Getting back at Trudy

SSH Botnet Member Credential Collection using Connect Back Honeypots

University of Amsterdam

Tobias Fiebig
tobias.fiebig@os3.nl

February 11, 2013

Abstract

This paper introduces and tests a novel technique
for gathering the credentials of systems used in
SSH bruteforce attempts by echoing the credentials
send to a honeypot back to the attacking system.
The technique is implemented and tested in a
real-world scenario. The drawn conclusions allow
new insights into the modus operandi of groups
conducting SSH bruteforce operations.

Keywords: SSH; Offensive Technologies; Botnets;
Honeypots; Security;

1 Introduction

Bruteforce break in attempts are a constant an-
noyance on the internet [11, p. 6], and the idea
of breaking password-based authentication mecha-
nisms by probing plausible and weak passwords is
nearly as old as these mechanisms themselves. One
of the first descriptions of the concept of password
guessing based bruteforce attacks can be found in a
paper by Morris and Thompson published as early
as 1979 [12, p. 595]

SSH, the Secure SHell, is a popular network pro-
tocol for secure data communication with a variety
of systems [1, p. 2]. The base protocol has been
specified in RFC4251 [21].

Previous research on SSH bruteforce Systems
and Botnets has been concerned with different non-
offensive techniques for getting greater insights into
the modus operandi of the attackers. This includes
purely passive techniques as implemented by e.g.,

Owens [13], who gathered bruteforce attemps in or-
der to identify the wordlists used by the SSH brute-
forcers. Other attempts include honeypots that ac-
tually allow an attacker to penetrate the system,
in order to observe the attackers actions on the in-
fected systems. This has already been implemented
by Owens in 2008 [13], although he did not utilize
the SSH bruteforce attack vector as entry point for
the attacker.

More recent techniques in this direction include
the Kojoney [2] software as well as the Kippo [19]
software. The first one aims at a general overview
of the inbound attacks on a network, simultane-
ously providing an attacker with the impression of
a successful penetration, whereafter the commands
issued by the attacker can be analyzed. The latter
one provides a full sandbox environment, in which
the attackers actions can be thoroughly analyzed.

There is, however, no indication in the literature
for active mechanisms that allow the penetration of
the attackers system.

1.1 SSH Bruteforcing Nodes

The systems used by attackers are scattered over
all parts of the internet [17]. Owens already estab-
lished that leaving a system vulnerable may lead to
an unknown attacker utilizing the system for SSH
bruteforcing after successfully penetrating it.

This leads to the hypothesis that systems pen-
etrated by SSH bruteforcing may be used to exe-
cute the same technique they have been penetrated
with. This theory is backed up by research done
by Ramsbrock, Berthier and Cukier, who discov-
ered that attackers first download and then install

Setup as attacknode
after penetration

B . Attacks

Penetrates
Attacker

Figure 1: After successfully penetrating a new
host the attacker configures it to launch additional
bruteforce attacks towards other hosts.

rogue software after the successful compromisation
of a system [16]. See Figure 1 for a graphical rep-
resentation.

As soon as an attacker penetrated a node, sub-
sequent detection would lead to the box being
cleaned up and being unaccessible to the attacker.
If the attacker would change the weak password
that granted access to the system, the legitimate
owner would notice that he is unable to log in. Al-
though the research done by Ramsbrock, Berthier
and Cukier denies this theory, stating that the ma-
jority of attackers changes the password [16, p. 6],
this paper assumes that the majority of those at-
tackers is either detected fairly quickly or the pass-
words are changed back to the original state by the
authorized user of that account, without detecting
the compromisation.

The last assumption is, that an attacker uses
only one wordlist and does not remove the pass-
word with which the system was compromised from
the wordlist when he starts bruteforcing from that
system.

1.2 Research Question

It is therefore plausible to assume that the creden-
tials for a significant fraction of all SSH bruteforcers
currently active on the internet can be determined
by echoing their login attempts on a honeypot back
to them. A diagram of this process can be found
in Figure 2.

This work hence aims at collecting data support-
ing the previously mentioned hypothesis. It will

furthermore attempt to provide the reader with any
conclusions on the modus operandi of SSH brute-
forcers.

2 Ethical and Legal Consider-
ations

This research touches various legal and ethical ar-
eas. An in-depth discussion would exceed the
boundaries of this paper. Hence, only a short eval-
uation of the most critical problems is provided, in-
cluding a brief description on how these problems
have been addressed during the research.

2.1 Ethical Implications

During the course of this research no actual lo-
gins have been performed. All connections were
aborted directly after the authentication succeded,
but prior to the opening of a session. All subjects
have been informed of their participation in this
research. After the subjects have been informed,
all data that is directly related to a host has been
anonymized. The data presented in this research is
reduced to sets containing the first 32bit of a salted
SHA-512 hash of the IPv4 address, username, pass-
word and the timestamp of the connection. This
sufficiently protects the privacy of those third par-
ties originally owning the compromised systems.

2.2 Legal Implications

The legal implications of this project can not be
fully determined by the author, as it would require
a deep legal background and this required legal
background would not be limited to one jurisdic-
tion. By now there is nearly no country without
at least one online host. This means that nearly
all jurisdictions are concerned. Hence the author
decided, that all connect-back sessions would be
terminated directly after the result of the authen-
tication attempt is returned, right before a session
is opened. This way, the systems are never actu-
ally accessed, only the credentials previously sent
by the target are verified.

3 Connect Back Software

The first step in testing the proposed hypothesis is
the development of software that allows the wire-
tapping of inbound SSH connection attempts to
harvest the credentials and the inbound host. This
data then has to be timestamped and recorded.
The second step is adding a feature to that software
that attempts a connection on the inbound host.
The software then has to record the result of that
authentication attempt. As previously mentioned,
it has to be ensured that no session is opened after
the authentication attempt was successful.

Naturally there is no software available which
provides the features needed for this experiment.
This means that one has to be developed.

The python libary paramiko [15] provides a quick
way of implementing client and server services for
the SSH protocol in python.

The libary comes with a demo implementation
for a simple SSH server. This demo implementation
was extended to support the feature set needed for
the research project at hand.

3.1 The SSH-CB Software

To allow the reader to reproduce the results dis-
cussed later on, a full copy of the python source
code for the patched version as well as the vanilla
version of the paramiko SSH server demo code have
been attached to this document. The vanilla ver-
sion can be found in Appendix M and the patched
code can be found in Appenfix L.

The original paramiko demo code neither sup-
ports multiple concurrent connections, nor does it
support re-listening after a connection has been
dropped. These features were easily implemented
by following the python documentation on socket
handling [6].

The connect back feature relevant for this re-
search was added after the patching for the pre-
viously mentioned base features was done. The
first adjustment beyond code re-arrangement can
be found in line 99 of the patched code.

The paramiko implementation is configured to
present the banner of the OpenSSH server deliv-
ered with Ubuntu'! 12.04 Precise Pangolin in Jan-
uary 2013. This measure has been taken as a pure

Thttp://www.ubuntu.com/

1.

55H Connection Attermpt
from Bruteforcer to Honeypot
User: root

Password: 123456

2.

55H Connection Attempt
from Honeypot to Bruteforcer
User: root

Password: 123456

b
3 H
(L Bruteforcer returns auth Result [|T]]]
-
Honeypot Bruteforcer

4.
Honeypot returns auth Denied

Figure 2: A graphical representation of the pro-
posed technique.

precaution, in case SSH bruteforcers pre-grab the
banner of remote systems, for instance to exclude
targets that do not look like systems providing a
base system suitable for further use like routers,
switches or other limited appliances. Research on
this is sparse, but at least Kenna [9] suggested that
attackers utilize a two-phased scheme in which a
list of targets is compiled in the first step and the
targets are then bruteforced in a second step.

The second addition can be found in lines 43-48
of the patched code. The server class was extended
with a class variable “clientAddr”. Its value is set
during the instantiation of an object from that class
by the constructor. The instantiation can be found
in line 106. There the remote address of the socket
for that connection is passed as an argument to the
constructor of the server class.

The last relevant addition can be found in the
“check_auth_password” method of the server be-
tween lines 55 and 78 of the patched code. The orig-
inal method of the parent class is overwritten with a
custom authorization function. This custom func-
tion executes a connection attempt to the remote
host of that connection with the username and
password supplied by that host. The “ssh.connect”
statement in line 59 of the patched code will throw
an exception if the authentication of that connec-
tion is not successfull. This is caught by enclos-

ing the whole statement in a try-except block. If
the authentication is not successful, an exception
is thrown and the data relevant to that connection
will be recorded in a file listing failed connect-back
attempts by the except block. If no exception is
thrown, the authentication attempt was successfull
and the try block continues. The relevant data is
then stored in a file listing successful connect-back
attempts. In both cases the honeypot SSH server
returns authorization denied to the client. Relevant
data means in both cases the connecting host, the
supplied credentials and the date of the connection
attempt.

It is important to note that the paramiko SSH
implementation specifically requires the code to
open a session after the connection has been suc-
cessfully authenticated [14]. This is not done by
the implementation at hand.

