
Research Project 2

OpenFlow network virtualization
with FlowVisor

Author:
Sebastian Dabkiewicz
Sebastian.Dabkiewicz@os3.nl

Supervisors:
Ronald van der Pol

rvdp@sara.nl

Gerben van Malenstein
Gerben.vanMalenstein@SURFnet.nl

February 6, 2013

Abstract

OpenFlow networks became popular in the past years for researchers
and commercial companies. OpenFlow essentially separates the control
and data plane of a switch. The control plane is moved to an external
controller. Network researchers have wanted to virtualize networks for a
long time. Therefore FlowVisor is developed. With FlowVisor, multiple
isolated logical networks (slices) can share the same network topology and
hardware. FlowVisor is placed between the OpenFlow switch and mul-
tiple OpenFlow controllers and acts as transparent proxy between them.
Based on incoming switch traffic FlowVisor determines which OpenFlow
controller is responsible and is able to create forwarding entries for that
traffic. The purpose of this research was to identify the possibilities of
network virtualization of OpenFlow networks using FlowVisor. The main
research question of this project was: Is the current FlowVisor implemen-
tation version 0.8.5 suitable to create stable virtual networks in production
environments?

The research question was answered by conducting several experiments
that cover real life usage of FlowVisor. During these experiments the
behaviour and working of FlowVisor was observed.

The results of the experiments show that the behaviour of FlowVisor
is in most cases as expected when having simple setups. Creating more
advanced setups with wildcarding (using fields that are not defined) results
in situations where traffic is allowed regardless of the network slice to
which it belongs. This may be caused by bugs in FlowVisor or not yet
implemented features.

Based on the results of the experiments the author recommends that
Flowvisor in the current state of development (version 0.8.5) is not suit-
able to run in a production environment. If one really wants to deploy
FlowVisor, it is recommended to test it extensively before deploying it in
the network.

I

Acknowledgements

I would like to thank my supervisors Ronald van der Pol
and Gerben van Malenstein for their help, input and support
during this research project.

I also want to thank Michiel Appelman, Jeffrey Bosma,
Maikel de Boer and Joris Soeurt reviewing and proofreading
the report.

II

Contents

1 Introduction 1
1.1 Research Question . 1
1.2 Approach . 2

2 OpenFlow 4
2.1 Flow entries . 4
2.2 OpenFlow Controller . 6

3 Virtualisation with FlowVisor 8

4 Experiments 10
4.1 Experiment 1: Switch-port based slice membership 12
4.2 Experiment 2: VLAN based slice membership 15
4.3 Experiment 3: Application-port based slice membership 18
4.4 Experiment 4: MAC-address based slice membership 20
4.5 Experiment 5: Switch events . 22
4.6 Experiment 6: MAC-address and application port based slice

membership . 25
4.7 Experiment 7: Slices based on layer 2, 3 and 4 fields 27

5 Summary of results 31

6 Conclusion 33

7 Future Research 35

A List of Acronyms 36

B Configurations 37
B.1 Default Configuration . 37
B.2 Configuration of experiment 1 . 38
B.3 Configuration of experiment 2 . 39
B.4 Configuration of experiment 3 . 40
B.5 Configuration of experiment 4 . 42
B.6 Configuration of experiment 5 . 43
B.7 Configuration of experiment 6 . 44
B.8 Configuration of experiment 7 . 45

References 47

III

List of Tables

1 Possible OpenFlow actions . 5
2 Possible Slice actions . 8
3 Network Slices of experiment 1 12
4 Created Flows for experiment 1 12
5 Network Slices for experiment 2 16
6 Created Flows for experiment 2 16
7 Created Flows for experiment 3 19
8 Network Slices for experiment 4 20
9 Created Flows for experiment 4 20
10 Created Flows for experiment 5 23
11 Network Slices for experiment 6 25
12 Created Flows for experiment 6 25
13 Created Flows for experiment 7 27

List of Figures

1 Difference between a traditional and an OpenFlow switch 4
2 OpenFlow packet matching . 6
3 A Screenshot of the Floodlight web interface 7
4 The working of Flowvisor in proactive mode 9
5 Logical setup of the used OpenFlow topology 10
6 Setup of experiment 1: Switch-port based slice membership . . . 13
7 Setup of experiment 2: VLAN based slices 15
8 Traffic of VLAN 60 between VM01 and the laptop 16
9 Setup of experiment 3: Application-port based membership . . . 18
10 Get page from server and show contents 19
11 Connection to port 8080 is possible but not to port 3306 20
12 Setup of experiment 5: Switch events 22
13 OpenFlow protocol port change packet on the wire 24

IV

1 Introduction

Networks have become business critical infrastructure to many companies to
date. Doing experiments in these networks is not possible, because they can
disturb or bring down the network. Since testing new features inside a testbed
is not always possible and realistic, other techniques have been developed. One
of them is Software Defined Networking (SDN) [1].

