
FileSender Terabyte Challenge
Research Project 1 - Report

René Klomp
Rene.Klomp@os3.nl

Edwin Schaap
Edwin.Schaap@os3.nl

February 11, 2013

The purpose of this research project is to identify and solve the bottlenecks in the
FileSender application. Besides that it will also look into some more generic problems
that can affect more web applications. The main problem in FileSender is that there
are gaps between sending chunks. This report will describe this problem and show
our implementation for solving this using JavaScript’s multi-threading support called
webworkers. It will also discuss SSL performance using different ciphers and give some
guidelines for choosing the best performing cipher.

1. Introduction

The FileSender project [4] has issued the
Terabyte Challenge [10]. Current upload
speeds with FileSender are nice for files up
to several GBs. We want to enable use of
FileSender to transfer a 1 TB file in a rea-
sonable amount of time (5 hours on a low
latency path) using a standard web browser
on a standard Windows, Linux or Mac com-
puter. Our goal is to identify current per-
formance bottlenecks and design possible
solution strategies which hold as latency
increases. The main question that this re-
search is based on is:

Can we identify bottlenecks in the
FileSender application and how
can we improve the transfer speeds
by reducing or removing these bot-
tlenecks.

1.1. Problem

With a default setup of FileSender upload-
ing a large file is not going as fast as it
is expected to be. While our setup (sec-
tion 1.4) contains equipment to go up to
1 Gbit/s, the file upload speed did not ex-
ceed 160 Mbit/s.

This observation shows that there is
clearly something within the setup that re-
stricts the ability to use the full bandwidth
that is available.

1.2. FileSender Constraints

The FileSender product is meant to be easy.
In the first place it should be easy for the
users. This means that users are not re-
quired to install any extra programs to be
able to use FileSender and upload their
files. The motto is that if a user can use
YouTube he/she can use FileSender. The

1



FILESENDER TERABYTE CHALLENGE

user can just browse to the FileSender web-
page, login, select their file and forget it
until it is finished uploading

Besides being easy for users, the goal
of FileSender is also to be easy for sys-
tem administrators. System administra-
tors should be able to install a fully work-
ing version of FileSender within an hour.
To achieve this, the FileSender backend
is completely written in PHP. It has al-
most no dependencies on external libraries
and uses the standard PHP functionality
as much as possible. The frontend is writ-
ten using standard HTML5 functions and
JavaScript, and is served to the browser of
the user. Therefore the user does not have
to install any extra software. The PHP ap-
plication only has to be extracted on any
PHP supported webserver (with some small
requirements) and after configuring the ap-
plication it is directly usable by the user.

We have to keep the above described con-
straints in mind when creating a solution
for the FileSender problem.

1.3. Methodology

For this research we went through several
steps to obtain results:

Hypothesis
Based on code review from the default
installation we came up with a hypoth-
esis. (section 2)

Experiment
To see if the hypothesis stands, a first
experiment was conducted with a lab
setup (section 2). To exclude other
causes, we have investigated the hard-
ware (section 3) and software (sec-
tion 4) from the lab setup.

Analyze
In this step, results where analyzed
from the experiment whether hypoth-
esis is correct. Problems found in the

hardware and software of the setup
were also covered.

Solutions
We have come up with solutions for
the problems that are found (section 5)
and created a prototype that removes
the bottleneck (section 5.1).

Reflection
To see if the prototype is valid, it is re-
flected on the FileSender application
to verify results (section 5.1.4). And
we subsequently subjected our imple-
mentation to the terabyte challenge
(section 6).

1.4. Experimental environment

During this research we have used a Dell
PowerEdge R420 server with a standard
Ubuntu Server 12.10 installation to run the
FileSender PHP application on. The server
is equipped with two Xeon E5-2430L pro-
cessors and 32GB of RAM. For storage 6
hard-disks, with a capacity of 500GB each,
were used in RAID5 which gave us roughly
2.5TB of storage.

As client we have used two Dell Latitude
E6220 laptops of which one was equipped
with a regular hard disk and the second
with a SSD. Both laptops had a default in-
stallation of Elementary OS [3], a variant
on Ubuntu 12.04, and the disks were parti-
tioned with the ext4 file-system [5].

We had a 1Gbps low latency (<1ms) net-
work link available to connect to the server
using our laptops and we have used NetEm
[22], a network emulation tool, to simulate
latency. For most tests Google Chrome [7]
was used as the browser.

A full list of technical details about the
setup can be found in appendix C.

All our tests where conducted using ran-
dom data files which where generated from
/dev/urandom. This means that our files

2



FILESENDER TERABYTE CHALLENGE

may contain less entropy than when we had
used /dev/random, but for the sake of our
experiments this is good enough. We did
not use files filled with zeros as these can
easily be compressed and can cause unex-
pected results during test. The reason for
this is that browsers and server can use
compression in the HTTP bodies. To elim-
inate this factor, random data was used.

To keep this report consistent all results
will be given in bits per second unless ex-
plicitly mentioned otherwise.

2. First Hypothesis

The first thing we noticed when looking at
the code, is that FileSender is using chunks
to upload files. It iteratively walks through
the file and takes chunks of equivalent size
(except for the last one). When it reads
a chunk from the file the chunk is sub-
sequently uploaded to the server and an
event handler is created to handle the re-
sponse of the server. At the moment this
event is fired, and thus the server has fin-
ished processing the file, and responded to
the client, the client continues by sending
the next chunk. In the meantime, between
sending the last bit of a chunk and hav-
ing received the full reply of the server, the
client is idle, and thus not utilizing all avail-
able bandwidth.

To see if this hypothesis stands, a test
was performed by uploading a file to a stan-
dard installation. During the upload pro-
cess, a snapshot was made of the network
traffic with Wireshark [11] and visually an-
alyzed to give some clearance about what
happens.