As the authorization function is called for each
authentication attempt to the honeypot, it is en-
sured that each connection is processed as de-
scribed in lines 59ff. of the sourcecode in Ap-
pendix L.

4 Experimental Design

In order to gather a large sample, two experiments
with different settings have been conducted. The
first utilized single hosts in different physical and
network logical locations, so that probes from var-
ious very distinct networks and regions could be
taken. A full list on the used hosts can be found
in Appendix K. The ssh-cb software was set up to
listen on TCP-Port 22, the default SSH-Port[22, p.
3], on each of those systems.

The second approach focused more on measuring
distributed attacks, where one wordlist is scattered
over several hosts, alternating their pieces of the
wordlists over a larger network. For this purpose a
set of six /24% was requested from RIPE NCC3. A
copy of the request can be found in Appendix N.
Those six networks were supplemented by two /24
contributed by other parties. Documentation on
these two networks can be found in Appendix O.

In this case, each /24 was dNATed* to a single

2CIDR Subnetwork according to RFC4632 [7]

3The authority for assigning internet resources within
Europe. http://www.ripe.net/

4 According to RFC3022 [18]

address, where one instance of the ssh-cb software
listened on port 22. That way distinct datasets
were created for each /24. The initial target IP in
each /24 was not recorded.

5 Results

The results between the two experiments largly var-
ied. Tables 1 and 3 in Appendix K and O provide
an overview of the results for both experiments.

5.1 Single Host Results

In the single host experiment, 69,386 connections
from 320 different systems were observed. The ex-

periment ran for 299 hours® 6.
f(x) = 3.0542168675x + 364216867 47
R2 = 0.52251997 7
70 70
.
@ e 60
w] s
g .
2 50 n e 50
E 40 ‘,.p—”"’ L 40
i .
5 30
B
s 20 20
2 10 10
0 0
0 1 2 3 4 5 6 7 8 9
No. of successful Connect Back attempts
Figure 3: Plot for p2o1 - p208, successful vs. failed

connect-back attempts.

During this time 29 different sets of username,
password and host combinations have been ob-
tained by successfuly connecting back to an attack-
ing node, resulting in an average success rate of
9.375% on all hosts. Connections from single re-
mote hosts have been seen on multiple honeypots.
This results in an increased value of 30 non-unique
sets of credentials recovered, and 413 non-unique
sets of hosts connecting to honeypots.

A correlation between the total amount of in-
bound hosts and the amount of successful connect
back attempts per host seems to exist as shown in
Figure 3. The Pearson product-moment correla-
tion coeflicient was determined as px,y = 0.811.

5The node p207 and p208 did not, see Appendix K for
details.

6Time between first and last connection to a honeypot
node. Rounded up.

This yields a strong correlation between these two
variables. For a qualified statement on a possible
causal relation more data would have to be gath-
ered in further research.

A frequency analysis of the collected data sup-
ports the previously stated observation of a cor-
relation between the pure number of unique hosts
connecting to a honeypot and the rate of success-
ful connect-back attempts. The corresponding his-
togram can be found in Figure 4.

18
16

12
10

200 =
250 .
350 M
400 W
450 |m
500 1
550 1
600 1
70
750 1
8o M
200
%0 !
1000 |

Total Hostsw. x Connections
= B o
- & 8 & 8
50 ——
100 M—
150
%0 flam
850 by
>1000 Mm
oM EO ® e
IS
S uccessful Connect Back H osts w. x Connections

Connections/ H ost

Figure 4: Connections from each inbound host,
sorted in classes of stepsize 50, Blue: Amount of
hosts. Orange: Amount of successful connect-back
attempts

The total amount of successful connect-back at-
tempts per inbound host shows high levels of spik-
ing. Four sections of connection attempts stand
out. Of these four only one shows a large amount
of different hosts connecting. The group of hosts
with 100 to 150 connections shows a high rate of
connecting hosts, associated with a high rate of suc-
cessful connect-back attempts. See Figure 5 for a
B-Splined plot of that data.

The creation and comparison of the complements
of the set transformed credentials used by these
hosts suggest that most hosts in that category use
the same wordlist with minor variations. One ex-
ample for this wordlist can be found in Appendix J.

An interesting aspect of these wordlists can
be found in the relatively complex password
“Thur@Qy@t3am$#Q!(*(” found in the word list.
Sadly, no previous publications on that password
could be found. Instead two blog posts turned up,
which indicate that there were at least two inci-
dents of remote compromisation by a “Team Thu-
raya” back in 2009 and 2010 [10, 8].

A further search for passwords in the gathered

data, which break the pattern of simple passwords
for bruteforce attempts already described by Owens
[13] turned up multiple of those passwords. One of
those, “spargeosu#t” %*&138cucapulinpicior”, even
accounted for three successful connect-back at-
tempts on different machines. The full list of these
passwords can be found in Appendix I. It is as-
sumed by the author that these passwords can be
attributed to “groups” running SSH bruteforcing
and were leaked to competing “groups”.

60.00% 250
50. 00%%
40.00%

30.00%

Successrate

20.00%

10.00%%

Amount of Hosts w. x Connections

Connections f H ost

Figure 5: B-Splined plot of successrate vs. amount
of hosts per class. Red: Successrate. Black:
Amount of hosts per class.

5.2 Multi Network Results

The additionally conducted network-based study
produced highly different results. The experiment
ran for 333 hours’. During that timeframe 632
unique hosts were observed, but only credentials
for 36 (5.38%) of these were obtained.

The six /24 networks from mostly consecutive
/16 created very similiar results. Not only did
they provide a low success rate ranging between
3.81% and 5.76%, they also exhibited a huge spike
in the number of hosts connecting per timeslice
as show in Figure 6. This effect could also be
observed on 195.191.197.0/24. The only network
that did not show this effect is 145.100.109.0/24.
145.100.109.0/24 also shows a very high success
rate of 15.91%.

A comparison of the average amount of connect-
ing hosts per day between the single host study and
the results of the whole network study exposed two
spikes in the dataset of the network study. The

"Time between first and last connection to a honeypot
node. Rounded up.

250

200

——151.217.00

——151.216200
—— 196191197 .0
—— 1451001090

150

100

Connections / Day

50 I

N
\\

]
|

0013
011013
011713 ‘
/12113
01/13113
014113 ||
01/15113

01/1613

/

0L/17/113
0L/18/13
/1913
0/2013
01/21/13
0L/22i13
0L/23/13

Date (MW /DD /¥Y)

Figure 6:

six /24 from more or less consecutive /16 showed
a spike around 01/19/13, while 195.191.197.0/24
shows a similar spike on 01/12/13, Between 100 and
200 hosts have been observed on 01/19/13 for the
six mentioned networks, and 195.191.197.0/24 saw
over 50 networks on 01/12/13. As Figure 6 shows,
these values largely exceed the average amount of
hosts per day observed on other dates.

The gathered data for the multi-network study
has been filtered to exclude datapoints for those
dates. This leads to the changed results shown in
Table 6. The total success rate increased to 11.86%,
and the value of total hosts seen decreased to 295,
less than half of the unfiltered data. The amount
of penetrated hosts however only decreased by one
to 35. The full tables for the filtered dataset can
be found in Appendix C.

6 Conclusion

The gathered data certainly allows the conclusion
that the initial research hypothesis is correct. Con-
necting back with the same credentials that have
been sent by an attacking SSH bruteforce system
can lead to a successful penetration of the attacker
in a significant number of cases.

A comparison between the data gathered in the
single host study and in the whole network study
leads to the conclusion that whole networks, espe-
cially from the same larger netblock do not promise

Plot of daily unique hosts connecting for each network during the network study.

better results. The outliers detected in the whole
network study also suggest the existence of more
professional attackers, launching attacks with hun-
dreds of systems at the same time, while each sys-
tem only attempts a limited set of authorization
attempts.

Another side-effect of this study was the detec-
tion of various passwords that can be attributed to
so far unidentified groups involved with SSH brute-
force operations. The existence of those passwords
in wordlists allows the conclusion of the existence of
multiple, independently operating groups. It also
explains why the theory proposed for this paper
holds up against the claims of Ramsbrock, Berthier
and Cukier mentioned earlier [16]. The changed
passwords leaked to other groups, eventually end-
ing up in those groups wordlists. Those competing
groups then penetrate the same systems previously
penetrated by the first group, possibly on a dif-
ferent account, start SSH bruteforcing from that
account as well, and thereby expose the password
of the initially compromised account.

7 Further Work

Although providing various new insights into the
world of SSH bruteforcers, the results of this study
allow for more future research objectives than con-
clusions. Various aspects of the proposed technique
require further research.

——151.222.00

15122300

——151.22000

15122100

7.1 Generalisation of the Method

The proposed method is currently focused on a sin-
gle attack vector. It may be possible to extend
it to other exploitation techniques. This could in-
clude other means of remote access e.g., the com-
mon RDP protocol [3] but also services for proto-
cols that are not necessarily related to authorizing
remote access to a system like HTTP [5].

