
Time skew analysis using web cookies

Björgvin Ragnarsson

University of Amsterdam

System and Network Engineering RP1

February 18, 2013

Abstract

The accuracy of timestamps has important implications in digital

forensics. This paper presents two algorithms for determining the sys-

tem clock skew by using web cookies in a web browser cache. The �rst

algorithm lists possible time skews in a ranked order while the second

algorithm �nds di�erent time intervals when the computer's system clock

had a certain alteration. The algorithms were implemented and tested

on modi�ed web browser caches which simulated the system clock being

altered or miscon�gured at the time the web browser was used. The �rst

algorithm is able to correctly identify the actual time skew as the one

with the highest rank. The second algorithm can identify intervals of

time skews but su�ers from false positive results.

Contents

1 Introduction 3

1.1 Problem statement . 3

2 Anatomy of web cookies 4

2.1 The cookie database in Firefox 5
2.2 Clock skew from cookies . 5

3 Finding popular cookie expiry times 6

3.1 Computing expiry times . 6
3.2 Other facts derived from the HTTP Survey 7

4 Ranking possible skews 7

4.1 Assumptions . 8
4.2 The �rst algorithm . 9
4.3 Implementation and testing . 11

4.3.1 Test results from an unmodi�ed cookie database 11
4.3.2 Test results on a modi�ed cookie database 11
4.3.3 Discussion . 12

5 Finding multiple skews 12

5.1 The second algorithm . 12
5.1.1 Implementation and testing 12

6 Conclusion 13

7 Acknowledgements 15

2

1 Introduction

The goal of computer forensics is to analyze digital material and exhibit facts
derived from it, for instance, reasoning about when certain computer activity
took place. Timestamps, such as modi�ed, accessed & created (MAC) times in
�lesystem metadata are commonly used to anchor down the time of events, how-
ever, their accuracy cannot be trusted without further examination. According
to Schatz, Mohay, and Clark [1], the factors a�ecting timekeeping accuracy are:

� The system clock implementation uses unstable crystal oscillators. Region
speci�c timezone changes further complicate the implementation of the
system clock.

� Incorrect clock con�guration such as timezone settings.

� The computer clock can be deliberately modi�ed to generate incorrect
timestamps.

� Computers using NTP and SNTP synchronisation protocols without cryp-
tographic authentication are open to protocol-based attacks.

� Misinterpreting timestamps, such as assuming that the timezone o�set on
the machine under investigation applies, when the timestamp was gener-
ated elsewhere.

� Software bugs can a�ect timekeeping accuracy.

The limitations of the system clock for accurate timekeeping were recognized
by Weil [2] who proposed dynamic timestamp analysis. Weil infers the time
skew of a particular computer from web pages in a browser cache. Some of web
pages have dynamically generated timestamps set by the server and the time
skew is the di�erence between the creation time of the cached web page and
the server generated timestamp inside it. Weil concludes that �when multiple
sources of time are present, the reliability of approximate actual system time and
date increases. In general, more independent sources of veri�cation increase the
reliability of the data because the external systems also utilize their individual
system time and date�. This approach has notable drawbacks. Firstly, the
manual work is time consuming and prone to errors. The approach requires an
investigator to go through a web cache and distinguish between static web sites
with constant timestamps in them and dynamic sites where the timestamp is
generated upon request of the page. Secondly, there is no measurement of the
reliability of the approximate actual system time and date.

Schatz et al. describe an automated method of �nding time skew by correlating
web browser cache records to logs from web proxies operated by ISPs. While
the algorithm performed well, it is of no use when proxy logs are not available.

1.1 Problem statement

Previous work can be improved by creating automated way to �nd the time skew
without relying on digital traces outside of the computer under investigation.
The problem statement of this paper is to develop an automated method for

3

�nding the time skew of a computer by comparing its system clock to external
sources of time from browser caches. The original idea was to arrive at a measure
of con�dence for a certain system's time skew, by using Bayesian analysis on
web cookies and a database of prior probabilities. Bayesian analysis was not
applicable for the dataset we decided to work with as discussed in Section 3.1
so other methods were used. These methods were put under test using software
developed in Python and the results evaluated.