The problem is clearly visible in figure 1.
This plot is a very small snapshot of an
upload session. After each chunk a gap is
created because the client is waiting for a

reply. As latency increases this gap also
gets bigger. The round trip time is added
to the serverside processing time for each
chunk.

If we translate this to a complete file up-
load of 10GB, this will take just over 18
minutes with a RTT<1ms. If we simulate
the RTT from Utrecht to Washington DC
and back, which is around 100ms, the up-
load took 31 minutes. Since the 100ms are
added within the gaps, this alone will re-
sult in 9 minutes delay because of the 2MB
chunksize. So, in conclusion to this obser-
vation, the higher the delay of the network,
the greater the gaps will become.

In section 5.1 we will discuss our
implemented solution to remove these
gaps by using so called webworkers, the
multi-threading support in JavaScript and
HTML5. In addition, in section 5.4.1 we
will discuss whether different chunk sizes
impact performance.

3. Determining whether
hardware is the bottleneck

In the previous section we have shown that
the gaps introduced in the file uploads in-
deed can cause the problems described in
section 1.1. In this section we will system-
atically benchmark all components of the
systems, on the path from the client to the
server, that can affect the upload perfor-
mance to exclude that any of those hard-
ware parts can form another bottleneck.

We will first start in sections 3.1 and 3.2
with determining the hardware limits on
client and server. Then in section 3.3 we
will determine the maximum network speed
between the latter two.

The complete test results of all bench-
mark tests discussed in the following sec-
tions can be found in appendix A.

3



FILESENDER TERABYTE CHALLENGE

time (s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

No delay

time (s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

50ms delay

time (s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

100ms delay

time (s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

150ms delay

time (s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

200ms delay

Figure 1: Gaps while transferring chunks. Latency increase from top to
bottom: 0ms, 50ms, 100ms, 150ms and 200ms.

3.1. Client

3.1.1. Hard Disk

When uploading a file the file is first read
from disk in chunks. The maximum read
speed on the two test laptops have been
measured using the dd program. To clean
the caches to make sure the file is fully read
from disk and not from memory we use:
echo 3 > /proc/sys/vm/drop caches

This will cause the kernel to free pagecache,
dentries and inodes from memory, causing
that memory to become free. After making
sure all caches are empty the following com-
mand will read data from disk and write it
to /dev/null:
dd if=randomdata.bin of=/dev/null.
When completed, the command will output
the average read speed.

Results For both laptops the above test
was repeated 5 times. On the laptop with
the SSD the average read speed was mea-
sured at 3742.40 Mb/s with a standard de-
viation of 56.68. The laptop with the regu-
lar spinning disk hard drive gave over all
tests an average of 825.60 Mb/s with a
standard deviation of 11.87.

3.1.2. Processor and Memory

To check whether the processor or memory
could be the bottleneck we simply started
an upload to FileSender. During the up-
load we monitored the processor and mem-
ory usage and without any doubt they are
not the bottleneck. The processor was be-
ing used more than when the laptop was
idle, but not one of the cores reached more
than 50 percent.

4



FILESENDER TERABYTE CHALLENGE

3.2. Server

3.2.1. Hard Disk

As with the read speed on the client the
write speed on the server has been mea-
sured with the dd program. The command
used here was:
dd count=1M bs=60k if=/dev/zero

of=/tmp/test.img

We can safely use /dev/zero here, be-
cause no compression will be used when
writing to disk. Besides, if we would have
used /dev/urandom this would have gener-
ated so many CPU cycles that the proces-
sor would have been the bottleneck.

After 5 testes this gave an average max-
imum write speed of 4118.40 Mb/s with a
standard deviation of 186.54.

3.2.2. Processor and Memory

Like with the client, to test the memory
and processor usage on the server we mon-
itored both during a file upload. We ob-
served that only a single core (of the 24
cores) was used by the server and this core
was only used for 60 percent. In addition to
this, no extreme memory usage was seen.

3.3. Network

Now we know what our server and client
are capable of, the last thing to benchmark
is the network link between them. This
was tested using iperf [30], a tool that es-
timates not the available bandwidth, but
the achievable TCP throughput. The TCP
throughput is the throughput that is rele-
vant because uploading to the server goes
through TCP and this gives some overhead
and an increased size from the tcp head-
ers. For this possible bottleneck we did 5
measurements in both directions by letting
iperf run for 50 seconds and then getting

the average throughput every 10 seconds.
As expected the throughput from client to
server and vice versa is almost 1 Gbit/s.
The average throughput is from client to
server 935.40 Mb/s and from server to
client 941.60 Mb/s both with a very small
standard deviation.

3.4. Hardware bottleneck
conclusions

From the tests discussed in the preceding
sections we can conclude that neither the
hardware on the client side nor the hard-
ware on the server side is a limiting factor
for the throughput. With one exception,
namely the read speed on the client with
the regular hard drive. But still, this is
not the bottleneck that produces the prob-
lems as described in section 1.1. Given that
we use the client with the solid state disk
for transfer speeds higher than the regular
hard disk’s read limit of 825 Mb/s, our the-
oretical maximum throughput speed is lim-
ited by the maximum network throughput
which is around 935 Mb/s.

4. Determining whether
software is the bottleneck

In the previous section we tested all parts
of the hardware and concluded that this is
not the bottleneck that is causing the low
throughput as found in section 1.1. Based
on this, one would expect that the prob-
lem is caused by the software itself. In sec-
tion 2 we already showed the gaps, so the
next sections we will discuss more general
problems that can be caused by the soft-
ware needed for FileSender.

5



FILESENDER TERABYTE CHALLENGE

4.1. The Browser

Since the FileSender user will be using only
a browser to access the application this also
needs to be evaluated. For the experimen-
tal setup we will be using Google Chrome
[7] mostly as described in section 1.4. To
exclude the problem of this browser we
tested also FireFox [8].

