
Reconstructing web pages from browser
cache

E. Schaap
edwin.schaap@os3.nl

I. Hoogendoorn
iwan.hoogendoorn@os3.nl

University of Amsterdam
July 5, 2013

This research examines the possibilities to reconstruct a web page from
normalized browser cache. Where other tools are using pre-processing mecha-
nisms, this research shows that post-processing leads to more complete results
without tampering with the evidence. Apart from studying the way browsers
initially store the caching information and how this data is normalized, it
is also investigated if the information collected is sufficient to reconstruct a
web page. The outcome of the prove of concept using this post-processing ap-
proach leads to the expected results. The value of a reconstruction is outlined
with an analysis on the shortcomings and impact on this process. It will show
that the trustworthiness of such a reconstruction is debatable.

2

Acknowledgements

We would like to express our gratitude to all who supported this project. First of all, we
would like to thank our supervisor, Ruud van Baar MSc. for his support and feedback.
Second, we would like to thank the Netherlands Forensic Institute for providing us the
facilities needed to conduct our research.

3

Contents

Contents

1. Introduction 5
1.1. Browser caching . 5

1.1.1. Browser caching and forensics . 5
1.2. Research Question & Approach . 6

1.2.1. Scope . 6
1.3. Related work . 6

1.3.1. Forensic web browser analysis - existing tools 6
1.4. Research paper outline . 8

2. Theory 8
2.1. Firefox . 8

2.1.1. Cache file structure . 9
2.2. Chrome . 11

2.2.1. Cache file structure . 11
2.3. Safari . 11

2.3.1. Cache file structure . 11
2.4. Firefox, Chrome and Safari web cache comparison 12
2.5. Traces . 12

3. Methods 13
3.1. Pre- or Post-processing . 13
3.2. Proof of Concept design . 15

3.2.1. Technical details . 17

4. Results 18
4.1. Performance of simple websites . 19
4.2. Performance of complex websites . 19

5. Analysis 19
5.1. Dynamic resources . 20
5.2. Runtime dependencies . 21

6. Conclusion 21

7. Further research 22

A. Acronyms and abbreviations 24

4

1 INTRODUCTION

1. Introduction

Very often when a suspect commits a certain crime, good preparation is done for per-
fection reasons and to stay out of the hands of the civil authorities. This preparation is
often done with the use of information that can be found on the Internet. This can also
be the case for people that witnessed certain evidence on the Internet. This data can
be one of many important elements to build a case against a suspect in the conviction
process.

Browser forensics and in particular the web cache aspect, can provide additional in-
formation or proof to build or break a case. Due to the continuous growing amount of
requests to investigate what suspects exactly looked at during their ”criminal research”
the Netherlands Forensic Institute (NFI) has developed a module that is part of their
Traces library that collects web browser cache files from various browser vendors and
normalize this data for easier processing in a later stage. Applications like XML Infor-
mation Retrieval Approach to digital Forensics (XIRAF) [2] and Hansken use the Traces
library to get their inputs from.

1.1. Browser caching

Browser caching is a mechanism where files retrieved from websites that are visited are
stored (temporary) on a specific location on a hard disk. The main purpose of this is
that (parts of) web pages that were visited earlier can be loaded much faster when this
web page is visited again in a later stage. The browser usually compares the data of the
web page that is remotely available on the Internet with the one that is hold locally in
the caching folder. When this web page has not changed, the cache will be used or parts
of the cache and otherwise the web page is downloaded again, displayed and possibly
cached.

When the web browser is closed the web cache remains stored on that specific location
of the hard disk. Different options like the amount of cache that can be stored, the cache
retention or delete the web pages that are cached are available in most browsers.

There are two type of caches available, online and offline caching. The high level
difference is that with offline caching the web page developer determines what elements
of the requested web page are cached by defining these elements in a predefined file, also
called a manifest. With online caching the browser determines what is cached and what
is left out.

1.1.1. Browser caching and forensics

In the field of forensics, the web browser is an important element. A huge number of
criminal and civil cases may depend on the information related to the Internet activity of
a user in order to prove something or to use this as extra evidence in the bigger picture.

By analyzing the history, or browser cache information it can give good insight of
the behavior of a suspect. The information found can provide clues that can lead to
conviction or acquittal of this suspect.

5

1 INTRODUCTION

The browsers that are currently used the most (figure 1) are Google Chrome, Microsoft
Internet Explorer, Mozilla Firefox, and Apple Safari. All these browsers are using their
own method of storing web caching information which makes it harder to analyze this.