The paper is structured as follows. Section 2 looks at what web cookies are
made up of, how they are transported from servers to web browsers and how
browsers store them. Finally, the section introduces a simple method for �nd-
ing a system's time skew from a cached cookie and discusses its complications.
Section 3 presents analysis on a corpus of HTTP header responses for the pur-
pose of �nding which cookie expiry times are likely to be used by servers. An
algorithm for ranking possible time skews on a machine is presented and tested
in Section 4. This algorithm takes into account previously discussed complica-
tions and makes use of the expiry times from Section 3. A second algorithm
for �nding multiple time skews is presented in Section 5 and put under test.
Finally, conclusions are drawn in Section 6.

2 Anatomy of web cookies

HTTP is a stateless communication protocol in its essence. Web cookies were
introduced by Netscape Communications as a mechanism to have the client
keep track of stateful information between HTTP requests. Such stateful in-
formation can be a list of products put in a virtual shopping cart by the user
of a web browser. The cookies need to be available to the server when the
customer has made up his mind and places his orders. When the user sends
a request to put a product in the shopping cart, the server includes a cookie
in the HTTP response. The cookie is a key-value pair with information about
which product was selected and for how long the information should be store in
the browser cache until it is discarded. The following is an example of how an
HTTP response with a cookie looks like.

HTTP/1.0 200 OK

Date: Fri, 21 Sep 2012 05:51:31 GMT

Status: 200 OK

Set-Cookie: pId=17; expires=Fri, 28-Sep-12 05:51:31 GMT; domain=example.com

This cookie is supposed to be stored in the browser cache for a week before it
is discarded. The browser stores the information from the cookie along with a
creation timestamp which the browser gets from the system clock. An alterna-
tive to the expires attribute is Max-Age. An HTTP header �eld which sets a
cookie with Max-Age could be

Set-Cookie: pId=17; Max-Age=604800; domain=example.com

where 604800 is the number of seconds in 7 days. This method of setting the
cookie expiry was included in the original RFC 2109 speci�cation for cookies
[3] while it is the recommended way in the currently proposed update, RFC

4

6265 [4]. Browsers are moving to adopt this standard but if older versions of
browsers are to be supported, servers have to use the expires attribute. RFC
6265 allows both attributes to be used at the same time but Max-Age should
take precedence. Further look into how common the usage of the expires and
Max-Age attributes, can be found in Section 3.2.

2.1 The cookie database in Firefox

Browsers implement the cookie store di�erently but they contain essentially
the same information from platform to platform. We chose to use the cookie
database from Firefox for this project because it is easy to work with. Firefox
stores cookies in the user's pro�le directory in a �le called cookies.sqlite. The
�le format is sqlite3, a single �le relational database and is easy to interface with
using Python libraries and the SQL query language. The following is an example
of values stored in a Firefox cookie database.

id: 9768

baseDomain: os3.nl

name: squirrelmail_language

value: deleted

host: webmail.os3.nl

path: /

expiry: 1361966744

lastAccessed: 1359374744772316

creationTime: 1346668747276127

isSecure: 1

isHttpOnly: 1

The creation time is stored in nanoseconds while the expiry is in seconds.

2.2 Clock skew from cookies

The clock skew of a system can be found by comparing the server generated
expiry date to the client generated creation date from a cookie stored in a
browser cache. One might be tempted to assume that a cookie with a local
creation timestamp of 12:44 on March 7th, but a server de�ned expiry time of
12:53 on March 14th, was created on a machine with a 9 minute clock skew.
However, this method has its complications:

� The assumed expiry time for the cookie as intended by the HTTP server
is grounded on a baseless assumption. The example above assumes a week
of expiry time but there is nothing stopping an administrator from setting
the expiry to a week and nine minutes.

� It is unknown whether the browser got the expiry information from the
expires attribute or if it is derived from its own system clock because of
interpretation of the Max-Age attribute.

� Cookies can be modi�ed after the browser caches them. Many websites
use Javascript to create cookies or modify them. Javascript generated

5

cookies will have an expiry coming from from the system clock.

