limitation. The CPU effect as shown in figure
10 is in fact confirmed in a mailing list discussion by Greg Farnum [5], one of the
lead developers of Ceph.

The metadata tests with the multiple active MDS show that it scales horizontally.
However, the performance is much lower than XFS on RBD as shown in figure
12. This finding contradicts the results found by Sage Weil [16] in his research
which was the start of the Ceph project. One possible explanation is scale, as this
research was limited in the amount of available hardware and time. Weil tested
up to 128 MDS, while in this research no more than 3 MDS were tested. Also,
the tests were conducted using the default settings. There may have been some
settings which enable scaling options that were disabled by default for data safety
reasons. Documentation on the MDS is still limited.

27

5 Conclusion

Overall, the experiments proved that the RADOS object store is stable and ready
for production. CephFS can be used in production, however at the time of writing
running multiple MDS is not advisable. Stability problems encountered during the
experiments, with multiple MDS and with MDS failover, exaggerated this point.
Apart from the MDS component, Ceph meets the stability requirements at SURF-
sara. However, because of the fact that the filesystem functionality is such a large
part in the overall case at SURFsara the first subquestion must be concluded neg-
ative. At the moment of writing, CephF'S is not yet stable enough to be used in a
large scale production environment at SURFsara.

The scalability experiments showed in accordance with the theory that the RA-
DOS object store scales near lineair with the number of OSD daemons added to
the cluster. Up to 48 OSD daemons, the cluster matched the performance that
can be expected from the hardware taking the replication level into account. The
full-mesh principle between client and OSDs worked as expected, as shown by the
fact that by using two clients simultaneously the 10GbE bandwidth limit was ex-
ceeded.

The MDS scalability showed a different picture in the scaling experiments. With
the Lisa system at SURFsara [12] currently holding 136 million inodes, and the
Dutch national supercomputer holding 50 million inodes large amounts of files are
to be expected in the environment at SURFsara. Whether CephFS will be suit-
able for use in production depends largely on the number of metadata operations
that will be performed on the filesystem. This leads to the answer to the second
subquestion: the number of metadata operations is limited at the figures shown in
table 7. The scale of this research was not large enough to reach scalability limits
in terms of capacity. However, there is no indication of such a limit observed in
the experiments conducted.

The stability experiments showed that the RADOS object store is highly resilient
against component failures. No problems should be expected by harddisk failures,
or even entire nodes failing. Expanding capacity is handled automatically by the
rebalancing of PGs amongst OSDs. OSDs can be taken out of the cluster daemon
by daemon, minimizing the amount of data that needs rebuilding. This gives gran-
ular control over the process. The same mechanism can be used to replace disks
in batch. Failed disks do not need to be replaced right away as long as spare disks
are available to be introduced to the cluster once a disk fails.

In this particular test setup, replacing disks imposed the need for a reboot of the
entire node because the RAID-0 array needs to be created. This can be circum-
vented by installing management tools for the RAID controller, so the RAID-0
array can be created without rebooting.

The management tools included in the Ceph distribution are suitable for integrat-

28

ing into various tooling. The included management tools support output in both
structured (JSON) as well as unstructured human-readable (plain text) format.
The answer to the third subquestion is that CephFS meets the maintenance re-
quirements at SURFsara in terms of low-maintenance and integration into tooling.

Is the current version of CephFS (0.61.3) production-ready for use as a distributed
filesystem in a multi-petabyte environment, in terms of stability, scalability, per-
formance and manageability?

Summarizing the answers to the individual subquestions, the answer to the re-
search question must be concluded that CephFS 0.61.3 is not yet suitable for
production use at SURFsara. The main arguments for this conclusion ar the sta-
bility problems found in the MDS, and the scalabiilty problems found with the
MDS. With a dedicated development team now focussing on the development of
CephF'S [3], this however may change in the near future. In general Ceph is a
promising concept, with a large number of possible uses cases due to it’s modular
design offering object, file and block storage in a single solution.

6 Limitations and futher work

The scale of this research is limited by both time (4 weeks) as well as availability
of equipment. Further research on a larger scale could draw a better picture on
capacity scaling.

Due to the limited timeframe, Ceph has been tested using a standard configu-
ration. Tweaking various configuration parameters of both the operating system
and Ceph could possibly improve performance and/or scalability. Furthermore is
is advisable to repeat this research in the future, as soon as a new major version
with improvements to the MDS is released.

29

7 References

[1] Amazon, Amazon S3, http://aws.amazon.com/s3/

[2] Ceph development team, Ceph documentation, http://ceph.com/docs/
master/

[3] Ceph development team, CephFS MDS Status Discussion, http://ceph.com/
dev-notes/cephfs-mds-status-discussion/

[4] Coker,R., Bonnie++, http://www.coker.com.au/bonnie++/

[6] Farnum, G., Ceph MDS threading discussion, http://www.mail-archive.
com/ceph-devel@vger.kernel.org/msg09076.html

[6) GNU coreutils, dd, http://www.gnu.org/software/coreutils/manual/
coreutils.html

[7] Open MPI, Open MPI: Open Source High Performance Computing, http:
//www.open-mpi.org/

[8] Nelson, M., Ceph performance part 1: disk con-
troller throughput, http://ceph.com/community/
ceph-performance-part-1-disk-controller-write-throughput/

[9] Olson, C. and Miller, E., Secure Capabilities for a Petabyte-Scale Object-Based
Distributed File System, 2005, University of California, Santa-Cruz, 2005

10] SURFsara, Cartesius, https://www.surfsara.nl/systems/cartesius
11] SURFsara, HPC Cloud, https://www.surfsara.nl/systems/hpc-cloud
]
]

[

[

[12] SURFsara, The Lisa system, https://www.surfsara.nl/systems/lisa
[13] Unknown author, hdparm, http://sourceforge.net/projects/hdparm/
[

14] Torvalds, L., fs-metadata, https://kernel.googlesource.com/pub/
scm/utils/cpu/mce/mce-test/+/master/cases/stress/hwpoison/tools/
fs-metadata/fs-metadata.sh

[15] Weil, S., RADOS bench, http://ceph.com/w/index.php?title=Benchmark

[16] Weil, S., Ceph: Reliable, Scalable and High-Performance Distributed Storage,
University of California, Santa-Cruz, 2007

[17] Wiers, D., dstat, http://dag.wieers.com/home-made/dstat/

30