7.2 Ethical and Legal Challenges

The proposed technique allows not only the gath-
ering of credentials for compromised systems. It
would also be possible to use the credentials to
clean up the infected systems and gather more in-
formation on the modus operandi of SSH bruteforc-
ing groups.

This paper does not take the ethical and legal
implications that arise from the availability of this
technique into account. Although the legal implica-
tions may be left aside, if this technique is used by
a government organisation to actively reduce ma-
licious actions on the internet, the author of this
paper already claimed in 2012, that the use of unau-
thorized remote access for remote forensic purposes
by the authorities is not acceptable [4].

That work however did not take cases into ac-
count, where the authorities are restricted in the
way they may use information gathered on those
systems. If the use of data and information of any
legitimate user in a criminal investigation or court
of law would be prohibited following an idea sim-
iliar to the “fruit of the poisonous tree” doctrin
in the United States and the individuals executing
the procedure are bound to a secrecy agreement si-
miliar to “doctor-patient confidentiality”, the final
conclusion on the ethical feasability may differ.

The author intends to follow up on these
thoughts in future publications.

7.3 Further Analysis of Gathered
Data

The data that has been obtained during this
study will be anonymized and published at
http://sshcb.wybt.net/. Further analysis of this
data is advised, especially if such an analysis would
focus on other aspects of the obtained wordlists.

Acknowledgments

Pieter Lexis - Told me to stop talking and rather
test the theory.

Dr. Hans Dijkman - Gave huge support in
solving the ethical and legal issues of this work.
Nadine Donaldson, BSc - Gave helpful advise
on the data analysis.

Kay Rechthien - Assisted in setting up resources
and networks.

Stefan Wahl - Supported the project by providing
LIR services for the RIPE networks.

Niels Sijm, MSc - Assisted in setting up re-
sources and networks.

Theodor Reppe - Provided systems for the single
host study.

Elmo Todurov - Who independently came up
with the same theory during the finalization of
this research [20].

References

[1] D. Barrett, R. Silverman, and R. Byrnes. SSH,
The Secure Shell: The Definitive Guide: The
Definitive Guide. O'Reilly Media, 2011.

[2] Jose Antonio Coret. Kojoney -
A honeypot for the SSH Service.
http://kojoney.sourceforge.net/, Fri Feb
116:16:33 CET 2013, 2006.

[3] Microsoft Corp. Understanding the
Remote Desktop Protocol (RDP).
http://support.microsoft.com/kb /186607 /en-
us, Fri Feb 1 17:14:46 CET 2013, 2007.

[4] T. Fiebig. Ethical implications of remote
forensic software in the context of the extended
mind theory. BSc Thesis, University of Os-
nabriick, 2012.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext Transfer Protocol - HTTP/1.1. RFC
2616 (Draft Standard), June 1999. Updated
by RFCs 2817, 5785, 6266, 6585.

[6] Python Software Foundation. 17.2.
socket — Low-level networking interface.
http://docs.python.org/2.6/library/socket.html,
Fri Feb 1 16:48:04 CET 2013, 2012.

[7]

[15]

[16]

[17]

V. Fuller and T. Li. Classless Inter-domain
Routing (CIDR): The Internet Address As-
signment and Aggregation Plan. RFC 4632
(Best Current Practice), August 2006.

“jcombs_31”. Forum Post.
http://www.howtoforge.com /forums/
showthread.php?t=48956, Fri Feb 1 17:10:20

CET 2013, 2010.

C. Kenna. Analysis of and response to ssh
brute force attacks. The College of William &
Mary, 2010.

“Matthew”. Blog Post. http://project-
2501.net/index.php/2009/09/hacked/, Fri Feb
1 17:09:43 CET 2013, 2009.

J. Mirkovic and P. Reiher. A taxonomy of
ddos attack and ddos defense mechanisms.
ACM SIGCOMM Computer Communication
Review, 34(2):39-53, 2004.

R. Morris and K. Thompson. Password secu-
rity: A case history. Communications of the
ACM, 22(11):594-597, 1979.

J.P. Owens Jr. A study of passwords and
methods used in brute-force ssh attacks. MSc
Thesis, Clarkson University, 2008.

Robey Pointer. paramiko 1.7.7.1
API Documentation - Package
paramiko Class SSHClient.

http://www.lag.net /paramiko/docs/paramiko.

SSHClient-class.html, Fri Feb 1 16:54:33 CET
2013, 2011.

Robey Pointer.
http://www.lag.net /paramiko/,
16:47:17 CET 2013, 2011.

paramiko 1.7.7.1 ”George”.
Fri Feb 1

D. Ramsbrock, R. Berthier, and M. Cukier.
Profiling attacker behavior following ssh com-
promises. In Dependable Systems and Net-
works, 2007. DSN’07. 37th Annual IEEE/I-
FIP International Conference on, pages 119—
124. IEEE, 2007.

G. Salles-Loustau, R. Berthier, E. Collange,
B. Sobesto, and M. Cukier. Characterizing at-
tackers and attacks: An empirical study. In
Dependable Computing (PRDC), 2011 IEEFE

[18]

17th Pacific Rim International Symposium on,
pages 174-183. IEEE, 2011.

P. Srisuresh and K. Egevang. Traditional
TP Network Address Translator (Traditional
NAT). RFC 3022 (Informational), January
2001.

Upi Tamminen. Kippo - SSH Honeypot.
http://code.google.com/p/kippo/, Fri Feb 1
16:19:46 CET 2013, 20009.

Elmo
way

Todurov. A
to hack into

stupidly easy
computers.

http://theorylunch.wordpress.com,/2013/01/24/ssh-

mitm/, Sun Feb 10 23:46:37 CET 2013, 2013.

T. Ylonen and C. Lonvick. The Secure Shell
(SSH) Protocol Architecture. RFC 4251 (Pro-
posed Standard), January 2006.

T. Ylonen and C. Lonvick. The Secure Shell
(SSH) Transport Layer Protocol. RFC 4253
(Proposed Standard), January 2006. Updated
by RFC 6668.

A Data Summary Single Host Study

A.1 Base Properties

Host | Avg. Connections/h

Max Connections/h

Total Connections

All 232.06
p2ol | 26.96
p202 | 18.46
p203 | 24.97
p204 | 19.68
p205 | 25.81
p206 | 41.40
p207 | 35.11
p208 | 39.67

3063
1136
746
1219
645
793
1560
717
3042

69386
8062
5519
7467
5886
7716
12379
10497
11860

Table 1: Base Data for Single Host Study, runtime 299 hours

A.2 Success / Fail Rate

Host | Penetrated Hosts | Non Penetrated Hosts | Successrate
All 30 290 9.38%
p2ol | 2 49 3.92%
p202 | 8 65 10.96%
p203 | 1 42 2.33%
p204 | 1 37 2.63%
p205 | 4 43 8.51%
p206 | 6 53 10.17%
p207 | 4 58 6.45%
p208 | 4 36 10.00%

Table 2: Success Rate for Single Host Study

B Data Summary Network Study

B.1 Base Properties

Net

Max Connections/h

Total Connections

All
145
151
151
151
151
151
151
195

Avg. Connections/h
1993.72
.100.109.0/24 | 668.87
.216.20.0/24 182.19
.217.0.0/24 173.47
.220.0.0/24 211.29
.221.0.0/24 192.38
.222.0.0/24 175.58
.223.0.0/24 196.59
.191.197.0/24 | 193.32

33027
25202
3598
8294
8186
8218
3740
8296
3468

663912
222736
60670
o767
70361
64064
58470
65466
64378

Table 3: Base Data for Network Study, runtime 333 hours

B.2 Success / Fail Rate

Net Penetrated Hosts | Non Penetrated Hosts | Successrate
All 36 632 5.38%
145.100.109.0/24 | 14 74 15.91%
151.216.20.0/24 13 257 4.81%
151.217.0.0/24 11 180 5.76%
151.220.0.0/24 12 287 4.01%
151.221.0.0/24 8 202 3.81%
151.222.0.0/24 9 193 4.46%
151.223.0.0/24 8 201 3.83%
195.191.197.0/24 | 4 158 2.47%

Table 4: Success Rate for Network Study

10

C Data Summary Network Study - Filtered

C.1 Base Properties

Net

Max Connections/h

Total Connections

All
145
151
151
151
151
151
151
195

Avg. Connections/h
1732.44
.100.109.0/24 | 668.88
.216.20.0/24 140.88
.217.0.0/24 136.90
.220.0.0/24 176.31
.221.0.0/24 161.26
.222.0.0/24 135.40
.223.0.0/24 156.77
.191.197.0/24 | 156.05

33027
25202
3598
8294
8186
8218
3696
8296
3468

576901
222736
46913
45587
58710
53698
45089
52204
51964

Table 5: Base Data for Network Study, runtime 333 hours - outliers filtered

C.2 Success / Fail Rate

Net Penetrated Hosts | Non Penetrated Hosts | Successrate
All 35 260 11.86%
145.100.109.0/24 | 14 74 15.91%
151.216.20.0/24 12 148 7.50%
151.217.0.0/24 10 83 10.75%
151.220.0.0/24 11 93 10.58%
151.221.0.0/24 7 93 7.00%
151.222.0.0/24 8 89 8.25%
151.223.0.0/24 7 85 7.61%
195.191.197.0/24 | 4 113 3.42%

Table 6: Success Rate for Network Study - outliers filtered

11

¢l

Connections [Day

Graph: Hosts per Day Single Host Study

16

14

12

10

A

1228712

- ()
x

0L/0213

\
MME\V%K
A
o ‘g§§(‘;}

0L/0413
0L/0&'13
0La7 13

12/29/12
12/30/12

i
0

Date (MM /DD 1¥Y)

Figure 7: Plot of daily unique hosts connecting for each honeypot during the single host study.

wm%fﬁ;
LY

—— p2al
— p2o2
"] c]
— 2ot
—r]
— p20f
— p2af
—— 208

el

E Graph: Hosts per Day Network Study

Connections [Day

250

200

150

100

50

|
|

0L/0&13

—151.217.00
— 151216200
—— 1% 1911570
—— 1451001090
——151.222.00
15122300
—— 15122000
e 151.221.00
// ™~
S N
n 9 2 n 3 9 ” 9 5 = = o 5 n
g =t g g = =t =] a =] b= =] =t g g

Date (MM /DD 1¥Y)

Figure 8: Plot of daily unique hosts connecting for each network during the network study.