For the evaluation of the two browsers
the performance of the client system was
observed. When using the FileSender ap-
plication no significant performance issues
were found for Google Chrome and Fire-
Fox. The CPU showed some activity but
no more than any other interactive website.
The memory usage was not an issue with
all browsers and was stable when using the
application.

4.2. Webserver

Other important software can be found at
the serverside of the application. The PHP
application is served with a webserver and
therefore must be evaluated if this causes
performance issues. The default FileSender
setup was installed with Apache webserver
[2]. We executed an installation with Ng-
inx [9] to see if the Apache webserver is
a bottleneck. The same FileSender instal-
lation was served by both webservers on
different ports. We tested both with and
without a secure connection. For the inse-
cure connection there where no differences
noticed in upload speed. For the secure
connection there was a negligible difference
noticed in the favor of Nginx. We noticed
that the SSL caused a slower upload speed
than the insecure connection, on both web-
servers. In the next section we dive further
into this.

Now that we do not see a real difference
between the webservers we need to test if

the webserver is in any case capable of han-
dling high network speeds. We performed
an upload test with Apache Benchmark [1]
to send chunks of data to the server. To
test the download speed we used Wget [6]
to download a static file from the server.
As a result, the upload speed of an insecure
connection was found to be 880.96 Mb/sec
and for the secure connection 537.44 Mb/s.
For the download speed the results for both
types of connection were around 900 Mb/s.
When testing with the default browser in
our setup, we got the same download speed
over the insecure network connection but
only around 200 Mb/s over the secure con-
nection. So we have seen that the web-
server can handle high speeds, both upload
and download, over an insecure connection.
The secure connection causes some confu-
sion so in the next section we will investi-
gate this.

4.3. SSL

When testing what our maximum down-
load speed from the server to one of the
clients would be we discovered a very
notable speed difference between Google
Chrome and GNU Wget [6]. While
Wget was reaching our maximum possi-
ble download speed with approximately
900 Mb/s, Google Chrome only reached
around 200 Mb/s. When analyzing the
SSL handshake packets, it turned out
that Google Chrome used the Camellia
[14] algorithm for encrypting the SSL ses-
sion while Wget used the more known
AES (advanced encryption standard) [15].
Both programs where using a 256 bits
key. Although they are two different ci-
phers, Camellia offers comparable encryp-
tion speed [14]. But this should not give
the four times slower result. The reason
for this can be explained by the fact that

6



FILESENDER TERABYTE CHALLENGE

the processor in the laptops are supporting
Intel’s AES-NI instruction set [17]. This
instruction set provides hardware support
for the AES cipher and should make it a
lot faster.

To prove this we ran OpenSSL speed
tests for both algorithms. First we ran
the Camellia and AES test with OpenSSL
without AES-NI support. Then AES was
tested again with OpenSSL with AES-NI
support. This was conducted 5 times for
each test. The average results of 5 mea-
surements can be found in table 1 and show
a clear improvement in speed. If we do not
have AES-NI support we can see that the
Camellia cipher is somewhat faster (almost
1.6x) than AES. But when AES-NI is avail-
able, this cipher is almost 6 times faster and
3.8 times faster than Camellia.

In section 5.4.2 we will discuss and com-
pare other encryption ciphers and look
deeper in this problem and what the best
solution will be for the SSL bottleneck
problem in FileSender and other network
intensive web applications.

Speed Mb/s

Camellia 974,36

AES 628,26

AES-NI 3.725,23

Table 1: Comparing Camellia against AES
with and without AES-NI support

4.4. TCP

The last problem we want to discuss is the
problem of the so called TCP bandwidth-
delay product [24,27]. A decrease in trans-
fer speed is caused by the high latency be-
tween two endpoints.

On a 1Gbit connection line with an
RTT of 500ms, there can be approximately
63 MBytes of data in transit. The default

TCP window is often 65535 bytes without
scaling and thus the full bandwidth capac-
ity cannot be reached. When using auto-
scaling the maximum window size can be
230 bytes [23]. But since the TCP default
settings can sometimes not be appropriate
for Long Fat Pipe, one can use TCP Tuning
to optimize these.

Since we only focused on a low latency
path, our setup (section 1.4) has a latency
of less than 1 ms, TCP tuning is not ap-
plicable to our setup. To really be able
to test this we would have needed more
time, which we simply did not have. Be-
sides this, given the FileSender constraints
it would probably not be a realistic possibil-
ity since using JavaScript we cannot modify
any TCP settings. Therefore we will con-
sider TCP tuning as future work.

4.5. Software bottleneck conclusions

In this section, we have seen that the dif-
ferent browsers are capable of handling the
upload. While uploading a file, all browsers
did remain responsive and were capable of
handling even more.

The server software was also able to han-
dle full bandwidth speed and there was no
difference between Apache webserver and
Nginx. Finally we have looked at the secure
connection with SSL between the client and
server and this caused some trouble. De-
pending on the system and chosen cipher,
this could be a bottleneck in the system.
When the Camellia cipher was chosen or
AES-NI was not available on the system,
the maximum bandwidth could not be uti-
lized.

In section 5.4.2 we will provide advise on
how to deal with this bottleneck.

7



FILESENDER TERABYTE CHALLENGE

5. Proposed Solution

5.1. Improved implementation

In order to remove the gaps, we had to
come up with a solution that can fully ben-
efit from the available bandwidth. Since
the problem in the application is that the
client waits for a response before it pro-
ceeds to the next chunk, we can probably
make this smarter. The first method is to
send the next chunk directly after the pre-
vious one is send. This would improve the
performance but small gaps would still ex-
ist. This is caused by the fact that the sys-
tem would first read the chunk after which
it would send it. During the read, no data
will be send. Our hypotheses was that by
using parallelism we could make sure that
during those gaps another thread was still
sending data and thus utilizing more band-
width.

5.1.1. First Concept

To test whether this solution would even
work, we started by creating a small proof
of concept application. This application
only contained some JavaScript and HTML
code to send chunks parallel to the server.
The server did not have code running to
handle those packages so they where just
being discarded.