1.2. Research Question & Approach

In this research, we state our research problem as follows:

In what ways can one visually reconstruct websites with information retrieved
from normalized browser caches that can be used for computer forensic ex-
aminers to build a case?

More specifically, we focus on the following problems:

• In what way is web browser cache data stored using different web browsers?
• What methods are there to reconstruct websites from web browser cache data?
• How reliable is a webpage that is reconstructed from web browser cache data?

1.2.1. Scope

The project is scoped to research the possibility to reconstruct websites with the use of
web browser caching. A selection will be made of three different browsers.

The NFI currently has a package that they use to retrieve and normalize the caching
data for several browsers, and we will investigate if this done in a proper way, or if we
can contribute to this in what ever way. The reconstruction of the web pages will be
done with the use of the package created by the NFI.

1.3. Related work

Previous research shows that extracting the Uniform Resource Locator (URL)s from
the cache[13] and matching against the cached web files is possible[20]. It is possible
to create a time-line of web resources which have been visited[15]. In some cases this
can be achieved using a handful of proprietary software. Tools like NetAnalysis[19]
and CacheBack[3] are capable of performing simple visual reconstruction but the inner
workings are unknown.

1.3.1. Forensic web browser analysis - existing tools

There are a few software packages available that have the functionality to examine web
cache data. These tools and their capabilities are explained below.

6

1 INTRODUCTION

NirSoft NirSoft provides a collection of small freeware utilities, all of them developed
by Nir Sofer.

• MozillaCacheView [18]
• ChromeCacheView [4]
• SafariCacheView [25]

The utilities only provide a list with the files that can be found in web browser caches
and in some cases it is possible to export single files to the appropriate formats.

Tim Johnson Cache View [27] is a viewer for the Netscape Navigator, Mozilla Firefox,
Opera, and Internet Explorer web caches. This tool also provides a list of the cached
items so the files can be viewed separately or with the Fully Qualified Domain Name
(FQDN) online.

Digital Detective NetAnalysis[19] is software for the extraction and analysis of data
from Internet browsers. It has a host of features to help with forensic examination such
as the ability to import history and cache data from Microsoft Internet Explorer, Mozilla
Firefox, Google Chrome, Apple Safari and Opera browsers. NetAnalysis has the ability
to rebuild web cached pages for offline review. According to the authors of NetAnalysis,
this is the first forensic software designed for this purpose1. It also has the ability to
utilize Structured Query Language (SQL) queries to quickly identify relevant evidence
and a number of other tools to assist in the review and decoding process.

This tool uses the pre-processing method that will be explained in section 3 in order
to reconstruct web pages.

Siquest
• CacheBack v3 [3]
• Internet Examiner v3 [7]

CacheBack v3 is the predecessor of Internet Examiner v3. Internet Examiner also claims
that it is the first forensic product to provide investigators with the ability to rebuild
cached web pages for all five top leading browsers2.

Internet Examiner also uses the pre-processing method 3 that will be explained in
section 3 in order to reconstruct web pages.

Foxton Software
• FoxAnalysis Plus[22]
• ChromeAnalysis Plus[21]

1http://kb.digital-detective.co.uk/display/NetAnalysis1/Home
2http://www.siquest.com/productdetailPage.php?pID=4&mid=253af8zzyy
3http://youtu.be/9lw-C4z2wVg

7

2 THEORY

Both Analysis Plus software packages have the ability to reconstruct web pages from
browser cache data.

Foxton Software also uses the pre-processing method 4 that will be explained in sec-
tion 3 in order to reconstruct web pages.

All of these tools mentioned above are ”closed” tools and don’t provide any details on
how the data is (pre) processed and reconstructed. With the forensic aspect in mind it
is important that we know what happens under the hood.

1.4. Research paper outline

Section 1 [Introduction] provides a general description of web browser caching, the
research question and the scope of this research, followed by Section 2 [Theory] where
we go deeper into the theory of browser caching for Google Chrome, Mozilla’s Firefox
and Apple’s Safari and how this relates to forensics. In Section 3 [Methods] the method
is described how reconstruction from web caching is done and how certain meta data
can be important or less important. Section 4 [Results] will provide and explain the
results from the used methods. Section 5 [Analysis] will provide some analysis about
the outcome and go deeper on the technical (in)compatibilities of the used methods.
This paper will conclude in Section 6 [Conclusion] with an overview of this research
and conclusion based on all previous sections. Section 7 [Further research] will outline
additional research topics that were out of scope for this research paper.