F Graphs: Single Host Successrate Graphs

250 20
200
150
100

50

250 W
350 .
400 ®
450 |y
500 !
550 I
600 !

200 =

<]
.

750 |
goo I
850 Iy

900
%0 !
1000 !

Total Hostsw. x Connections
(]
50—
100 —
150 S
660 flam
>1I300h
Lo B L B N o) I s I e T e
[T L TR N '
S uccessful Connect Back H osts w. x Connections

Connections / H ost

Figure 9: Connections from each inbound host, sorted in classes of stepsize 50, Blue: Amount of hosts.
Orange: Amount of successful Connect Back attempts

60.00% 250
50. 00% 20 £
40.00% é

o 150 §

£ 30.00% <

n =

it 100 g

S 2000% \ 3

0 | T

‘s
10.00% 50 :
g
0. 00% Lo <
W OLARBIELEEBEBR L8838
i

Connections/ H ost

Figure 10: B-Splined plot of successrate vs. amount of hosts per class. Red: Successrate. Black: Amount
of hosts per class.

14

G Graphs: Network Successrate Graphs

@

1000 30 i=]
%00 27 E

=

» 800 24 GO
5 =
R 21 2
E 800 18 %
(=]

S 500 15 I
>‘:' v
= 1]
7 300 s g
I 200 6 £
5 8
0 wmdd. Ba__ =A_ =10, 3

(=] =] o O =] o 2 O (] o o o 9 9 45}
2828228382888 2838888 &

s [Fy]

Connections / H ost

Figure 11: Connections from each inbound host, sorted in classes of stepsize 50, Blue: Amount of hosts.
Orange: Amount of successful Connect Back attempts

35. 000 1000
900
30.00% ”
80§
25. 00% 700 g
o
o 20.00% 600 é
§ 500 2
{ 15. 000 w0 b
(=]
@ 10.00% 30 T
200 B
5. 00% / P
0. 00% 0 <
(=] (] o O (] [T o B e (=] o o o 9 9
582 Rg2838288B82828888
FA

Connections/ H ost

Figure 12: B-Splined plot of successrate vs. amount of hosts per class. Red: Successrate. Black: Amount
of hosts per class.

91

H Graph: Successfull vs. Failed Connect Back Attempts Single Host Study

M 0. of failed Connect B ack attermpts

70

50

40

30

20

10

f(x) = 3.0642168675x + 36.4216867 47
R2 =0.52251957 7

—
m L
—
.
e
L — =
— -
s
.= []
o -
...-"'"'-—-.
. |
1 2 3 4 5 5] K

M 0. of successful Connect Back attermpts

Figure 13: Plot for p20l - p208, successful vs. failed connect-back attempts.

70

50

40

30

20

10

OO0 Uk W

I Possible Group Passwords

khaled —dico—ana—wla—akhou—charmouta—tfeh —kess—ekhtak—bi—ayri—abou—aT7beh
ckwS2nrN&&0(x=;1E}21=}8%9bfGSz6kVx7ILKm ! LID5] nu8hW<QN) "nbX 'K
ortega.123# TradeLinuxKi!l|iN6#Th3Ph03%%nix@NdR3b!irD
123 parola32lesniffu3d21$#a! nuirootutaudeateuita#!Q#$
deathfromromaniansecurityteamneversleepba
vreau.sa.urc.255.de.emechi.pe.undernet
efwef58sdf2cvsdl*!#&S$#-) claudia69iLiE
youhaveabubasuckmypula ! xx#!$Q+xO (221!

[www. cinenustieparolasugepula . biz%5d
Fum4tulP0@t3Uc1d3R4uD3TO0t ' @#$% " %" &*?
NKtfgCjQRrITtjf RPmJAIINGOODWETRUST
dragos3443gff@665$G455454dragos2sd
$3cr3t#7DiafstigmaNumelemeumich%#
UIYORYIPRTEWFDJDHGKJRRTEWEGSDFHFS

Q! # $%&+Th3Q#$ | FORCE%&AGHLS | @S %1&
$3NH4#%%DiafstigmaNumelemeumic%%#
w7aThexApruP3asWQ8kURa9rphe8rEpR

1# $%&+Th3Q#$ | FORCE%&AGHIS | @#$%!&
spargeosu# %*&138cucapulinpicior
SK!587eN9a@Y61e3i0G63 ! Nsv81E7hL4
nobodywasherexXXx012132+x8ushd8ss

@n ! mdOmMPA3Q& #3141 $&#A! #mTadm ! n$Q@
f4lrwayfds "&789fdsa% *&fds@!#Q$%

777777 Brz—O—-Baga—n—Mata
ana.este.o.dulceata.de.fata.2011
G#SWEFHERI (« FQR23587tfwAGBFUIDF
Ki!l|iN6#Th3Ph03$%nix@NdR3b!irD
Sugqlw2e4”"1qgzarolaMeaDeLaSSHD

1@+ (QHBsd8H | G#&QEDBAS+«@B# | (BD
$3cr3t#mafiavafutel97532Q %!7x%
Rh3I5Lik3P4rtY@QQ@Q@Qv3rmagnnumm
#hackm3baby#logronol#cancel#
@#$%hackin2inf3ctsiprepe Q#3%%

biMNC .!@#$"~ AdelFedora24.+4 _}P
trdytOdlscOaarmd4ypedas5wOrP

@n ! mdOmMPA3@7? $&#Q! #mTadm ! n$@
L@QptOpF1nLuXuS33baie22dus 7!

$3cr3t IQAWHESR%T " Y&U*1 (O) P
0wn3d—6BD1714F . dedicated . tu
ZUHALT3R-FUCK_-YOU_ZUH4LT3R

pOw3rOF //Rullers QL $%L$%—00
h5a2n4d7a9011$%i = () an(&=g)

7ThurQy@Qt3am$#a! (1 (

17

©00 DU kAW

J Example Wordlist

| User | Password | User | Password

| Il | |

T T T T

| root | P@sswOrd | [

| root | -___ | root nokial23
root 12345 root p@$$wOrd
root 1234qwer | G#$ root 12qwaszx
root michael root Pa$$word

| root | asdasd | root sebical234

| root | PQ@3$wOrd | root qwer | @#$
root 888888 root ..—55
root 7Thur@Qy@t3am$#@! ((root redroot
root asdf1234 root 123gweasd

| root | 123654 | root theking

| root | !G#SQWER | root I qazxsw@
root power root samsung
root sysadmin root test123
root 1g2w3e4dr root r00t

| root | 1lqaz@WSX root abcl23!@#

| root | qwerasdf root silver
root PasswOrd root access
root passwordl root testbox
root kagome root linux123

| root | 123$%°789 root maverick
root 123456789 root X
root prueba root wvhlyf
root Passwordl! root id

| root sunshine root 123 qaz

| root | asshole root blahblah
root 123456!Q#3%" root testing
root justdoit root 11111111
root p4sswOrd root 123!@#

| root | 1 | root 1z2x3c4v

| root | xxxxxx | root asdf123
root viper root super
root 123 root dzpyerg9
root Pa$$wOrd root compaq

| root | zaql23edc | root secret

| root | milan | root jordan23
root foobar root qlw2e3rd4t5y6
root 1gq2w3e root servidor
root support root 4dmln

| root | qlw2e3r4 root cisco

| root Password123 root junior
root testingl123 root zaql2wsx
root 2wsx3edc root serverl23
root bagabu root whatever

| root | fuckyou root ciscol23
root 123qwel23qwe root joshua
root templ23 root Tujm8ik ,
root Passwordl root swOrdflsh

| root | branburica root qwel23qwel23

| root | alex root toto
root 1234567 root Password
root internet root 852963
root stephen root football

| root | qwerty! | root qwertyui

| root | abcl23! | root vps123
root buster root acer
root monkey root fuck
root passwOrd root qwert123

| root | P@sswOrd! | root qwert

| root | lga2ws3ed | root 0571749e2ac330a7455809c6b0e7af90
root 111111 root startrek
root dolphin root zxc | Qft
root pingpong root qwertyl2

| root | qwertyl23 root asdfasdf
root qwerty root a
root felix root danny
root control root pokemon
root motorola root 11