Whenever a file is selected in a HTML
file field, the JavaScript code starts a prede-
fined number of workers and passes to these
new workers two arguments. The first ar-
gument is the start byte where the worker
has to start reading the file. The second
is the chunks size so that the worker knows
how much data to read. With this informa-
tion the worker can now do its job and read
the chunk from the selected file and sub-
sequently upload this chunk to the server.
When the chunk has been uploaded and

a reply from the server has been received,
the worker reports back to the main thread
and the main thread will give the worker a
new startbyte so it can send another chunk.
This keeps repeating until the whole file is
uploaded.

Our concept turned out to work as ex-
pected. By making use of parallelization
the gaps where eliminated and full through-
put speeds could be reached. The next
challenge was to implement the server side
as we will describe in the next section.

5.1.2. Server side out-of-order algorithm

Sending chunks to the server in parallel is
not a very big challenge, but the problem
with this approach is that a chunk can be
received at the serverside faster or slower
than another chunk. The big challenge
arises when we have to deal with these out-
of-order chunks at the server side. To solve
this problem we had to devise an algorithm
to append the chunks in the right order to
the destination file.

The questions that had to be answered
where:

• How do we know at the server side
which chunk we are dealing with?
• When can we append a chunk and

when do have have to queue it?
• How do we maintain our queue?
• How do we make sure that in the end

all chunks are appended in the right
order?
• What problems can arise from concur-

rency?

To know at the server side which chunk
we are dealing with we choose for a simple
solution. For every chunk the worker adds
to the HTTP request a new header called
X-Start-Byte. This header contains, as it
name suggests, the start byte for that par-
ticular chunk. To know whether the chunk

8



FILESENDER TERABYTE CHALLENGE

can be appended to the destination file, the
server can now compare this header with
the current file size. If the two match we
know that the chunk is the next chunk that
must be appended, so we can append it.

But what happens when a chunk arrives
to early. That is, what happens when the
X-Start-Byte header is bigger than the
current file size. In this case we have to
store our chunk in a queue, but how do we
implement such a queue?

Our first toughs were to do this in the
FileSender database. We could have stored
our chunk in the database and later on just
query the database to get our queue. When
discussing this option we decided that our
improved upload implementation should be
a separate library so that it can be used for
other projects as well. So to keep our li-
brary simple, and to stay in line with the
FileSender philosophy of keeping it easy to
install, we thought that using a database
was not a good idea. This also means
that we are designated to the filesystem for
keeping our queue.

To implement this queue on the filesys-
tem we came up with a simple and ro-
bust solution. Whenever a chunk has to be
stored we simply create a md5 of the des-
tination file name and append a # followed
by the start byte of that particular chunk
and store this file in the temp folder. To
get the contents of our queue we can simply
get a list of all files starting with [md5 of

dest]#. We now have have a simple queu-
ing mechanism that stores all information
we need, namely the chunk data together
with its start byte.

The last thing we had to solve was, when
do we append those chunks from the queue?
We can do this whenever a chunk is late.
That is, it cannot be appended because the
X-Start-Byte header is bigger than the
current file size, but the chunks needed be-

fore we can append this chunk are avail-
able in the queue. We can then simply ap-
pend those chunks first, making the filesize
equal to X-Start-Byte, and thereafter ap-
pend the chunk that was late.

If the client is done uploading, it will
send an empty chunk to make sure that
any chunks left in the queue will be ap-
pended to the destination file to make in
complete. After this, the upload is finished.
To prevent those problems, we have placed
all operations on the destination file behind
a lock. Because two chunks can arrive at
the same time, concurrency problems can
arise during this process.

A simple pseudo code to further illus-
trate this algorithm can be found in ap-
pendix D.

Why not use fseek? Another way of
solving this problem is simply using fseek
to place the chunks at the correct location
in the destination file. But while our so-
lution is a little complex with our queu-
ing mechanism, we deliberately choose to
not use fseek. It is possible in PHP to use
it, but the drawback of using it is that we
then still have to keep an administration
on which chunks are received and which are
not. In our setup we use the filesize to de-
termine how far the upload is and to be able
to resume it again. But when we use fseek,
whenever we stop an upload and want to
resume it later on, we need to know which
chunks are received, and which are not.

5.1.3. Implement in FileSender

Our client side implementation based on
our proof of concept (section 5.1.1) to-
gether with our server side implementation
(section 5.1.2) form a standalone library
[26] that can also be used with FileSender.
This design allowed us to fully integrate the

9



FILESENDER TERABYTE CHALLENGE

library into FileSender trunk within a short
time-span of two hours [25].

5.1.4. Verify Implementation

We have extensively tested our implemen-
tation and we can conclude that it works.
In section 5.4.1 we show that chunksizes
still have some effect on upload perfor-
mance, but in figure 3 we can see that we
can read the maximum throughput speed
on a low latency path. In section 6 we will
show what our implementation is capable
of.

We have also verified that our implemen-
tation works in Google Chrome, Firefox
and Internet Explorer 10. Altough, we ob-
served that Internet Explorer 10 used al-
most 90% of the CPU, while Chrome and
Firefox reached a maximum of 60%.

Another and also big advantage of par-
allelism is that we can use multiple TCP
stream in parallel. We will describe how
this can improve performance and why it
is an advantage in the next section.

Worst case scenario In our setup the
worst case scenario will probably be that
the first chunk is received after all other
chunks have been received by the server.
This causes that all other chunks are
queued until that first chunk is received as
well. When that chunk arrives we then can
append all chunks from the queue and fin-
ish our file.