� The HTTP server sending the cookie could also have a clock skew. A
study by Buchholz and Tjaden [5] showed that 74% of web servers were
within 10 seconds of reference time (UTC) for the 6 month period of the
study.

The rest of the research focused these issues and solutions to them.

3 Finding popular cookie expiry times

To �nd popular HTTP cookie expiry times we used the Shodan HQ HTTP
Header Survey [6]. The survey is a collection of HTTP responses from the 10.000
most popular sites on the web according to Alexa Internet. Each website was
requested 14 times, each time with a di�erent user agent to imitate the behavior
of di�erent browsers. The responses were recorded and published as tabular
data, top10k_ua.csv.gz.

3.1 Computing expiry times

We came up with a method of subtracting the cookie expires attribute from
the Date header �eld to �nd for how long the web server intended the browser to
store the cookie. This assumes that the expires timestamp is the same as the
Date timestamp, with an added delta. This assumption turned out to be true
most cases but required �ltering out HTTP responses where this relationship
between the dates did not exist. The �ltering was done by calculating a delta for
the 14 responses from each server and calculate their standard deviation. Some
variance was allowed as time passes between the generation of the expires

attribute and the Date header �eld and that may result in an extra second
added to the delta even though the creation of the HTTP header as a whole
takes only a few milliseconds. After �ltering, 232 deltas were identi�ed as the
only expiry times used by the 10.000 servers. This number is an upper limit
and rare deltas might not be correct because of misinterpretation of timestamp
relationships or delay between their generation. The distribution of the deltas
calculated from all cookies in the HTTP Header Survey can be seen in �gure 1.

At �rst glance it might be look as the distribution of the deltas from the HTTP
Survey could be used to make predictions about the expiry times of cookies in
browser caches and used as a prior probability in Bayesian calculations. When
�gure 1 is compared to �gure 2 which shows expiry deltas from a Firefox cookie
database, it is obvious that this is not the case. The reason is that as time
passes, cookies with a lower expiry date are discarded by web browsers while
cookies with an expiry further in the future are accumulated. Another reason
for the di�erence in the distribution could be that the web servers sending the
cookies in the Firefox cache behave di�erently than the top 10.000 sites on the
web.

6

100 101 102 103 104 105 106 107 108 109

Diff. between response 'Date' & cookie 'expires' log(seconds)

0

50

100

150

200

250
Co

un
t

30 years

10 years

2 years

1 year

1 month

1 week

1 day

1 hour

Figure 1: Histogram of expiry deltas of cookies from the HTTP Header Survey.
Logarithmic axis is used to better display the wide distribution of deltas.

3.2 Other facts derived from the HTTP Survey

Table 1 shows some statistics derived from the HTTP Header Survey. The ratio
of cookies with a Max-Age attribute is 2.8% out of cookies using either method
for setting expiry. This percentage is likely be higher in future surveys as the
Max-Age attribute is the recommended way to set the expiry as of the proposed
standard, RFC 6265 [4]. The HttpOnly attribute is seen in 11.7% of cookies.
HttpOnly is a security feature to mitigate theft of sensitive cookie values using
cross-site scripting. Browsers which interpret the HttpOnly attribute correctly
do not allow Javascript to modify cookies using it.

4 Ranking possible skews

The �rst algorithm developed identi�es possible time skews on a computer and
ranks them in an order of con�dence. The algorithm makes use of expiry times
of web cookies from a web browser cache as an external time source and the
creation time as the local system clock. Therefore, it only able to determine the
time skew of a computer for the period of time found within the creation time
of the matching web cookies. That period is skewed and the corrected period
can be found by subtracting the assumed skew from it.

7

10-1 100 101 102 103 104 105 106 107 108 109

Diff. between CreationTime and expiry log(seconds)

0

100

200

300

400

500
Co

un
t

30 years

10 years

2 years

1 year

6 months

1 month1 week1 day1 hour

Figure 2: Histogram of expiry deltas of from a Firefox cookie database after
5 months of daily usage. The computer running the browser was regularly
synchronized to a timeserver.

4.1 Assumptions

While designing the algorithm, assumptions about which time skews are com-
monly found in browser caches were avoided. The general assumption made
about browsers was that they acts according to current RFC standards [7,
4]. This includes assuming they correctly interpret the Max-Age and HttpOnly

cookie attributes.