2. Theory

To give a better understanding on how the normalized data is used within this research
it is important to understand where this data comes from. This section will describe
how the different browsers store their data and how it is processed in the normalization
step.

Figure 1 shows that Google Chrome worldwide has gained popularity (the past year)
over other browsers like Microsoft Internet Explorer, Mozilla Firefox and Apple’s Safari.

2.1. Firefox

Mozilla Firefox[8] is an open source and free web browser that is developed for OS X,
Linux and Windows. There are also versions available for mobile operating systems like
Android.

Firefox is developed by the Mozilla Foundation and its subsidiary, the Mozilla Corpo-
ration. It uses the Gecko Layout Engine[6] in order to render the requested web pages
that supports the current web standards.

4http://forensic-software.co.uk/Screenshots/FoxAnalysisReconReport.html

8

2 THEORY

Figure 1: Browser popularity - Worldwide (source: StatCounter).

2.1.1. Cache file structure

Firefox online cache consists of metadata (information about the cache entries itself)
and normal data (the actual cache items).

Firefox cache metadata consists of the following pieces of basic information:

• The complete request string (the unique entry to identify a cached item).
• Time & date of cache item first request.
• Time & date of the last time the cache item was requested.
• Time & date when the cache item will expire.
• The fetch count (the number of times the cache item has been requested).
• The complete server response header to the request.

In order to conduct this research, sample cache data is created
A quick look in the caching folder of Firefox points out that there are three type of

files stored that reassemble the overall caching data. There is a cache map file, three
cache block files and the separate cache data files.

The cache map file (CACHE MAP)5 will be the main file in order to reconstruct
web pages from Firefox Cache data(figure 2). The structure of this map file consist
of a header for the file itself which is followed by allocated space, called buckets, that
contains information about the mapping towards the cached data. The CACHE MAP
file consists of a total of 32 buckets and within each bucket there is room for 256 records
(total of 8192 records).

5http://code.google.com/p/firefox-cache-forensics/wiki/FfFormat

9

2 THEORY

Header

32 buckets

256 records

…
…
…
…

_CACHE_MAP_

_CACHE_001_ _CACHE_002_ _CACHE_003_

C
ac

h
e

(m
et

a)
 d

at
a

Figure 2: Firefox file cache structure.

Each record contains information for one single instance of data that is cached. One
single record consists of four 32-bit integers.

1. A Hash Number.
2. An Eviction Rank.
3. The Data Location.
4. The Metadata Location.

Firefox has two methods how it saves caching data, it either saves the information
inside a Cache Block File or it creates a separate file when the data cannot fit into a
bucket. The hash number is used to name the separate file if the cache data is stored in
that separate file. The eviction rank determines how long cache information is stored and
the data location field will be used to reconstruct the cache data. The data location field
points the actual data located somewhere in the cache. This also applies to metadata.

According to Keith J. Jones and Rohyt Belani [14] the determination whether the
caching data is stored inside a cache block or separate files is by taking the metadata
”location” field and 1) ”bitwise AND” this with 0x30000000, 2) left shift the result 28
bits. When this is done the result will be a number from zero to three. When this is a
zero the cache metadata is saved in a separate file and when this one, two or three this
data is embedded in one of the cache block files.

10

2 THEORY

When caching files are stored in blocks this is done into the files:

• CACHE 001 - used to store small metadata and data entries in 512-byte blocks.
• CACHE 002 - used to store medium-sized metadata and data entries in 1024-

byte blocks.
• CACHE 003 - used to store large metadata and data entries in 4096-byte

blocks.

2.2. Chrome

Chrome[5] is a freeware web browser developed by Google Inc., which uses the Webkit[23]
layout engine.

2.2.1. Cache file structure

Google Chrome uses at least five files to manage the web caches. One is the index file
and a minimum of four data files which are named data n where n is the number of
the file which starts at zero (figure 3). If any of these files are missing or are corrupted
for any reason these files will be recreated. The index file contains a hash table that
is used to locate entries of the cached files. The data files contains information about
Hyper Text Transfer Protocol (HTTP) headers and data about a given request. These
files are also called block files because the file format is optimized to store information
on fixed-size blocks. A block file can store blocks up to 256 bytes of data and the data
can be stored/spanned across one to four of these block.