5.2. Multiple TCP sessions

As said in section 5.1.4 parallelism al-
lows us to use multiple concurrent TCP
streams. Parallel TCP streams have been
widely used to increase transfer speeds. A
good example is GridFTP [12], an exten-
sion to the standard File Transfer Protocol

(FTP) and used by e.g. the Globus project.
One of the features that GridFTP uses to
improve the performance is parallel data
transfer. A lot of research has been done
about the advantages and problems with
multiple TCP streams [13,19–21], and also
in relation with GridFTP [28].

The advantage of multiple TCP ses-
sions is that each session will have its own
send/receive buffers. This way we can take
care of the huge bandwidth-delay product
for higher latency links. Lu et al. [29] de-
scribe different scenarios and show that in-
creasing the number of TCP sessions in-
deed increase the throughput. So based on
their results we can argue that using par-
allel file transfers is an advantage over just
removing the gaps between chunks.

We also discovered that Google Chrome
and FireFox, by default, do not make more
than 6 connections per host. Internet Ex-
plorer will go up to 10 connections per host.
So in general, creating more than six work-
ers will not have much effect.

5.3. Other file upload solutions

There are some existing JavaScript libraries
which also support large file upload. One
of them is Plupload. This library does sup-
port large files but uploads them only asyn-
chronous. This way, the gaps are smaller
but not completely removed. Because of
this construction, only one TCP connection
is used. GridFTP on the other hand uses
multiple simultaneous connections. It can
fully benefit of the available bandwidth.
Because of the construction of GridFTP,
the user is required to install additional
software. Since this doesn’t fit within the
constraints of FileSender, this is not an op-
tion.

10



FILESENDER TERABYTE CHALLENGE

5.4. Finding the best configuration

As described in section 5.1.3, we now have
an improved implementation for uploading
files to the FileSender instance. In this sec-
tion we will look deeper in the different con-
figuration options available for FileSender
and how those options can affect perfor-
mance. In section 5.4.1 we will look at dif-
ferent chunk sizes. Does a bigger chunk
give better performance? As we already
mentioned in section 4.3, SSL can form a
bottleneck in the system, so in section 5.4.2
we will discuss different SSL ciphers and
which one can be used best.

5.4.1. Chunk Size

In this section we will look at different
chunk sizes and how those impact perfor-
mance. We have tested chunksizes ranging
from 0.5 to 100 MByte on both SSL and
non-SSL connections. The measurement is
the average throughput on a 120 second in-
terval on the network interface. So this is
not the actual file throughput and not ex-
tremely accurate, but it gives a good in-
sight in how the chunksize influences the
upload speed.

Keep in mind that the results shown are
results from a lab setup. A real world en-
vironment would probably have a slightly
worse performance.

During these test the SSL connection was
using AES encryption.

Figure 2 shows, for the original upload
implementation, how the throughput speed
is related to the chunks size. This figure
clearly shows that for small chunksizes in-
creasing the size has a big effect on the
throughput. Up to 5 MB the speed is
rapidly increasing, but after this point the
increase is declining. So we can say that the
most efficient chunk size would be 5 MB.

●

●

●

●
●

●

●
● ●

● ●

Chunksize (Bytes)

T
hr

ou
gh

pu
t (

M
bi

t/s
)

●

●

●●
●● ● ● ● ● ●

0 10000000 20000000 30000000 40000000 50000000

0
10

0
30

0
50

0

SSL

non−SSL

Figure 2: Chunksize compared to throughput in
original implementation.

●

●

●

●

●
● ● ● ● ● ●

Chunksize (Bytes)

T
hr

ou
gh

pu
t (

M
bi

t/s
)

●

●

●

●●● ● ● ● ● ●

0 10000000 20000000 30000000 40000000 50000000

0
20

0
60

0
10

00 SSL
non−SSL

Figure 3: Chunksize compared to throughput in
new implementation.

In figure 3 and figure 4 we can see the
throughput compared to chunksizes for our
new upload implementation. The first one
shows this comparison without delays, and
for the latter one a 100ms delay was intro-
duced.

From these figures we can derive that for
our new implementation there is almost no
difference between SSL and non-SSL. But,
introducing an extra latency has a negative
effect on performance.

5.4.2. SSL Cipher

As we have shown in section 4.3, choos-
ing the right cipher for your SSL connec-
tion is essential when you want to uti-
lize all available bandwidth. A lot of re-

11



FILESENDER TERABYTE CHALLENGE

●

●

●
●

●

●
●

●
●

● ●

Chunksize (Bytes)

T
hr

ou
gh

pu
t (

M
bi

t/s
)

●

●

●
●

●
●

● ●
●

● ●

0 10000000 20000000 30000000 40000000 50000000

0
20

0
60

0
10

00

SSL

non−SSL

Figure 4: Chunksize compared to throughput
in new implementation with 100ms
delay.

search has been done about SSL, for exam-
ple Gupta et al. [18] already showed that
Elliptic Curve Cryptography increases per-
formance for SSL. Zhao et al. [31] analyzed
the anatomy and performance of SSL Pro-
cessing. In this section we will compare dif-
ferent SSL ciphers and decide which can be
used best and which should definitely not
be used.

Figure 5 shows the performance of the
SSL ciphers we have tested using the
openssl speed command. The test suite
included in OpenSSL.

We ran our first test on OpenSSL com-
piled without AES-NI support. This are
the gray bars in the figure. The clear win-
ner is RC4. Fluhrer et al. [16] present sev-
eral weaknesses in the key scheduling algo-
rithm of RC4 and show that RC4 is com-
pletely insecure in a common mode of oper-
ation. The good thing is that those attacks
do not apply to RC4 based SSL. The first
reason is that the encryption keys are gen-
erated by SSL by hashing. This ensures
that different sessions have unrelated keys.
The second reason is that SSL begins the
encryption of a packet using the RC4 state
from the end of a previous packet and thus
does not re-key after each packet.

M
b/

s

CAMELLIA128

CAMELLIA256

AES128

AES256
RC4

3DES

0
10

00
20

00
30

00
40

00
50

00
60

00

Figure 5: Comparing different SSL ciphers.
The black bars are with AES-NI en-
abled.