18

©00 DU kAW

© 00U WN

K Used Honeypot Systems

rDNS: <REDACTED FOR PRIVACY CONCERNS>
IPv4: <REDACTED FOR PRIVACY CONCERNS>
Location: DE, AS24940, Hetzner Online AG
Data—Reference: p2ol

rDNS: <REDACTED FOR PRIVACY CONCERNS>
IPv4: <REDACTED FOR PRIVACY CONCERNS>
Location: DE, AS35366, ISPpro Internet KG
Data—Reference: p202

rDNS: <REDACTED FOR PRIVACY CONCERNS>

IPv4: <REDACTED FOR PRIVACY CONCERNS>

Location: US, Phoenix, AS20454, Dolorem Ipsum, s.r.o.
Data—Reference: p203

rDNS: <REDACTED FOR PRIVACY CONCERNS>

IPv4: <REDACTED FOR PRIVACY CONCERNS>

Location: US, Dallas, AS36351, Dolorem Ipsum, s.r.o.
Data—Reference: p204

rDNS: vps.node71.nqhost.com

IPv4: 109.68.191.166

Location: RU, AS52201, Dolorem Ipsum, s.r.o.
Data—Reference: p20b

rDNS: test.wybt.net
IPv4: 195.191.196.2
Location: DE, AS31078, WYBFNET
Data—Reference: p206

rDNS: euve8465. vserver.de

IPv4: 62.75.139.144

Location: DE, AS8972, PlusServer AG

Data—Reference: p207

Remarks: Down on 01/08/13 due to powerfailure. Exact downtime not measured, assumed to be
around 12h. The node is not excluded, downtime is considered noise.

rDNS: hull.practicum.os3.nl

IPv4: 145.100.104.167

Location: NL, AS1103, UvA—Master—SNE-NET

Data—Reference: p208

Remarks: Down on 01/09/13 due to powerfailure. Exact downtime not measured, assumed to be
around 8h. The node is not excluded, downtime is considered noise.

L Sourcecode: ssh-cb.py

#!/usr/bin/env python

This code is loosely based on the paramiko dem ssh—server. A copy

of that demo server can be found at:
http://mcs.une.edu.au/doc/python—paramiko —1.7.7.1/demos/demo_server.py
and in Appendix B of this document. All differences between that file and
this file have been created by Tobias Fiebig.

Copyright (C) 2012—2013 Tobias Fiebig <tobias.fiebig@os3.nl>
Copyright (C) 2003—2007 Robey Pointer <robeypointer@gmail.com>

This is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option)
any later version.

This software is distrubuted in the hope that it will be useful , but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

FeFR IR IR I I IR I I IR IR

You should have received a copy of the GNU Lesser General Public License

19

along with this software; if not, write to the Free Software Foundation,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

from binascii import hexlify
import os

import socket

import sys

import threading

import traceback

import datetime

import paramiko

import threading

import signal

host—key used
host_key = paramiko.RSAKey(filename="test_rsa.key’)
paramiko. util.log_to_file (’demo_server.log’)

class Server (paramiko.ServerInterface):
clientAddr = 77

def __init__(self, client):
self.event = threading.Event ()
self.clientAddr = client
print client [0]

def check_channel_request(self, kind, chanid):
if kind == ’session ’:
return paramiko.OPEN_SUCCEEDED
return paramiko.OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED

def check_auth_password(self , username, password):

try:
ssh = paramiko.SSHClient ()
ssh.set_missing_host_key_policy (paramiko.AutoAddPolicy ())
ssh.connect(self.clientAddr [0], 22, username, password)
date = str(datetime.datetime.now())
f_log = open(”./userdata—success” , "a+”)
f_log.write(”Host: "+self.clientAddr[0]+”\n")
f_log.write (” Username: ”+username+”\n")
f_log.write (” Password: ”+password+”\n")
f_log.write (” Date: "+4date+”"\n")
f_log.write("————————— \n”)
f_log.close ()
return paramiko.AUTH_FAILED

except:
date = str(datetime.datetime.now())
f_log = open(”./userdata—fail” , 7a+")

f_log.write(”Host: "+self.clientAddr[0]+”\n")
f_log.write (” Username: ”+username+”\n")
f_log.write (” Password: ”+password+7\n")
f_log.write(” Date: "+4+date+”"\n”)
f_log.write("————————— \n”)

f_log.close ()

return paramiko.AUTH_FAILED

def get_allowed_-auths(self, username):
return ’password’

def check_channel_shell_request (self, channel):
self.event.set ()
return True

def check_channel_pty_request(self, channel, term, width,
height , pixelwidth, pixelheight , modes):
return True

class RequestHandler (threading.Thread):
def __init__(self, (sock, addr)):
self.sock = sock
self.addr = addr
threading . Thread. __init__(self)

20

Inc.

)

def

def

if

def run(self):
try:

t = paramiko.Transport(self.sock)

t.local_version = ”"SSH—2.0—OpenSSH_5.9pl Debian—5ubuntul”

try:
t.load_server_moduli ()

except:
print ’(Failed to load moduli — gex will be unsupported.)’
raise

t.add_server_key (host_key)

server = Server(self.addr)

try:
t.start_server (server=server)

except:
print ’s%% SSH negotiation failed.’

chan = t.accept (20)
if chan is None:

i = 1;
else:

chan. close ()

except Exception, e:

print ’x%x Caught exception: ’ + str(e.__class__) + ’: ’ 4 str (e

traceback.print_exc ()
try:
t.close ()
except:
print ” Exception caught”

bind_local ():
try:
sock = socket.socket(socket.AF.INET, socket.SOCKSTREAM)
sock.setsockopt (socket .SOL.SOCKET, socket.SO_REUSEADDR, 1)
sock.bind ((’7, 2200))
sock.listen (10)
except Exception, e:
print ‘%% Bind failed: > + str(e)
traceback.print_exc ()
sys.exit (1)

return sock

listen_sock (sock):

try:
sa = sock.accept ()

except Exception, e:
print ‘%% Listen/accept failed: ’ + str(e)
traceback.print_exc ()

return sa

cleanup (xargs):
sys.exit (1)

main (argv):

sock = bind-local ()

threads = []
signal.signal (signal .SIGINT, cleanup)
signal.signal (signal .SIGTERM, cleanup)
while (" true”):

rh = RequestHandler (listen_sock (sock))
rh.daemon = True
rh.start ()
threads.append(rh)
_-name__. == " __main__":
main (sys.argv[1l:])

)

21

OO0~ Ut W -

M Sourcecode: doc/python-paramiko-1.7.7.1/demos/demo_server.py

Copyright (C) 2003—2007 Robey Pointer <robeypointer@gmail.com>
This file is part of paramiko.

Paramiko is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option)
any later version.

Paramiko is distrubuted in the hope that it will be useful , but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more

details.

#

FFR IR F IR

You should have received a copy of the GNU Lesser General Public License
along with Paramiko; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

import base64

from binascii import hexlify
import os

import socket

import sys

import threading

import traceback

import paramiko

setup logging
paramiko. util.log_to_file (’demo_server.log’)

host_key = paramiko.RSAKey(filename="test_rsa.key’)
#host_key = paramiko.DSSKey(filename="test_dss.key’)

print 'Read key: ° + hexlify (host_key.get_fingerprint ())

class Server (paramiko.ServerInterface):

’data’ is the output of base64.encodestring(str(key))

(using the ”"user_rsa_key” files)

data = AAAAB3NzaClyc2EAAAABIWAAAIEAyO4it3fHImGZWJaGrfeHOVYTRWO3P9M7hp’ + \
’fAu7jJ2d7eothvfeuoRFtJwhUmZDIuRdFyhFY /hFAh76PJKGAusIqIQKIkJxMC’ + \
"KDqlexkgHAfID /6 mqvmnSJfOb5W8v5h2pI /stOSwTQ+pxVhwJ9ct YDhRSIFOIT * + \
"UWT10hcuO4Ks8="

good_pub_key = paramiko.RSAKey(data=base64.decodestring (data))

def __init__(self):
self.event = threading.Event ()

def check_channel_request(self, kind, chanid):
if kind == ’session ’:
return paramiko .OPEN_SUCCEEDED
return paramiko.OPEN_FAILED_ADMINISTRATIVELY PROHIBITED

def check_auth_password(self , username, password):
if (username == ’'robey’) and (password == ’foo ’):
return paramiko.AUTH_SUCCESSFUL
return paramiko.AUTHFAILED

def check_auth_publickey (self, username, key):
print ’Auth attempt with key: ’ 4+ hexlify (key.get_fingerprint ())
if (username == ’'robey’) and (key == self.good_pub_key):
return paramiko.AUTH SUCCESSFUL
return paramiko.AUTH_FAILED

def get_allowed_-auths(self, username):
return ’password , publickey’

def check_channel_shell_request(self, channel):
self.event.set ()

22

return True

def check_channel_pty_request(self, channel,
pixelheight ,
return True

now connect

try:

except Exception, e:

try:

sock socket .socket (socket . AF_INET,
sock.setsockopt (socket .SOL.SOCKET,
sock.bind ((’’, 2200))

print ’sxxx Bind failed:
traceback.print_exc ()
sys.exit (1)

>+ str(e)

sock.listen (100)
print ’Listening for connection
client , addr = sock.accept ()

except Exception, e:

print ’x%x Listen/accept failed: > + str(e)
traceback.print_exc ()
sys.exit (1)
print ’Got a connection!’
try:
t = paramiko. Transport(client)
try:
t.load_server_moduli ()
except:
print ’(Failed to load moduli — gex will
raise
t.add_server_key (host_key)
server = Server ()
try:

t.start_server (server=server)
except paramiko.SSHException, x:

print ’xx%x SSH negotiation failed .’

sys.exit (1)

term, width, height ,

modes) :

socket .SOCK.STREAM)
socket .SO_REUSEADDR,

1)

be unsupported.)’