Assumptions had to be made about the cookies themselves from the cache. Cer-
tain proportion of cookies are assumed to have the Max-Age attribute set and
therefore have an unusable the expiry time for time skew calculations. It was
mentioned in Section 3.2 that 2.8% of cookies in the HTTP Header Survey had
the Max-Age attribute set and the same fraction is assumed to be seen in browser
caches. Modi�cation of cookies at the client side is also an issue. For cookies
which do not have the HttpOnly attribute set, it is assumed that the chance that
they have been created or had the expiry modi�ed by Javascript code is 20%.
Because of time constraints of the project, this probability could not be inves-
tigated further. Both the Max-Age frequency and the probability of Javascript
modi�cations are set with parameters in the algorithm implementation.

The algorithm which is described in Section 4.2 ranks a certain client time skew
higher as more cookie expiry times �agree� on it. It is important that servers
with wrong time skews do not aid to incorrect ranking. The assumption is that

8

Survey date 2012/09/22

Web sites requested 10.000

Number of User agents used 14

Responses recorded 132.182

Cookies in responses 59.453

Cookies with both Max-Age and expires 481

Cookies with only Max-Age 355

Cookies with only expires 28.764

Cookies with the HttpOnly attribute set 6.937

Table 1: Statistics on the HTTP Header Survey

most web servers have their clock set correctly and that the rest of them have a
varying skew. This is according to the previously discussed �ndings by Buchholz
and Tjaden.

4.2 The �rst algorithm

The following pseudo code shows the workings of the algorithm. It runs in two
loops. The �rst loop �nds possible skews for each cookie in the browser cache
and the second aggregates the con�dence ranking from each unique possible

9

skew.

Input: Web cookies from a browser cache.
Input: List of bad expiry dates. These dates are assumed to be constants.
Input: Probability of a cookie being generated by Javascript. 20% is used an

assumption.
Input: Ratio of cookies with the Max-Age attribute set. 2.8% according to the

HTTP Header Survey.
Input: List of possible expires-deltas found from the HTTP Header Survey.
Input: List of cookies and their expires-deltas as known from the HTTP

Header Survey.
Output: List of possible skew-rank pairs.
for each cookie in the browser cache do

if cookie expiry is not in list of bad expiry dates then

if cookie has the HttpOnly attribute set then
probability of the cookie expiry being modi�ed by Javascript is 0%

else
probability of the cookie expiry being modi�ed by Javascript is 20%

end

if cookie is known from the HTTP Header Survey then

if does the server set this cookie with the Max-Age attribute? then
probability that the cookie can be used because of the Max-Age
attribute is 0%

else
probability that the cookie can be used because of the Max-Age
attribute is 100%

end

calculate one possible skew by subtracting the expiry delta of the
cookie in the browser cache from the expiry delta from the cookie in
the HTTP Header Survey.

else
probability that the cookie can be used because of the Max-Age
attribute is 2.8%
for each delta from the list of possible expires-deltas do

calculate a possible skew by subtracting the expiry delta of the
cookie in the browser cache from the expiry delta from the
cookie in the HTTP Header Survey.

end

all skews calculated in the previous loop are considered possible
end

probability that the cookie is usable for identifying a clock skew is the
multiple the probabilities of it not being modi�ed by Javascript and
not having an expiry derived from the Max-Age attribute

end

for each skew previously found to be possible do
set the skew rank as the sum of usable-cookie probabilities from all cookies
agreeing on this being a possible skew
divide rank by the total sum of cookies for normalization

end

Algorithm 1: Ranking possible clock skews

10

The top ranking skew-rank pairs are displayed for evaluation.

4.3 Implementation and testing

The algorithm was implemented in Python and tested on a database of 2899
cookies from Firefox which had been in use for �ve months. The machine was
running Ubuntu 12.04 and running NTP with default settings to synchronize
time. Two tests were performed. One on the unmodi�ed cookie database and
another where the creation time of the all cookies were set 83 seconds back in
time, simulating a clock skew on the machine.