SDN is a form of network virtualization where the control plane is separated
from the data plane and moved to an external software controller. OpenFlow [2]
is the most used SDN solution.

OpenFlow is the protocol between the data plane inside the switch and
the control plane in an external controller. Usually an OpenFlow controller is
connected to multiple switches and has thus a centralised view of the network.

Worldwide there are several organisations and groups of organisations that
are running OpenFlow (test-)networks, like: Google [3], NDDI [4], GENI [5],
JGN-X [6] and Ofelia [7].

Researchers at Stanford University started a project called FlowVisor [8]
a few years ago. FlowVisor is a piece of software that is placed between an
OpenFlow switch and multiple OpenFlow controllers. By defining rules inside
FlowVisor multiple isolated logical networks, called Slices, can be created that
share the same network equipment. Each slice is controlled by a separate Open-
Flow controller.

FlowVisor is actively developed at the moment, but not many papers are
published yet. Papers that are available [9] [10], describe that FlowVisor can
be used to create several network Slices to be able to separate production and
test networks.

SARA [11] and SURFnet [12] are interested in this kind of network virtu-
alization. SARA is currently running an OpenFlow testbed in the Lighthouse
at SARA [13]. SURFnet is planning to build a OpenFlow network in the next
few months, where connected organisations can get hands-on experience with
the OpenFlow protocol. SURFnet wants to offer its connected institutions their
own independent network slices. FlowVisor can provide a solution for creat-
ing slices on equipment by multiple parties. Therefore this research project is
started to investigate the possibilities that FlowVisor offers and if they can be
used in production.

In the next two chapters of this report a general introduction to OpenFlow
and FlowVisor is presented. Chapter 4 describes the different conducted ex-
periments as well the results. The results of the experiments, and how they
relate to the research questions, will be discussed in chapter 5. Based on these
results a conclusion is given in chapter 6. Finally in chapter 7 there are some
recommendations for future research that can be done on this topic.

1.1 Research Question

FlowVisor is running in the production network of Stanford University for some
years, but it should still be considered as a research project. Therefore FlowVi-
sor should be well tested before deploying it in a production environment [8].

During this research project I want to examine how FlowVisor works in dif-
ferent kind of setups, to see if it is suitable to run FlowVisor in a production
network.

1

This leads me to the following research question and sub-questions for this
research project.

Is the current FlowVisor implementation version 0.8.5 suitable to create sta-
ble virtual networks in production environments?

- How stable is an FlowVisor environment?

- Is FlowVisor user friendly?

- In which way are the switch resources separated?

- How are switch events handled?

- Which kind of bugs are known and still present?

Answering some of these questions, like how user friendly is FlowVisor, is
not easy and may depend on the user who is using FlowVisor. Other questions
like ”How are switch events handled?” or ”In which way are the switch resources
separated?” can be found out just by doing some experiments and analyse the
results and the log-files.

1.2 Approach

To answer my research questions I conduct some experiments. The first six
experiments are built towards some real life situations, while the 7th experiment
is conducted to see how FlowVisor behaves in some advanced setups where
wildcards are used.

In the following list of experiments a short description of each experiment is
given as well which research question it tries to answer. Some research questions
won’t be answered by an experiment but they can be answered based on the
user experience during the research.

List of experiments:

• Experiment 1: For this experiment two network slices were setup, the
controller of slice 2 will try to push a flow entry inside slice 1 which should
no be possible. With this experiment I want to answer the question how
switch resources are separated.

• Experiment 2: This experiment uses Virtual Local Area Network (VLAN)s
to share a single port on the switch. With this experiment I want to answer
the question how switch resources are separated.

• Experiment 3: For this experiment some slices will be set up based on
application port. Traffic will flow through the network based on the source
or destination application port. With this experiment I want to answer
the question how switch resources are separated.

• Experiment 4: This experiment is used to create a setup where a nor-
mal switch is simulated. So the flow entries are based on destination
Media Access Control address (MAC-address). Furthermore a flow entry

2

is added to handle Address Resolution Protocol (ARP) traffic to translate
IP-addresses into a MAC-address. With this experiment I want to answer
the question how switch resources are separated.

• Experiment 5: For this experiment switch events will be triggered by
pulling out a cable from the switch and putting it back again. With this
experiment I want to answer the question how switch events are handled.

• Experiment 6: This experiment is a combination of previous experi-
ments, some traffic streams will be created based on application port,
while some monitoring is done with a monitoring slice. With this experi-
ment I want to answer how switch resources are separated and how switch
events are handled.

• Experiment 7: This experiment is conducted to create several slices
based on some layer 2, 3 or 4 field. Flow entries will be configured on
the OpenFlow controllers using wildcarded fields. With this experiment I
want to answer the question how switch resources are separated.

To be able to conduct the experiments I had to become familiar with the
OpenFlow protocol, for which I followed an OpenFlow tutorial [14]. Thereafter
some tests were done with a Pronto 3290 switch [15] and installed Open vSwitch
software [16]. Open vSwitch has a built-in OpenFlow controller which was used
to create simple rules.