BBS!\ r\n\r\n’)
Candy corn for

wait for auth
chan = t.accept (20)
if chan is None:
print ’xx% No channel.’
sys.exit (1)
print ’Authenticated!’
server.event.wait (10)
if not server.event.isSet ():
print ’xxx Client never asked for a shell.’
sys.exit (1)
chan.send (’\r\n\r\nWelcome to my dorky little
chan.send (’We are on fire all the time! Hooray!
chan.send (’Happy birthday to Robot Dave!\r\n\r\n’)
chan.send (’Username: ’
f = chan.makefile ('rU”)

username = f.readline ().strip (’\r\n’)
chan.send (’\r\nI don\’t like you, ~’
chan. close ()

except Exception, e:

print ’sxxx Caught exception:
traceback.print_exc ()
try:
t.close ()
except:
pass

sys.exit (1)

+ username +

> 4 str(e.__class__) + ’:

“Ar\n’)

> 4 str(e)

pixelwidth ,

everyone!\r\n’)

23

©00 DU W

N Application for RIPE-NCC Provided Networks

% Temporary Internet Number Assignment Request Form

% RIPE NCC members (LIRs) can use this form to request

% a Temporary Internet Assignment. Please see ”Supporting Notes for the Temporary
% Internet Assignment Request Form” for instructions on how to complete this form.
% http://ripe.net/ripe/docs/temp—assign—support

%

% Please note that an End User should have a signed ”Temporary Independent

% Assignment Request and Maintenance Agreement” with a sponsoring LIR.

% http://ripe.net/lir —services /resource —management/temp—assign —agreement

#[GENERAL INFORMATION]#
% Please add your ReglID.

request—type: temp—assign
form—version: 1.0
x—ncc—regid :

#[ASSIGNMENT USER]#

% Who will use the requested assignment?

legal —organisation —name: Tobias Fiebig

organisation—location: Natrupper Str. 98, D—49090 Osnabrueck, GERMANY
website—if —available: https://www.o0s3.nl/

% Is this request being sent by a sponsoring LIR on behalf of
% an End User? (yes/no)

end—user—of—sponsoring—1lir: yes

% 1f yes, please confirm that the ”Temporary Independent Assignment Request and
% Maintenance Agreement” contains all of the elements listed in paragraph 2.0 of
% ” Contractual Requirements for Provider Independent Resource Holders in the

% RIPE NCC Service Region”.(yes/no)

% Please also attach a copy of the signed agreement and the company registration
% papers of the End User.

confirmation: yes
#[INITIAL INFORMATION]#

% Which type of assignment is the End User requesting? (IPv4/IPv6/ASN)

type—of—assignment: IPv4
% Why do you need this temporary assignment?
why: Research Project

% The End User should be aware that this resource will be for a specific time

% period and will be automatically de—registered at the end of the approved

% assignment period.

% Please add more information on the purpose (Event/Research) and duration of this
% request .

purpose: The University van Amsterdam accepted the attached research proposal.
During the course of this research it became apparent, that the results of the
experiment do not reach those of a pre—evaluation. This pre—evaluation was done
with one /24 DNATed to one host, while the currently active evaluations utilizes
single hosts with a single /32. This resulted in a new hypothesis, claiming that
the performance of the devised method can be increased, if a whole /24 is used
for honeypot purposes instead of only one /32. In order to retrieve a wide spread
data—basis, i.e. gather data from different ssh bruteforce systems, usually
harvesting on a single /16 at a time, multiple /24 from multiple /16 are needed.
The use of six different /24 is a design decission, which keeps the limited amount
of left IPv4 resources in mind, while still providing a reasonable sample size in
comparisson to the single host study which utilizes eight different /32.

website—if —available: http://rp.delaat.net/2012—2013/index.html (#22)

% The date should be in the following format: yyyymmdd

24

start —date:20120107
end—date:20120128

% The next three se

% detailed usage of the resources. Please fill in only the

ctions (IPv4, IPv6 and ASN) will

give us an overview of the

% sections as per the resource being requested and remove the
% applicable.

#[IPv4
%

section|#

% Why is PI address

why—pi—v4:

space required rather than PA address

% Is the End User requesting extra address space for

% administrative

why—routing—v4: yes

% Please confirm if
% of PI address space? (yes/no)
% For details, you

reasons? If yes, explain why.

relevant

sections that

space?

Current LIR can not provide enough PA /24 from different /16.

routing and/or

are not

the End User is aware of the consequences and disadvantages

can refer to section &.(U+FFFD]PAs

Allocation and Assignment Policies.

% Address

confirmation—v4: yes

Each block needs to be globally routable, therefore
% ADDRESSING PLAN

% How will the End

%
%
%

subnet :
subnet :
subnet :
subnet :
subnet :
subnet :
totals:

Subnet
size (/nn)

number—of—subnets:

#[IPv6
%

% Why is PI address space required rather than PA address

section|#

why—pi—v6:

User use this IPv4 address space?

. PI Address S»e[U+FFFD] of the IPv4

each should be a /24 minimum.

Immediate Intermediate Entire Purpose

Requirement Requirement Period
X DNAT to evaluation
x DNAT to evaluation
X DNAT to evaluation
X DNAT to evaluation
X DNAT to evaluation
x DNAT to evaluation

6

% Is the End User requesting extra address space for
% administrative re

why—routing —v6:

% Please confirm if

% of PI address
details , you
Allocation and Assignment Policies.

% For

% Address

confirmation—v6:

%ADDRESSING PLAN
% How will the End

%
%
%

subnet :
subnet :
totals:

%

Subnet
size (/nn)

asons? If yes, explain why.

space?

routing and/or

host
host
host
host
host
host

the End User is aware of the consequences and disadvantages

space? (yes/no)

can refer to section &.([U+FFFD]PArs

User use this IPv6 address space?

Immediate Intermediate Entire

. PI Address S»e[U+FFFD] of the IPv4

Requirement Requirement Period

% Please list the Autonomous System Numbers and email contact

25

Purpose

addresses

% of the peering partners for the requested IPv6 PI assignment.

peering —v6:
peering —v6:
#[ASN section]#

%[ADDRESS SPACE TO BE ANNOUNCED] %
% If this ASN will originate other prefixes than are requested
% in this request, please list these below.

prefix —asn:

% 1f you require a 16—bit AS Number instead of a 32—bit AS Number,
% please indicate this below and tell us why. For more information ,
% see http://www.ripe.net/news/asn—32—guide.html

as—number—type: 32—bit [change as required]
why—16—Dbit :

% Please list the Autonomous System Numbers and email contact addresses
% of the peering partners.

peering—asn:
peering—asn:

#[SUPPORTING DOCUMENTATION]#

% Please add more information if you think it will help us understand
% this request. You can attach a network diagram or other relevant

% supporting documentation.

See Research Proposal Attached.

%<add more information>

#| DATABASE TEMPLATE IPv4]#

%

% 1f you are requesting IPv4, complete this IPv4 database template.

% 1If you are not requesting IPv4, please remove this IPv4 database template.

inetnum : <leave empty>
netname : SNE-RP1-EVAL-TMP
descr: Tobias Fiebig
country: NL

org: ORG-wA159—RIPE
admin—c: WYBF-RIPE

tech—c: WYBT-RIPE

status: ASSIGNED PI
remarks: Temporary assignment

Duration of assignment:

Start date: 20120107

End date: 20120128
mnt—by : RIPE-NCC-END-VINT
mnt—lower : RIPE-NCC-END-MVINT
mnt—by : WYBTF-MNT
mnt—by : NETSIGN-MNT
mnt—routes: WYBF-VMNT
mnt—routes: NETSIGN-MNT
mnt—domains : WYBEFVMNT
mnt—domains : NETSIGN-MNT
changed: hostmaster@ripe . net
source: RIPE

26

© 00U W

O Used IPv4 Networks
0.1 Network: 145.100.109.0/24

whois

145.100.109.0/24

[Querying whois.ripe.net]
[whois.ripe.net]

% This is
% The objects
%

% The RIPE Database is

the RIPE Database query

service.

are in RPSL format.

subject to Terms and Conditions.