4.3.1 Test results from an unmodi�ed cookie database

$ make showskews0s

./skewy.py -z ../shodan/zodan.db -c cookies.sqlite \

-bdl ../shodan/BDL.curated -p -j 0.2 -m 0.028

skew,rank,cookiecount,cookieratio

0,0.37,1326,0.47

63072000,0.32,1185,0.42

86400,0.27,990,0.35

31536000,0.25,911,0.32

-864000,0.23,828,0.29

-31449600,0.22,808,0.28

94608000,0.22,803,0.28

31622400,0.22,793,0.28

-31535999,0.22,789,0.28

283824000,0.21,781,0.27

...

4.3.2 Test results on a modi�ed cookie database

$ make showskews83s

./skewy.py -z ../shodan/zodan.db -c 83sback.sqlite \

-bdl ../shodan/BDL.curated -p -j 0.2 -m 0.028

skew,rank,cookiecount,cookieratio

-83,0.31,1104,0.39

63071917,0.26,936,0.33

86317,0.22,780,0.27

31535917,0.20,719,0.25

-31449683,0.19,677,0.24

-864083,0.18,665,0.23

283823917,0.18,657,0.23

94607917,0.18,651,0.23

-31536082,0.18,644,0.23

15767917,0.17,639,0.22

...

11

4.3.3 Discussion

The skew with the highest ranking is the correct one in both cases. The second
highest rated skew in both cases is an addition of two years. The creation
timestamps range from September 2012 to January 2013 which would require
the actual date when the cookies were created to be between September 2010
and January 2011. This time skew is inconsistent with other known facts, such
as the computer was installed in the year 2012. Another highly ranked skew
assumes the clock was set one year in the past and is easily dismissed as time
travel is uncommon. By making use of known facts, incorrect skews can be
removed which widens the gap between the hightest rated skew and the second
one.

5 Finding multiple skews

The algorithm from Section 4.2 is intended to �nd a single time skew but that
might not always re�ect reality. An interesting case is a deliberate modi�cation
of the system clock which the second algorithm is meant to detect. It uses web
cookies as a source of time skew information as the previous algorithm but tries
to �nd all clock skews of the system spanning the period when the cookies were
created in the browser cache.

5.1 The second algorithm

The algorithm identi�es periods when a certain time skews could have been in
place. It does so by �nding groups of cookies which share a common possible
skew and identi�es the period spanning the maximum and minimum creation
time of the cookies as a period when the skew could have been in place. The
possible skews for each cookie is found using the same steps as in algorithm 1.
The number of cookies in a group is a parameter to the algorithm. To limit
false positive results, every group of cookies is selected so all of them have a
di�erent expiry-creation delta and therefore have more independent matches.
If this was not done, a group consisting only of cookies with the same expiry-
creation delta - and therefore the same possible time skews - would positively
identify a period where all the possible time skews were in place at the same
time. The �nal limitation on groups is that that if there is a cookie with a
creation time between the minimum and maximum creation time of cookies in
a group, it has to also be in that group. The reason why this is done is because
it is more likely that cookies closer in creation time share the same time skew
and are therefore put in the same group.

5.1.1 Implementation and testing

The algorithm was implemented using Python and tested with the same cookie
database as used in algorithm 1. The database was modi�ed so all cookies
created between 2012-11-20 and 2012-11-27 were changed to simulate a system

12

Sep 11 2012Sep 25 2012Oct 09 2012Oct 23 2012Nov 06 2012Nov 20 2012Dec 04 2012Dec 18 2012Jan 01 20134

3

2

1

0

1

2

3
tim

e
sk

ew
 in

 s
ec

on
ds

1e8

Figure 3: Group size 4, possible skews are calculated from all 232 server-deltas.
A lot of false positives are seen.

clock skew of 3 days back in time. Di�erent cookie group sizes were tried
but Figures 3 and 4 show testing results with group size of 4. Initial testing
showed a lot of false positives and essentially unusable results. After changing
the algorithm to use the 6 most common expiry deltas from the HTTP Header
Survey to generate possible skews instead of all 232 of them, the false positives
were gone.