When the size of the cached data is bigger than 16 KB the web cache data will no
longer be stored inside a standard block file but the data will be stored in a separate file
without special headers and is just the plain data we are saving/caching. The name is
usually f xx where xx is a hexadecimal number that identifies the file.

2.3. Safari

The Safari web browser[24] is developed by Apple and is included as the internet browser
for OS X and iOS operating systems. For Apple’s mobile devices that has iOS as the
operating system Safari is the native browser and it became native for OS X starting at
version 10.3 (Panther).

2.3.1. Cache file structure

Safari versions 3 to 6 uses an SQLite database which is called ”Cache.db”. Versions
prior stores the cache in files with the extensions ”.cache”. The SQLite Manager[17], a
tool to read sqlite databases, showes that the cache.db database exists of three relevant
tables(figure 4).

The cfurl cache response contains metadata about cache records. This includes the
version of the table structure and storage policy. The request key column is used to
contain the URL of the cached item and the time stamp column is used to store the

11

2 THEORY

Header

hash table

…
…
…
…

index

data_0 data_1 data_2

C
ac

h
e

(m
et

a)
 d

at
a

data_3

block files

data_4

Figure 3: Chrome file cache structure.

time (in UTC) of the item that was cached. The records of cfurl cache blob data hold
information related to the HTTP request and response of a web page. This information
consist of HTTP headers. The table cfurl cache receiver data is used to store the cached
item itself (jpgs, gifs, pngs, html etc.) as a Binary Large OBject (BLOB). The entry ID
column is the primary key in these tables which allows relating the data in one table to
data stored in another table.

2.4. Firefox, Chrome and Safari web cache comparison

Now that it is clear how these three browsers store their cache data, it is now possible
to compare them. Table 1 shows the differences in types of data stored.

2.5. Traces

The library of the NFI processes different types of cache data from different browsers.
Section 2.4 shows the different data types of the browsers. Traces normalize this data
into a generic model. This model, a so called CacheEntry, consists of the following data:

• Unique identification.
• URL request string.
• Time/Date (first request).

12

3 METHODS

cfurl_cache_response

PK entry_ID

 version
 hash_value
 storage_policy
 request_key
 time_stamp

cfurl_cache_blob_data

PK,FK1 entry_ID

 response_object
 request_object
 proto_props
 user_info

cfurl_cache_receiver_data

PK,FK1 entry_ID

 receiver_data

Figure 4: Safari Cache.db model.

• Server response body.

3. Methods

In order to be able to generate a visual representation of a website, multiple approaches
are possible. In this section we will evaluate two possible solutions and describe why one
is chosen and how the application is implemented. The starting point is the normalized
data gathered by Traces. This data must be used in some way to visually present it. As
browsers are particularly good at doing this job it is common sense to see if it is possible
to use such a browser or the rendering engine inside it.

Since this application is a Proof of Concept (PoC) for a specific task within XIRAF
and Hansken, there are some constraints in place. First, the system itself is built in
Java and therefore the PoC is also created in Java. Another important factor is the
usability of the system. XIRAF and Hansken are built with the user experience in mind
and tries to minimize the dependencies on the user side. Because of this concept, these
applications are built as online services and can be used with only a browser. This
constraint forces the PoC to also use this kind of user interface and must output web
specific content to a browser on a uncontrolled environment. Everything between the
source data, the normalized cache, and the output can be a custom implementation.

3.1. Pre- or Post-processing

Letting a browser render a webpage means that the browser must access multiple re-
sources like style sheets or images. To make sure these resources originate from the given

13

3 METHODS

Chrome Firefox Safari

Unique identification 3 3 3

Eviction 3 3 7

URL request string 3 3 3

Time/Date (first request) 3 3 3

Time/Date (last request) 7 3 7

Time/Date (expire) 7 3 7

Fetch count 7 3 7

Client request headers 7 7 3

Server response headers 3 3 3

Server response body 3 3 3

Table 1: Firefox, Chrome and Safari web cache comparison table.

cache there are two options to manage this: alter the communication before or after the
browser will processes the data.

Pre-processing The first option is to alter the resources before it is given to the browser.
This is done by finding all referenced resources in the response data and changes these
to the local version which represent the cache. For instance:

http://google.com/logo.png ⇒ http://google.com.local/logo.png

The rewritten domain points to the local version itself. With this method, resources
can be addressed to the application which in turn can deliver the requested resources.
This method has some advantages but also disadvantages which are listed below.

• Advantages:
1. Requires no configuration of the rendering browser.
2. Can even run in the browser of the user enabling interaction.