% See http://www.ripe.net/db/support/db—terms—conditions.pdf
% Note: this output has been filtered.
% To receive output for a database update, use the "—B” flag.

% Information

inetnum :
netname:
descr:
descr:
descr:
country:
admin—c:
tech—c:
status:
mnt—by :
mnt—irt :
source :

role:
address:

remarks:
remarks:

abuse—mailbox:

admin—c:
tech—c:
mnt—by :
nic—hdl:
source :

% Information

route:
descr:
origin:
mnt—by :
source :

% This query was served by the RIPE Database Query Service version 1.50.5 (WHOIS3)

related to ’145.100.96.0 — 145.100.111.255”
145.100.96.0 — 145.100.111.255
UvA—Master —SNE-NET
Universiteit van Amsterdam
Master SNE

www. 0s3 . nl

NL

MSNE-RIPE

MSNE-RIPE

ASSIGNED PI

SN—LIR-VINT

irt —=SURFcert

RIPE # Filtered

UvA Master SNE

UvA Master SNE

SNE Room B1.23

Science Park 908
NL—1098XH Amsterdam

The Netherlands

Please use abuse@os3.nl
for further/other
abuse@os3. nl
JPV1024—RIPE
JPV1024—RIPE
OS3-VINT
MSNE-RIPE

RIPE # Filtered

for complaints and/or abuse,
information see: http://www.o0s3.nl/

related to ’'145.100.0.0/15AS1103°
145.100.0.0/15

SARA-LAN SURFNET-UNO

AS1103

AS1103-MNT

RIPE # Filtered

27

©O00 DUk W

0.2 Network: 151.216.20.0/24

whois 151.216.20.0/24

[Querying whois.arin.net|]
[Redirected to whois.ripe.net:43]
[Querying whois.ripe.net|]

[whois.ripe.net]

% This is the RIPE Database query service.
% The objects are in RPSL format.

%

% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db—terms—conditions.pdf

% Note: this output has been filtered .

% To receive output for a database update, use the "—B” flag.

% Information

inetnum :
netname :
descr:
country:
org:
admin—c:
tech—c:
status:
remarks:

mnt—by :
mnt—lower :
mnt—by :
mnt—by :
mnt—routes:
mnt—routes:
mnt—domains :
mnt—domains:
source :

organisation :
org—name:
org—type:
address:

abuse—mailbox:
mnt—ref :
mnt—by :

source :

person:
address:

phone:
mnt—by :
nic—hdl:
source :

% Information

route:
descr:
origin:
mnt—by :
mnt—by :
source :

related to ’151.216.20.0 — 151.216.20.255"

151.216.20.0 — 151.216.20.255
SNE-RP1-EVAL-TMP

Tobias Fiebig

NL

ORG-wA159—RIPE

WYBTF-RIPE

WYBT-RIPE

ASSIGNED PI

Temporary assignment

Duration of assignment: 3 weeks

Start date: 20120108
End date: 20120129

RIPE-NCC-END-MVINT'
RIPE-NCC-END-VINT
WYBTF-NMNT
NETSIGN-MNT
WYBTF-MNT
NETSIGN-MNT
WYBT-NMNT
NETSIGN-MNT

RIPE # Filtered

ORG-wA159-RIPE
Tobias Fiebig
other

Natrupper Str. 98
49090 Osnabrueck
GERMANY
abuse@Qwybt . net
WYBT-MNT
WYBT-MNT

RIPE # Filtered

Tobias Fiebig
Natrupper Str. 98
D—49090 Osnabrueck
GERMANY
+495413436597
WYBT-MNT
WYBT-RIPE

RIPE # Filtered

related to ’'151.216.20.0/24AS31078’

151.216.20.0/24

SNE-RP1-EVAL-TMP Route via Netsign
AS31078

WYBE-NMNT

NETSIGN-MNT

RIPE # Filtered

% This query was served by the RIPE Database Query Service version

1.50.5 (WHOIS3)

28

©O00 DUk W

0.3 Network: 151.217.0.0/24

whois 151.217.0.0/24

[Querying whois.arin.net|]
[Redirected to whois.ripe.net:43]
[Querying whois.ripe.net|]

[whois.ripe.net]

% This is the RIPE Database query service.
% The objects are in RPSL format.

%

% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db—terms—conditions.pdf

% Note: this output has been filtered .

% To receive output for a database update, use the "—B” flag.

% Information

inetnum :
netname :
descr:
country:
org:
admin—c:
tech—c:
status:
remarks:

mnt—by :
mnt—lower :
mnt—by :
mnt—by :
mnt—routes:
mnt—routes:
mnt—domains :
mnt—domains:
source :

organisation :
org—name:
org—type:
address:

abuse—mailbox:
mnt—ref :
mnt—by :

source :

person:
address:

phone:
mnt—by :
nic—hdl:
source :

% Information

route:
descr:
origin:
mnt—by :
mnt—by :
source :

related to ’151.217.0.0 — 151.217.0.255"

151.217.0.0 — 151.217.0.255
SNE-RP1-EVAL-TMP

Tobias Fiebig

NL

ORG-wA159—RIPE

WYBTF-RIPE

WYBT-RIPE

ASSIGNED PI

Temporary assignment

Duration of assignment: 3 weeks

Start date: 20120108
End date: 20120129

RIPE-NCC-END-MVINT'
RIPE-NCC-END-VINT
WYBTF-NMNT
NETSIGN-MNT
WYBTF-MNT
NETSIGN-MNT
WYBT-NMNT
NETSIGN-MNT

RIPE # Filtered

ORG-wA159-RIPE
Tobias Fiebig
other

Natrupper Str. 98
49090 Osnabrueck
GERMANY
abuse@Qwybt . net
WYBT-MNT
WYBT-MNT

RIPE # Filtered

Tobias Fiebig
Natrupper Str. 98
D—49090 Osnabrueck
GERMANY
+495413436597
WYBT-MNT
WYBT-RIPE

RIPE # Filtered

related to ’151.217.0.0/24AS31078°

151.217.0.0/24

SNE-RP1-EVAL-TMP Route via Netsign
AS31078

WYBE-NMNT

NETSIGN-MNT

RIPE # Filtered

% This query was served by the RIPE Database Query Service version

1.50.5 (WHOIS1)

29

©O00 DUk W

0.4 Network: 151.220.0.0/24

whois 151.220.0.0/24

[Querying whois.arin.net|]
[Redirected to whois.ripe.net:43]
[Querying whois.ripe.net|]

[whois.ripe.net]

% This is the RIPE Database query service.
% The objects are in RPSL format.

%

% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db—terms—conditions.pdf

% Note: this output has been filtered .

% To receive output for a database update, use the "—B” flag.

% Information

inetnum :
netname :
descr:
country:
org:
admin—c:
tech—c:
status:
remarks:

mnt—by :
mnt—lower :
mnt—by :
mnt—by :
mnt—routes:
mnt—routes:
mnt—domains :
mnt—domains:
source :

organisation :
org—name:
org—type:
address:

abuse—mailbox:
mnt—ref :
mnt—by :

source :

person:
address:

phone:
mnt—by :
nic—hdl:
source :

% Information

route:
descr:
origin:
mnt—by :
mnt—by :
source :

related to ’151.220.0.0 — 151.220.0.255"

151.220.0.0 — 151.220.0.255
SNE-RP1-EVAL-TMP

Tobias Fiebig

NL

ORG-wA159—RIPE

WYBTF-RIPE

WYBT-RIPE

ASSIGNED PI

Temporary assignment

Duration of assignment: 3 weeks

Start date: 20120108
End date: 20120129

RIPE-NCC-END-MVINT'
RIPE-NCC-END-VINT
WYBTF-NMNT
NETSIGN-MNT
WYBTF-MNT
NETSIGN-MNT
WYBT-NMNT
NETSIGN-MNT

RIPE # Filtered

ORG-wA159-RIPE
Tobias Fiebig
other

Natrupper Str. 98
49090 Osnabrueck
GERMANY
abuse@Qwybt . net
WYBT-MNT
WYBT-MNT

RIPE # Filtered

Tobias Fiebig
Natrupper Str. 98
D—49090 Osnabrueck
GERMANY
+495413436597
WYBT-MNT
WYBT-RIPE

RIPE # Filtered

related to ’151.220.0.0/24AS31078°

151.220.0.0/24

SNE-RP1-EVAL-TMP Route via Netsign
AS31078

WYBE-NMNT

NETSIGN-MNT

RIPE # Filtered

% This query was served by the RIPE Database Query Service version

1.50.5 (WHOIS2)

30

©O00 DUk W

0.5 Network: 151.221.0.0/24

whois 151.221.0.0/24

[Querying whois.arin.net|]
[Redirected to whois.ripe.net:43]
[Querying whois.ripe.net|]

[whois.ripe.net]

% This is the RIPE Database query service.
% The objects are in RPSL format.