The second and third place is for Camel-
lia in 128 bit and 256 bit key mode. See-
ing this, one would understand why Google
Chrome chooses Camellia as cipher when
connection to our server. It is just faster
than AES.

But when tests performed with OpenSSL
compiled with AES-NI support we see a
huge performance improvement, as repre-
sented by the black bars in the graph.
This observation makes AES preferable
over Camellia if and only if the client com-
puter supports AES-NI.

Ideally Google Chrome should make this
decision based on the clients hardware, but
apparently it does not. As a server admin
it is not easy to determine which is best for
your clients, but since AES-NI was intro-
duced in 2010, more and more processors
are equipped with it, and this makes it a
good choice to have AES as the main en-
cryption algorithm.

To conclude this part, system adminis-
trators should take care of configuring their
servers properly. RC4 is shown to be fast

12



FILESENDER TERABYTE CHALLENGE

and still considered secure. It gives the
client the best performance since it is hard
to determine if a client has AES-NI sup-
port.

6. Terabyte Challenge

Since this was the terabyte challenge, and
our goal was to transfer one terabyte of
data within 5 hours on a low latency path,
we tested our implementation and improve-
ments with an one terabyte file.

For testing with a 1TB file we used a
regular harddisk connected via eSATA to
one of our laptops. This was needed be-
cause the internal harddisk was limited to
250GB and therefore cannot contain a 1TB
file. We noticed that using a regular hard-
disk instead of the SSD has a negative ef-
fect on performance, but still we are able to
reach pretty good throughput. Although
the external eSATA harddisk can handle
speeds of over 1Gb/s there is still a decrease
in performance. We reckon this has to do
with the seek time of the regular disk. Be-
cause it has to seek for the beginning of
each chunk whenever a worker requests a
part of the file the real throughput is slower
than 1Gb/s. By increasing the chunks size
we can increase the throughput, but we can
not get it to 1Gb/s. Sadly we did not have a
SSD large enough to hold a 1TB file, but as
we have shown in section 5.1 higher speeds
would be possible with a SSD.

We first did the terabyte challenge within
our experimental environment with a net-
work delay of less than 1 ms. The average
speed for this transfer was 702Mb/s and
it completed in a stunning 3 hours and 19
minutes. This is way less than the goal of
5 hours. We did also a 10GB file upload
from the SSD which holds an average speed
of 928Mb/s. If we translate this to a 1TB

file we can have an upload time of approx-
imately 2.5 hours.

7. Conclusion

We can conclude that there are indeed bot-
tlenecks in the current FileSender system.
The main problem for the low throughput
lies in the implementation of the file up-
load. Waiting on a reply from the server be-
tween each chunk introduces gaps and these
gaps have a big impact on performance.

We have shown that with a good file up-
load implementation and carefully choos-
ing the right encryption cipher for SSL it
is possible to utilize all the available TCP
bandwidth of a 1Gbit low latency connec-
tion.

As a last thing in this report we have
beaten the FileSender terabyte challenge
by uploading 1TB of (random) data in un-
der 5 hours.

7.1. Future Work

File Download For this research we did
not look into the file download, which is the
second step when transferring a file from
one user to another. Currently this is han-
dled by a single PHP script that just copies
the complete file to the users browser. We
expect that by parallelizing this, some per-
formance improvement can be gained here
as well.

Harddisk Bottleneck One possible cause
that our current bottleneck has, might be
caused by the harddisk seek time. If this is
the case, we think that a read ahead buffer
is able to read more sequentially from the
harddisk and might counter this problem.

TCP optimization Also the TCP prob-
lems as discussed in section 4.4 and how

13



FILESENDER TERABYTE CHALLENGE

TCP optimization affect the throughput
speeds will be considered as future work.

Security A final thing to see as future
work is the security of our implementa-
tion. The current implementation allows
for an easy Denial-of-service attack because
it does not extensively validate the data it
receives from the client. Since the client
can easily change the start byte or the
chunk size it would be possible to fill up
the queue rapidly and thus make the server
unusable.

Acknowledgements

We would like to express our gratitude to
all those who gave us the possibility to com-
plete this project and report.

Thanks go out to SURFnet, UNINETT
and AARNet for offering this great and
challenging subject and providing us with
all required hardware.

We are grateful to Jan Meijer from
UNINETT in Norway for guiding us
through this project, thinking with us
and challenging us with interesting and
thought-provoking questions.

Finally, we also want to thank Xander
Jansen of SURFnet and Guido Aben of
AARNet who supported us at the SURFnet
office during the course of this project.

References

[1] ab - apache http server benchmark-
ing tool. http://httpd.apache.org/
docs/2.2/programs/ab.html.

[2] Apache http server. http://httpd.

apache.org/.

[3] Elemeary os. http://elementaryos.

org/.

[4] Filesender project. http://www.

filesender.org/.

[5] Fourthxtended filesystem. https://

ext4.wiki.kernel.org.

[6] Gnu wget 1.13.4 built on linux-gnu.
http://www.gnu.org/software/

wget/.

[7] Google chrome version 24.0.1312.52.
http://chrome.google.nl/.

[8] Mozilla firefox web browser. http://

www.mozilla.org/en-US/firefox/.

[9] Nginx, an open source web server and
reverse proxy. http://wiki.nginx.

org/Main.

[10] Sne master research projects 2012-
2013. http://staff.science.uva.

nl/~delaat/rp/2012-2013.

[11] Wireshark: Network protocol ana-
lyzer. http://www.wireshark.org/.

[12] W. Allcock. GridFTP: Protocol Ex-
tensions to FTP for the Grid. 2003.

[13] E. Altman, D. Barman, B. Tuffin, and
M. Vojnovic. Parallel TCP Sockets:
Simple Model, Throughput and Val-
idation. In IEEE INFOCOM, pages
1–12, 2006.