• Disadvantages:
1. Tampering the evidence.
2. Hard to parse all resource identifiers, especially if JavaScript[12] is used.
3. Non-parsed resource identifiers are circumventing the application.

The advantage of not needing to configure the rendering browser makes is great to
use all kinds of rendering engines, from standalone browsers to embedded engines. The
advantage of an embedded engine is that it can directly be programmed into the appli-
cation, for instance a web view in Java, without external dependencies. By loading the
cached website inside the users own browser, it gives the user direct access to it. The
user is able to not only view the website but also to interact with it. The downside
with this is that the user needs a supported browser and this adds a dependency to the
system itself.

14

3 METHODS

The biggest disadvantage is that the cache data (evidence) is altered. This means that
the parsed data is not in its original state. Another downside can lie in the fact that
suspicious websites may contain malicious code which can cause great risk for the users
system. Parsing of resource identifiers is rather hard and difficult to locate them all.
The majority can be parsed with a relatively small effort, but in order to get all resource
identifiers it takes a lot of effort to manage this and even then it cannot be guaranteed
to parse them all.

Post-processing To process the resource identifiers after the rendering browser has
accessed the webpage, can be done by capturing all requests from the browser and
inspect these in order to retrieve the right cached resource. This can be done by using a
proxy server. A proxy server is a specific server which intercepts the HTTP requests and
forwards them to the corresponding address. Reasons to use such a system can be to
anonymize the origin of the request, speed up access by caching resources, scan content
for malware and many others.

To be able to use a proxy server, it does not need to forward a request to the destination
requested but instead look it up in the cache and serve the resource if it exists. In order
to direct all requests to the proxy the rendering browser must be configured to use the
proxy server which is setup for this purpose.

• Advantages:
1. All resource identifiers are captured by the proxy.

• Disadvantages:
1. Requires proxy configuration of rendering browser.
2. SSL traffic is hard to deal with.

Since all requests are directed to the proxy server, all resource identifiers are cap-
tured and thus can be processed by the application. Even identifiers used by complex
JavaScript are captured with this technique.

This design adds a dependency to the rendering browser which requires an extra
configuration for the proxy server. Because of this, it is not feasible to use the browser
of the user to present this. Because the original domains are still used for the resource
identifiers, the SSL connection cannot be presented with another certificate which enables
the decryption of the content without breaking the certificate-chain.

3.2. Proof of Concept design

The PoC is divided in different components as can be seen in figure 5. As described in
the introduction of this section, the input and output are predefined. The input is the
browser cache provided and the output is the response which can be viewed by the user
in a browser.

The application flow starts with a request from the user, by using a browser, to request
a preview of a specific URL. The frontend of the application processes this request and

15

3 METHODS

Application

Cache
Proxy

Rendering
browser

User's
Browser

Frontend

Traces

Figure 5: Application design.

needs the cache to see if the requested URL exists in the cache data. The cache data
itself must be processed by Traces to be normalized in order to treat different caches the
same. After a cache entry is found, the application creates a local proxy server which
is coupled to the cache. The application then starts a rendering browser which uses the
proxy server to load the resources. After the browser has loaded all resources it provides
the application with a screenshot of the web page. The application itself passes this
screenshot to the user who can now view how the web page looks based on the available
cache data. This is the basic flow of viewing a cached entry. Figure 6 shows the flow
from the requested cached entry till the screenshot is taken.

Frontend The frontend is the part which handles the HTTP communication with the
user’s browser. It receives a request, processes it and returns the response. It is a
centralized component in the application design and has a connection with most of the
other components.

Cache This component represents the original cache data which is retrieved from a
target object like a pc or mobile phone. This is the input for Traces.

Traces Traces is the NFI library (section 1) which provides digital traces based on
browser cache data. It converts the original cache data into normalized objects which
can be used by the frontend or proxy server.

Proxy The proxy server itself is a short-lived entity within the system. It only lives
as long as needed to let the browser load all resources and generate a screenshot. In

16

3 METHODS

principle it works by creating a proxy server object which lives in a separate thread. This
proxy server is given the specific cache in which the requested URL is located. After
initializing a socket it listens on a specific port for requests. When it receives a request
it spawns another thread to handle this request. The new thread processes the contents
and retrieves the URL requested. If it has found a URL within the request it will search
the given cache to see if a match exists. After a match is found, it retrieves the associated
content. This content is then used as a response to the requests after which it closes
the communication channel and the thread is ended. When the screenshot is taken, the
proxy server is no longer needed. The application will shut down the proxy server and
the socket is closed.