%

% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db—terms—conditions.pdf

% Note: this output has been filtered .

% To receive output for a database update, use the "—B” flag.

% Information

inetnum :
netname :
descr:
country:
org:
admin—c:
tech—c:
status:
remarks:

mnt—by :
mnt—lower :
mnt—by :
mnt—by :
mnt—routes:
mnt—routes:
mnt—domains :
mnt—domains:
source :

organisation :
org—name:
org—type:
address:

abuse—mailbox:
mnt—ref :
mnt—by :

source :

person:
address:

phone:
mnt—by :
nic—hdl:
source :

% Information

route:
descr:
origin:
mnt—by :
mnt—by :
source :

related to ’151.221.0.0 — 151.221.0.255"

151.221.0.0 — 151.221.0.255
SNE-RP1-EVAL-TMP

Tobias Fiebig

NL

ORG-wA159—RIPE

WYBTF-RIPE

WYBT-RIPE

ASSIGNED PI

Temporary assignment

Duration of assignment: 3 weeks

Start date: 20120108
End date: 20120129

RIPE-NCC-END-MVINT'
RIPE-NCC-END-VINT
WYBTF-NMNT
NETSIGN-MNT
WYBTF-MNT
NETSIGN-MNT
WYBT-NMNT
NETSIGN-MNT

RIPE # Filtered

ORG-wA159-RIPE
Tobias Fiebig
other

Natrupper Str. 98
49090 Osnabrueck
GERMANY
abuse@Qwybt . net
WYBT-MNT
WYBT-MNT

RIPE # Filtered

Tobias Fiebig
Natrupper Str. 98
D—49090 Osnabrueck
GERMANY
+495413436597
WYBT-MNT
WYBT-RIPE

RIPE # Filtered

related to ’151.221.0.0/24AS31078°

151.221.0.0/24

SNE-RP1-EVAL-TMP Route via Netsign
AS31078

WYBE-NMNT

NETSIGN-MNT

RIPE # Filtered

% This query was served by the RIPE Database Query Service version

1.50.5 (WHOIS1)

31

©O00 DUk W

0.6 Network: 151.222.0.0/24

whois 151.222.0.0/24

[Querying whois.arin.net|]
[Redirected to whois.ripe.net:43]
[Querying whois.ripe.net|]

[whois.ripe.net]

% This is the RIPE Database query service.
% The objects are in RPSL format.

%

% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db—terms—conditions.pdf

% Note: this output has been filtered .

% To receive output for a database update, use the "—B” flag.

% Information

inetnum :
netname :
descr:
country:
org:
admin—c:
tech—c:
status:
remarks:

mnt—by :
mnt—lower :
mnt—by :
mnt—by :
mnt—routes:
mnt—routes:
mnt—domains :
mnt—domains:
source :

organisation :
org—name:
org—type:
address:

abuse—mailbox:
mnt—ref :
mnt—by :

source :

person:
address:

phone:
mnt—by :
nic—hdl:
source :

% Information

route:
descr:
origin:
mnt—by :
mnt—by :
source :

related to ’151.222.0.0 — 151.222.0.255"

151.222.0.0 — 151.222.0.255
SNE-RP1-EVAL-TMP

Tobias Fiebig

NL

ORG-wA159—RIPE

WYBTF-RIPE

WYBT-RIPE

ASSIGNED PI

Temporary assignment

Duration of assignment: 3 weeks

Start date: 20120108
End date: 20120129

RIPE-NCC-END-MVINT'
RIPE-NCC-END-VINT
WYBTF-NMNT
NETSIGN-MNT
WYBTF-MNT
NETSIGN-MNT
WYBT-NMNT
NETSIGN-MNT

RIPE # Filtered

ORG-wA159-RIPE
Tobias Fiebig
other

Natrupper Str. 98
49090 Osnabrueck
GERMANY
abuse@Qwybt . net
WYBT-MNT
WYBT-MNT

RIPE # Filtered

Tobias Fiebig
Natrupper Str. 98
D—49090 Osnabrueck
GERMANY
+495413436597
WYBT-MNT
WYBT-RIPE

RIPE # Filtered

related to ’151.222.0.0/24AS31078°

151.222.0.0/24

SNE-RP1-EVAL-TMP Route via Netsign
AS31078

WYBE-NMNT

NETSIGN-MNT

RIPE # Filtered

% This query was served by the RIPE Database Query Service version

1.50.5 (WHOIS1)

32

©O00 DUk W

0.7 Network: 151.223.0.0/24

whois 151.223.0.0/24

[Querying whois.arin.net|]
[Redirected to whois.ripe.net:43]
[Querying whois.ripe.net|]

[whois.ripe.net]

% This is the RIPE Database query service.
% The objects are in RPSL format.

%

% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db—terms—conditions.pdf

% Note: this output has been filtered .

% To receive output for a database update, use the "—B” flag.

% Information

inetnum :
netname :
descr:
country:
org:
admin—c:
tech—c:
status:
remarks:

mnt—by :
mnt—lower :
mnt—by :
mnt—by :
mnt—routes:
mnt—routes:
mnt—domains :
mnt—domains:
source :

organisation :
org—name:
org—type:
address:

abuse—mailbox:
mnt—ref :
mnt—by :

source :

person:
address:

phone:
mnt—by :
nic—hdl:
source :

% Information

route:
descr:
origin:
mnt—by :
mnt—by :
source :

related to ’151.223.0.0 — 151.223.0.255"

151.223.0.0 — 151.223.0.255
SNE-RP1-EVAL-TMP

Tobias Fiebig

NL

ORG-wA159—RIPE

WYBTF-RIPE

WYBT-RIPE

ASSIGNED PI

Temporary assignment

Duration of assignment: 3 weeks

Start date: 20120108
End date: 20120129

RIPE-NCC-END-MVINT'
RIPE-NCC-END-VINT
WYBTF-NMNT
NETSIGN-MNT
WYBTF-MNT
NETSIGN-MNT
WYBT-NMNT
NETSIGN-MNT

RIPE # Filtered

ORG-wA159-RIPE
Tobias Fiebig
other

Natrupper Str. 98
49090 Osnabrueck
GERMANY
abuse@Qwybt . net
WYBT-MNT
WYBT-MNT

RIPE # Filtered

Tobias Fiebig
Natrupper Str. 98
D—49090 Osnabrueck
GERMANY
+495413436597
WYBT-MNT
WYBT-RIPE

RIPE # Filtered

related to ’151.223.0.0/24AS31078°

151.223.0.0/24

SNE-RP1-EVAL-TMP Route via Netsign
AS31078

WYBE-NMNT

NETSIGN-MNT

RIPE # Filtered

% This query was served by the RIPE Database Query Service version

1.50.5 (WHOIS2)

33

OO0~ Utk W -

0.8 Network: 195.191.197.0/24

whois

195.191.197.0/24

[Querying whois.ripe.net]
[whois.ripe.net]

% This is

%

% The RIPE Database is

the RIPE Database query
% The objects

service.

are in RPSL format.

subject to Terms and Conditions.

% See http://www.ripe.net/db/support/db—terms—conditions.pdf

% Note: this

% To receive output

% Information

inetnum :
netname:
descr:
remarks:
country:
org:
admin—c:
tech—c:
status:
mnt—by :
mnt—lower :
mnt—by :
mnt—by :
mnt—routes :
mnt—routes:
mnt—domains:
mnt—domains:
source :

organisation :

org—name:
org—type:
address:

abuse—mailbox:

mnt—ref :
mnt—by :
source :

person:
address:

phone:
mnt—by :
nic—hdl:

source :

% Information

route:
descr:
origin:
mnt—by :
mnt—by :
source :

been filtered .
for a database update,

output has

use the 7—B” flag.

related to ’195.191.196.0 — 195.191.197.255"
195.191.196.0 —
WYBT-NET

Tobias Fiebig
WYBENET assigned PI Space
DE

ORG-wA159—-RIPE

WYBT-RIPE

WYBE-RIPE

ASSIGNED PI
RIPE-NCC-END-MNT
RIPE-NCC-END-VINT
WYBT-MNT

NETSIGN-MNT

WYBTEMNT

NETSIGN-MNT

WYBTE-MNT

NETSIGN-MNT

RIPE # Filtered

195.191.197.255

ORG-wA159—-RIPE
Tobias Fiebig
other

Natrupper Str. 98
49090 Osnabrueck
GERMANY
abuse@Qwybt . net
WYBT-MNT
WYBT-MNT

RIPE # Filtered

Tobias Fiebig
Natrupper Str. 98
D—49090 Osnabrueck
GERMANY
+495413436597
WYBT-MNT
WYBE-RIPE
RIPE # Filtered

related to ’195.191.196.0/23AS31078°
195.191.196.0/23

WYBF-NET Route via Netsign
AS31078

NETSIGN-MNT

WYBT-MNT

RIPE # Filtered

% This query was served by the RIPE Database Query Service version 1.50.5 (WHOIS2)

34