[14] K. Aoki, T. Ichikawa, M. Kanda,
M. Matsui, S. Moriai, J. Nakajima,
and T. Tokita. Camellia: A 128-
bit block cipher suitable for multiple
platforms — design andanalysis. In
D. Stinson and S. Tavares, editors, Se-
lected Areas in Cryptography, volume
2012 of Lecture Notes in Computer
Science, pages 39–56. Springer Berlin
Heidelberg, 2001.

14



FILESENDER TERABYTE CHALLENGE

[15] J. Daemen and V. Rijmen. AES Pro-
posal: Rijndael. 1998.

[16] S. Fluhrer, I. Mantin, and A. Shamir.
Weaknesses in the key scheduling al-
gorithm of rc4. In S. Vaudenay and
A. Youssef, editors, Selected Areas in
Cryptography, volume 2259 of Lecture
Notes in Computer Science, pages 1–
24. Springer Berlin Heidelberg, 2001.

[17] S. Gueron. Intel’s New AES Instruc-
tions for Enhanced Performance and
Security. 2009.

[18] V. Gupta, S. Gupta, S. Chang, and
D. Stebila. Performance analysis of el-
liptic curve cryptography for ssl. In
Proceedings of the 1st ACM workshop
on Wireless security, WiSE ’02, pages
87–94, New York, NY, USA, 2002.
ACM.

[19] T. J. Hacker, B. D. Athey, and B. No-
ble. The End-to-End Performance Ef-
fects of Parallel TCP Sockets on a
Lossy Wide-Area Network. In In-
ternational Parallel and Distributed
Processing Symposium/International
Parallel Processing Symposium, 2002.

[20] T. J. Hacker, B. D. Noble, and B. D.
Athey. The effects of systemic packet
loss on aggregate TCP flows. In Su-
percomputing Conference, pages 1–15,
2002.

[21] T. J. Hacker, B. D. Noble, and B. D.
Athey. Improving Throughput and
Maintaining Fairness using Parallel
TCP. In IEEE INFOCOM, volume 4,
2004.

[22] S. Hemminger. Network emulation
with netem. In LCA 2005, Aus-
tralia’s 6th national Linux conference

(linux.conf.au), Sydney NSW, Aus-
tralia, Apr. 2005.

[23] V. Jacobson, R. Braden, and D. Bor-
man. TCP Extensions for High Per-
formance. RFC 1323 (Proposed Stan-
dard), May 1992.

[24] D. Katabi, M. Handley, and
C. Rohrs. Congestion control for high
bandwidth-delay product networks.
SIGCOMM Comput. Commun. Rev.,
32(4):89–102, Aug. 2002.

[25] R. Klomp and E. Schaap. Filesender
implementation. https://github.

com/OS3/filesender-challenge/

commit/7189be8a.

[26] R. Klomp and E. Schaap. Library:
Bambus uploader. https://github.

com/leaf26/bambus.

[27] T. V. Lakshman and U. Madhow. The
performance of TCP/IP for networks
with high bandwidth-delay products
and random loss. IEEE/ACM Trans-
actions on Networking, 5:336–350,
1997.

[28] S. Lim, G. Fox, A. Kaplan, S. Pal-
lickara, and M. Pierce. Gridftp and
parallel tcp support in naradabroker-
ing. In M. Hobbs, A. Goscinski,
and W. Zhou, editors, Distributed and
Parallel Computing, volume 3719 of
Lecture Notes in Computer Science,
pages 93–102. Springer Berlin Heidel-
berg, 2005.

[29] D. Lu, Y. Qiao, P. A. Dinda, and
F. E. Bustamante. Modeling and
Taming Parallel TCP on the Wide
Area Network. In International Paral-
lel and Distributed Processing Sympo-
sium/International Parallel Process-
ing Symposium, 2005.

15



FILESENDER TERABYTE CHALLENGE

[30] NLANR/DAS. Iperf, a modern
alternative for measuring maximum
tcp and udp bandwidth performance.
http://iperf.sourceforge.net/.

[31] L. Zhao, R. Iyer, S. Makineni, and
L. Bhuyan. Anatomy and performance
of ssl processing. Performance Anal-
ysis of Systems and Software, IEEE
International Symmposium on, 0:197–
206, 2005.

16



FILESENDER TERABYTE CHALLENGE

A. Benchmark Results

A.1. Hard Disk Benchmark

Device Operation Test 1 Test 2 Test 3 Test 4 Test 5 Average SD

Server Read 405 396 373 403 411 397.60 14.76
Write 503 506 550 525 490 514.80 23.32

Laptop with HDD Read 101 103 104 105 103 103.20 1.48

Laptop with SSD Read 464 468 475 474 458 467.80 7.09

Table 2: Disk read and write speeds are presented in MB/s. The dd command is used for
these test. Read: dd if=randomdata.bin of=/dev/null and write: dd count=1M bs=60k
if=/dev/zero of=/tmp/test.img. The randomdata.bin file is a 10GB file of random data.

A.2. Network Throughput Benchmark

From To Test 1 Test 2 Test 3 Test 4 Test 5 Average SD

Server Client 944 941 942 941 940 941.60 1.52

Client Server 938 934 935 934 936 935.40 1.67

Table 3: Network throughput in MBit/s. The recieving machine is setup with iperf -s and the
sending machine is setup with iperf -c 192.168.0.10 -i 10 -t 50

A.3. SSL Benchmark

Cipher Test 1 Test 2 Test 3 Test 4 Test 5 Average SD

CAMELLIA128 1.293 1.289 1.286 1.290 1.292 1.289,98 3,01

CAMELLIA256 975 972 975 975 974 974,36 1,27

AES128 882 882 884 883 883 883,06 0,89

AES128 with AES-NI 5.202 5.207 5.198 5.209 5.201 5.203,51 4,24

AES256 628 630 629 626 628 628,26 1,39

AES256 with AES-NI 3.727,20 3.728,00 3.719,58 3.727,04 3.724,31 3.725,23 3,45

RC4 6.117 6.111 6.111 6.104 6.113 6.111,02 4,63

3DES 194 195 194 194 194 194,35 0,18

Table 4: SSL benchmark in Mbit/s. Command used: openssl speed -evp <cipher>. Results from
1024 block size are compared.