Rendering browser A screenshot from a website is taken with a rendering browser.
In this case the Firefox browser will perform this task. The browser is controlled by
the Selenium WebDriver[28] which is a collection of language specific bindings to drive
a browser. To be more precise, the Java version for these bindings is used by the
application. The application creates a new WebDriver object by defining capabilities
such as proxy settings which point to the special created proxy server. It then launches
the browser with a temporal profile and point it to the requested URL. The browser
then performs a request for the specified URL to the proxy server and gets the associated
content returned. Because the browser can use this content to display a website, it is
able to retrieve all related resources from this single response. Since most websites are
using more than just text, it will probably perform more requests to the proxy server
for resources like images, style sheets, JavaScript, etc. All these requests are handled
by the proxy server and are matched against the internet cache in order to return the
corresponding content. After all the resources are loaded, the browser is ready to take a
screenshot. The application invokes this order and gets a screenshot from the WebDriver
object. At this moment, the browser has done its job and is closed. The screenshot itself
is then ready to be presented to the user.

3.2.1. Technical details

The components itself are a combination of existing closed and open source packages as
well as custom code to combine all together and implementing the workflow. The NFI
packages are closed source. The browser control components are based on the Selenium
framework[26], which has adapters in many different programming languages including
Java. For the rendering browser Firefox is chosen because of its maturity, stability and
it is cross-platform.

The proxy is a custom written component created for the purpose of this research. It is
written in Java[11] and supports multithreading so the application itself is not blocked
while running a proxy. It uses the provided browser cache directly as source to feed
incoming requests.

The application itself is built on the Play Framework[10] which is a web application
framework written in Scala[1] and Java. It follows the Model-View-Controller (MVC)

17

4 RESULTS

Request preview

Check if cache entry
exist

Start rendering
browser

Load resource from
proxy

Setup proxy

Repeat until all
resources are
loaded

Take screenshot

Figure 6: Application flow starting with a request for a cached entry till the screenshot
is taken.

pattern[16] and both Scala and Java can be used as application language. The applica-
tion acts as a container which ties all components together.

4. Results

To be able to determine if the application design works as expected some tests are
performed. This is done by selecting a set of websites and creating a cache for this set.
The websites selected are ranging from very basic to complex with a lot of elements.
The websites and their description can be found in table 2. These websites are visited
for different browsers. After creating a cache, it is fed to the application which processes
it according to the description in section 3.

Website Description Complexity

blackle.com Search engine Simple, few images

google.com Search engine Medium, few image, advanced JavaScript

blog.i-1.nl Weblog Medium, high amount of static resources

tweakers.net News website High, high amount of resources

nu.nl News website High, high amount of resources, ads and JavaScript

Table 2: Websites used for testing the application performance.

At the same time the cache is created, there were also screenshots taken from these
websites. This is done so it is possible to reference back to the original presentation of
the webpage.

18

5 ANALYSIS

4.1. Performance of simple websites

The search engines and weblog websites are rather simple. When testing these, the
websites got rendered without any errors and all resources requested were found in the
cache. Comparing the reference screenshot for the Google website with the output of
the application shows that little differences could be found (figure 7). Because of the
nature of these webpages, simple resources are used like images and Cascading Style
Sheets (CSS) files. JavaScript is used to load some resources like these. Comparing this
result to the output of a tool as NetAnalysis, this is also added to figure 7 and it clearly
shows that NetAnalysis does not manage to handle all resources. It misses the website
logo and the position of elements is incorrect.

Figure 7: Comparison between the original website (left), the output of the Proof of
Concept (center) and the output of NetAnalysis (right).

4.2. Performance of complex websites

More complex websites often contain more advanced resources. This can be observed
when the output of the nu.nl news website is compared with the reference screenshots
(figure 8. We can directly see that most of the advertisements are not shown when the
cache is used to preview the website. The data types of these advertisements are often
based on Adobe Flash[9] or complex and dynamic JavaScript.

To compare the how complete this result is, the output of NetAnalysis is also add in
figure 8. It clearly shows that this tool misses a lot of resources which are not included
in the reconstructed web page. Notice that some of the headlines do not match between
the left picture and the middle and right pictures. This is due to the fact the website is
a highly dynamic page and new headlines appeared in the time the reference screenshot
was taken and the sample data was created.