6 Conclusion

The research proved successful in identifying a single time skew from cookies in
a browser cache. This was done without making assumptions about which time
skews are more probable than others. Trying to further identify multiple time
skews within a certain time period turned out to be challenging and the method
used cannot be considered to be reliable.

Further work is needed to investigate the impact of Javascript generated cookies
on the methods used. Also, the software needs to modi�ed to support other web
browsers than Firefox, such as the popular Internet Explorer. Other improve-
ments to the software could be to add an option to add cookies to the server
response corpus which currently only consists of the HTTP Header Survey. This
would lower the number of unknown cookies and improve the ranking.

13

Sep 11 2012Sep 25 2012Oct 09 2012Oct 23 2012Nov 06 2012Nov 20 2012Dec 04 2012Dec 18 2012Jan 01 2013

250000

200000

150000

100000

50000

0

tim
e

sk
ew

 in
 s

ec
on

ds

Figure 4: Group size 4, possible skews are calculated from the 6 most frequent
server-deltas. The starting point for the period of the time skew is correct but
the period is too long.

The viability of these methods for time skew analysis depends on common usage
of the expires cookie attribue which vast majority of web sites currently use.
However, as Max-Age is now the preferred method of setting the cookie expiry,
the future might not be bright for time skew analysis using web cookies.

14

7 Acknowledgements

This paper describes research done for the most part in cooperation with Wicher
Minnaard. We worked together on development and implementation of the �rst
algorithm but the �nal version described in this paper does not represent his
results from the research.

I would like to thank my supervisor at Netherlands Forensics Institute, Marnix
Kaart.

15

References

[1] B. Schatz, G. Mohay, and A. Clark. �A correlation method for establishing
provenance of timestamps in digital evidence�. In: Digital Investigation 3
(2006), pp. 98�107.

[2] Michael C. Weil. �Dynamic Time & Date Stamp Analysis�. In: International
Journal of Digital Evidence (2002).

[3] D. Kristol and L. Montulli. HTTP State Management Mechanism. RFC
2109 (Historic). Obsoleted by RFC 2965. Internet Engineering Task Force,
Feb. 1997. url: http://www.ietf.org/rfc/rfc2109.txt.

[4] A. Barth. HTTP State Management Mechanism. RFC 6265 (Proposed
Standard). Internet Engineering Task Force, Apr. 2011. url: http://www.
ietf.org/rfc/rfc6265.txt.

[5] Florian Buchholz and Brett Tjaden. �A brief study of time�. In: Digital
Investigation 4, Supplement.0 (2007), pp. 31 �42. issn: 1742-2876. doi:
10.1016/j.diin.2007.06.004. url: http://www.sciencedirect.com/
science/article/pii/S1742287607000394.

[6] HTTP Header Survey - Analyzing the Top 10,000 Websites' HTTP Head-

ers. Survey date: 22/09/2012. url: http://www.shodanhq.com/research/
infodisc.

[7] D. Kristol and L. Montulli. HTTP State Management Mechanism. RFC
2965 (Historic). Obsoleted by RFC 6265. Internet Engineering Task Force,
Oct. 2000. url: http://www.ietf.org/rfc/rfc2965.txt.

16

http://www.ietf.org/rfc/rfc2109.txt
http://www.ietf.org/rfc/rfc6265.txt
http://www.ietf.org/rfc/rfc6265.txt
http://dx.doi.org/10.1016/j.diin.2007.06.004
http://www.sciencedirect.com/science/article/pii/S1742287607000394
http://www.sciencedirect.com/science/article/pii/S1742287607000394
http://www.shodanhq.com/research/infodisc
http://www.shodanhq.com/research/infodisc
http://www.ietf.org/rfc/rfc2965.txt

	Introduction
	Problem statement

	Anatomy of web cookies
	The cookie database in Firefox
	Clock skew from cookies

	Finding popular cookie expiry times
	Computing expiry times
	Other facts derived from the HTTP Survey

	Ranking possible skews
	Assumptions
	The first algorithm
	Implementation and testing
	Test results from an unmodified cookie database
	Test results on a modified cookie database
	Discussion

	Finding multiple skews
	The second algorithm
	Implementation and testing

	Conclusion
	Acknowledgements