17



FILESENDER TERABYTE CHALLENGE

B. Chunk Sizes

B.1. Default Installion

Size (in Bytes) With SSL (Mb/s) Without SSL (Mb/s)

500.000 86 117
1.000.000 118 188
2.000.000 152 262
3.000.000 160 301
4.000.000 174 328
5.000.000 178 360
10.000.000 183 395
15.000.000 190 422
20.000.000 192 433
30.000.000 193 453
50.000.000 186 462

Table 5: Chunksize compared to throughput on default installation of FileSender

B.2. Improved Implementation

Size (in Bytes) With SSL (Mb/s) Without SSL (Mb/s)

500.000 212 211
1.000.000 399 372
2.000.000 621 584
3.000.000 901 793
4.000.000 913 882
5.000.000 919 923
10.000.000 935 938
15.000.000 958 924
20.000.000 961 937
30.000.000 966 957
50.000.000 963 956

Table 6: Chunksize compared to throughput on improved implementation of FileSender using 6
workers on a low latency path (<1ms)

18



FILESENDER TERABYTE CHALLENGE

Size (in Bytes) With SSL (Mb/s) Without SSL (Mb/s)

500.000 118 134
1.000.000 202 226
2.000.000 311 338
3.000.000 371 397
4.000.000 402 438
5.000.000 441 503
10.000.000 564 532
15.000.000 562 592
20.000.000 612 639
30.000.000 696 671
50.000.000 683 691

Table 7: Chunksize compared to throughput on improved implementation of FileSender using 6
workers on a higher latency path (100ms RTT)

19



FILESENDER TERABYTE CHALLENGE

C. Materials

C.1. Hardware

C.1.1. Server

Brand Dell
Model PowerEdge R420

CPU INTEL XEON E5-2430L (2x)
Memory 8GB RDIMM, 1333 MHZ (4x)

Disk 500GB, NEAR-LINE SAS 6GBPS, 2.5-IN, 7.2K (6x)
Interface Integrated 10/100/1000 Mbps NIC (2x)

OS Ubuntu Server 12.10

C.1.2. Client 1

Brand Dell
Model Latitude E6220

CPU INTEL CORE I7-2640M
Memory 8GB (2X4GB) 1333MHZ DDR3

Disk 256GB MOBILITY SOLID STATE
Display 12.5 inch ULTRASHARP HD

Interface Integrated 10/100/1000 Mbps NIC
OS ElementryOS

C.1.3. Client 2

Model Latitude E6220
CPU INTEL CORE I7-2620M

Memory 8GB (2X4GB) 1333MHZ DDR3
Disk 250GB SERIAL ATA (7,200 RPM)

Display 12.5 inch ULTRASHARP HD
Interface Integrated 10/100/1000 Mbps NIC

OS ElementryOS

20



FILESENDER TERABYTE CHALLENGE

D. Simplified Algorithms

This section of the appendix contains a simplified pseudo code of our solution. The full
source code can be found online in the repository of the project??.

D.1. Client Side

Algorithm 1: Client Side: Main

input: numberOfWorkers, chunkSize, sourceFile

1 currentStartByte ← 0;
2 activeWorkers ← 0;
3 for 1 to numberOfWorkers do

// This will only create the worker.

// Worker is started later

4 createWorker();
5 activeWorkers ← activeWorkers + 1;

6 end

7 while true do
// When a worker notifies that it is ready, do some actions for

that particaular worker.

8 if worker ready then
9 activeWorkers ← activeWorkers - 1;

10 if currentStartByte < filesize(sourceFile) then
11 if currentStartByte + chunkSize > filesize(sourceFile) then
12 endByte ← filesize(sourceFile);
13 else
14 endByte ← currentStartByte + chunkSize;
15 end

16 worker.uploadChunk(currentStartByte, endByte, sourceFile);
17 currentStartByte ← currentStartByte + chunkSize;
18 activeWorkers ← activeWorkers + 1;

19 else
20 if activeWorkers == 0 then

// All workers are done. Finish file by sending an

empty chunk.

21 sendEmptyChunk();
22 return;

23 end

24 end

25 end

26 end

21



FILESENDER TERABYTE CHALLENGE

Algorithm 2: Client Side: Worker

input: startByte, endByte, sourceFile

1 blob ← sourceFile.slice(startByte, endByte);
// Set header and upload blob

2 setHeader(’X-Start-Byte’,startByte);
3 uploadChunk(blob);

4 while not received reply do
5 wait
6 end

7 process reply;
8 notify main;

22



FILESENDER TERABYTE CHALLENGE

D.2. Server Side

Algorithm 3: Server side out-of-order handling

input: destinationFile, chunkData, X-Start-Byte

1 lock (destinationFile);
2 filesize ← filesize(destinationFile);

3 if X-Start-Byte equals filesize then
4 destinationFile.append(chunkData);
5 else

// We cannot append our chunk, so try to append chunks from the

queue first

6 foreach chunk in queue as queue-item do
7 if filesize equals queue-item[’startByte’] then
8 destinationFile.append(queue-item);
9 remove queue-item from queue;

10 else
11 if filesize > queue-item[’startByte’] then

// This should not happen...

// Remove item from the queue

12 remove queue-item from queue;

13 else
14 exit foreach loop: we can never append the rest of the chunks;
15 end

16 end

17 end

// Check again whether we can append our chunk

18 if X-Start-Byte equals filesize then
19 destinationFile.append(chunkData);
20 else
21 store chunk in queue;
22 end

23 end
24 unlock (destinationFile)

23