5. Analysis

Now that the mechanism used in this report is proven to be working, it is important
to analyze the value of the outcome as described in section 4. To do this, this section
will explain two aspects of the cache data and the preview generated from it and the
reliability.

19

5 ANALYSIS

Figure 8: Comparison between the original website (left), the output of the Proof of
Concept (center) and the output of NetAnalysis (right).

5.1. Dynamic resources

Dynamic resources have the property that they can change over time or based on other
data like geolocation, session and other properties. As an example an advertisement
banner can be taken. This banner can have different content every time a web page is
displayed. If such a banner is implemented in a language which is depended on plugin
software like Adobe Flash, they are not always using the browser cache. As figure 8 in
section 4 shows, the advertisement does not exist in the cache data and therefore cannot
be retrieved.

Another possible situation which can occur is when a certain image is stored in cache,
but that this image is changed after a specified time. The reliability of the preview
degrades as the following scenario will show:

1. Browser S displays website W1 on time A.
2. Website W1 contains resource R.
3. Browser S displays website W2 on time B.
4. Website W2 contains resource R, but the content of R has changed.

The above scenario can be visualized as depicted in figure 9 This scenario can represent
two different web pages which use the same advertisement image which changes every
time it is loaded. Because the browser determines which items are cached and which are
not two things can happen in this scenario. The browser may decide to overwrite R with
the new version. As a result the previous version of R is removed. When rebuilding W1
and W2, the preview will show both web pages with the same resource R. This means
that the preview W1 is not reliable since it browser S originally showed W1 with the old
version of R.

The other case is that the browser may decide not to retrieve R from the Internet but
instead load it from the cache. This leads to the cache record of R not being updated

20

6 CONCLUSION

A B
time

W1

W2

R

re
so
u
rc
es

Figure 9: A scenario of two websites using the same resource.

and remain available. When rebuilding W1 and W2, they will both use the same old
version of R in the rendered preview. Since browser S used the old version of R for W2,
this is not a problem as it represents the web page as it was displayed at time B.

5.2. Runtime dependencies

Information that is displayed on a website can be dynamic. This is often handled by
JavaScript code. The information can be dependent on properties that are available
during the rendering of the page. Some properties that can be used are time, screen size
or random values. These properties are dependent on the moment the preview is created
or the machine used. The next scenario shows how time can be a runtime dependency.

1. Browser S visits website W.
2. Website W contains a dynamic time T.
3. Time T is taken from the local system time.

When the dynamic time T is displayed on the web page, this means that this can
be different (after the web cache reconstruction) then the time that browser S actually
displayed on the website W. The website shown in figure 8 contains such a dynamic
element. Just to the right of the logo, a JavaScript code displays the date and time
based on the local system time.

6. Conclusion

This research project aimed in providing better understanding of web page reconstruction
based on browser cache. Different browsers maintain their cache data in different ways.
Although browsers differ in the level in which data types are stored, normalized data
contains the same elements which represent the cache data (section 2). Apart from
showing that it is possible to use this data to reconstruct a web page, the value of such
a reconstruction is also evaluated.

This research paper shows that there are two ways to reconstruct a web page: pre- and
post-processing (section 3). Although there are some tools which are able to reconstruct

21

7 FURTHER RESEARCH

web pages from cache, none of these use the post-processing mechanism. By creating
a PoC it is shown that the post-processing mechanism also works. Comparing the
results (section 4) between this research and existing tools shows that the post-processing
mechanism handles every resource request whereas pre-processing manages this only
partly.

To give better understanding about the reconstructed website, an analysis (section 5)
shows that the outcome of the reconstruction process may not fully reflect the original
presentation. Understanding of the resources which are used within this process is
therefore important.

With regards to the constraints of Traces which is responsible of normalization of the
cache data, it is possible to create a application design that supports the reconstruction
of websites from browser cache data. The PoC demonstrates the viability of this process.
The proposed design can be incorporated into existing forensic application frameworks
to facilitate this feature to the end user.

7. Further research

Due to the wide scope of browser cache forensics, further research can be done on different
aspects to improve usability.

Normalization of browser caches This research paper uses the normalized data that is
produced by Traces. The web browser cache data is extracted and normalized in a specific
way and only certain parts are collected from the raw cache data. Further research can
be done on investigating the way how this data can be enriched with additional types
of data like the ones described in section 2.

Devices types With the continuous growth of the usage of smart phones and tablets
another field of research opens itself up for mobile web browsers. Since this research
paper only focuses on traditional desktop computer and thus desktop browsers, pre-
views are also based on this. Further research may look into the possibilities how page
reconstruction can be improved to reflect the way web pages are displayed in mobile
browsers.

Dynamic elements As pointed out in section 5 certain parts of web pages can be
dynamic that can lead to arguments if a web page that is reconstructed from cache
data is really presented exactly the same way as the browser displayed it. The behavior
of these dynamic elements regarding to browser caching can provide additional insight
in the web page reconstruction process. Additional research on recreating the original
environment may improve the reliability of the outcome. One can think of using the
original browser environment or change system time when rendering a web page.

22

References

References

[1] Scala a general purpose programming language. http://www.scala-lang.org/.

[2] R.A.F. Bhoedjang, A.R. van Ballegooij, H.M.A. van Beek, J.C. van Schie, F.W.
Dillema, R.B. van Baar, F.A. Ouwendijk, and M. Streppel. Engineering an online
computer forensic service. Digital Investigation, 9(2):96 – 108, 2012.

[3] CacheBack. version 3.7.25. http://www.siquest.com/productdetailPage.php?

pID=1&mid=2e207d7e57, 2012.

[4] ChomreCacheView. version 1.46. http://www.nirsoft.net/utils/chrome_

cache_view.html, 2012.

[5] Chrome. version 27.0.1453.116. http://google.com/chrome, 2013.

[6] Gecko Layout Engine. https://developer.mozilla.org/en-US/docs/Mozilla/

Gecko.

[7] Internet Examiner. version 3.9.0. http://www.siquest.com/productdetailPage.
php?pID=4&mid=253af8zzyy, 2013.

[8] Firefox. version 21. http://mozilla.org/firefox/, 2013.

[9] Adobe Flash. http://adobe.com/flash.

[10] Play Framework. http://www.playframework.com/.

[11] Java. http://java.com.

[12] an interpreted computer programming language JavaScript.

[13] Keith J Jones. Forensic analysis of internet explorer activity files, 2003.

[14] Keith J. Jones and Rohyt Belani. Web browser forensics. http://www.symantec.

com/connect/articles/web-browser-forensics-part-2, 2005.

[15] Michael D Kelly and Sean J Geoghegan. First forensic internet replay sequencing
tool. In Network Computing and Applications, 2009. NCA 2009. Eighth IEEE
International Symposium on, pages 270–273. IEEE, 2009.

[16] A. Leff and J.T. Rayfield. Web-application development using the
model/view/controller design pattern. In Enterprise Distributed Object Comput-
ing Conference, 2001. EDOC ’01. Proceedings. Fifth IEEE International, pages
118–127, 2001.

[17] SQLite Manager. https://code.google.com/p/sqlite-manager/.

[18] MozillaCacheView. version 1.57. http://www.nirsoft.net/utils/mozilla_

cache_viewer.html, 2012.

23

A ACRONYMS AND ABBREVIATIONS

[19] NetAnalysis. version 1.56. http://www.digital-detective.co.uk/netanalysis.
asp, 2013.

[20] Junghoon Oh, Seungbong Lee, and Sangjin Lee. Advanced evidence collection and
analysis of web browser activity. digital investigation, 8:S62–S70, 2011.

[21] ChromeAnalysis Plus. version 1.2.0. http://forensic-software.co.uk/

ChromeAnalysis.aspx, 2013.

[22] FoxAnalysis Plus. version 1.2.1. http://forensic-software.co.uk/

foxanalysis.aspx, 2013.

[23] WebKit Open Source Project. http://www.webkit.org/.

[24] Safari. version 6.0.5. http://apple.com/safari, 2013.

[25] SafariCacheView. version 1.11. http://www.nirsoft.net/utils/safari_cache_

view.html, 2012.

[26] Selenium. version 2.0.0. http://docs.seleniumhq.org/, 2013.

[27] Cache View. version 1.11. http://www.progsoc.org/~timj/cv/, 2005.

[28] Selenium WebDriver. version 2.33. http://docs.seleniumhq.org/, 2013.

A. Acronyms and abbreviations

BLOB Binary Large OBject
CSS Cascading Style Sheets
FQDN Fully Qualified Domain Name
HTTP Hyper Text Transfer Protocol
MVC Model-View-Controller
NFI Netherlands Forensic Institute
PoC Proof of Concept
SQL Structured Query Language
URL Uniform Resource Locator
XIRAF XML Information Retrieval Approach to digital Forensics

24