In a later stadium several external Floodlight OpenFlow controllers were
added as well the FlowVisor controller between the OpenFlow switch and the
controllers that makes the experimental setup complete.

3

2 OpenFlow

In the last years a new protocol is developed named OpenFlow [2]. OpenFlow
is the protocol between the data plane inside the OpenFlow capable switch
and the control plane at the external controller. On this controller the flows
are configured which will be stored in the OpenFlow switch. One OpenFlow
controller can be used to control several OpenFlow switches.

The connection between the OpenFlow switch and the OpenFlow controller
can be set up using Transmission Control Protocol (TCP), Secure Sockets Layer
(SSL) and Transport Layer Security (TLS). SSL and TLS should be preferred
for security reasons. However for research purposes a TCP connection is fine,
to be able to intercept and analyse the OpenFlow packets on the wire.

Figure 1 shows a comparison between a traditional switch and an OpenFlow
switch.

Figure 1: Difference between a traditional and an OpenFlow switch

The actual OpenFlow version is 1.0 [17], which was used during the research
project, this version supports only Internet Protocol version 4 (IPv4). Open-
Flow Version 1.2 [18], also supports Internet Protocol version 6 (IPv6), but a
controller or switch supporting OpenFlow 1.2 is not yet available.

2.1 Flow entries

Flow entries are rules that are stored inside the OpenFlow switch and make the
forwarding decision. Flow entries are not limited to layer 2 as in a traditional
switch but can be based on a subset of the following fields:

- Ingress port

4

- Ethernet source/destination address

- Ethernet type

- VLAN ID

- VLAN priority

- IPv4 source/destination address

- IPv4 protocol number

- IPv4 type of service

- TCP/UDP source/destination port

- ICMP type/code

Fields that are not set will be wildcarded, which means that every value will
match. Based on a match of one of these fields an action will be taken. This
can be a very simple action by just sending the packet to an output port, or
very complex by changing fields of the packet like the source MAC-address for
example. A list of possible actions can be found in Table 1. A switch must
support the actions that are marked as required, the other actions are optional.
When a switch connects to an OpenFlow controller the switch reports which
actions are supported.

Table 1: Possible OpenFlow actions

Action Required Optional
Forward All Normal

Controller Flood
Local
Table
IN PORT

Modify Field Set VLAN ID (or add VLAN tag)
Set VLAN priority
Strip VLAN header
Modify Ethernet src/dst address
Modify IPv4 src/dst address
Modify IPv4 type of service bits
Modify TCP/UDP src/dst port

Drop X
Enqueue X

When a packet arrives at the switch, it will be matched against the flow
entries that are stored inside the switch table. If there is a match an action is
applied. When there is no match the packet is sent to the OpenFlow controller.
If there is a flow entry for this packet inside the OpenFlow controller the match
is stored inside the switch and the action is applied. Otherwise the packet will
be dropped. A flowchart of this process can be found in Figure 2.

5

Figure 2: OpenFlow packet matching

2.2 OpenFlow Controller

An OpenFlow switch is controlled by an OpenFlow controller. This controller
is a piece of software that pushes the flow entries to the OpenFlow switch.

There are a number of OpenFlow controllers available like:

- Beacon [19]

- Floodlight [20]

- Maestro [21]

- NOX / POX [22]

- Trema [23]

Floodlight is the OpenFlow controller which is used currently at SARA, so
this controller will be used during this research project. Floodlight is a Java
based open source controller with an Apache license. SARA uses Floodlight
because it is actively developed at the moment and it has a big user base and a
very active mailing list.

Floodlight is able to add flow entries proactive as well reactive into the
switch. Proactive means that the flow entry is inserted to the switch before
traffic arrives on the switch. So directly after configuring the flow entry on the
OpenFlow controller the entry is sent and stored in the switch.

Reactive means that when a packet arrives at the switch, the packet is sent to
the OpenFlow controller. On the OpenFlow controller the forwarding decision
is made and the packet is sent back to the switch. The forwarding entry is then
stored in the flow table of the switch.

6

Flows are added to the controller using an REpresentational State Transfer
(REST) Application Programming Interface (API) named Static Flow Pusher
[24]. This is a JavaScript Object Notation (JSON) interface to configure Flood-
light. At the moment a more extended version of this API is in development
and will be released soon [25].

Floodlight also offers a web-interface that gives information about the switches
and the attached devices. However, no configuration can be done using the web
interface. A screenshot of the Floodlight web interface can be found in Figure 3.
It shows the dashboard with information about the controller, the connected
switch as well the attached devices.

Figure 3: A Screenshot of the Floodlight web interface

Each OpenFlow device is identified by its Datapath Identifier (DPID). Each
DPID is 8 bytes long and can be specified as a decimal number or as 8 hex
octets, e.g., 00:00:00:23:10:35:ce:a5. The DPID ff:ff:ff:ff:ff:ff:ff is
a ”wildcard” DPID that matches all DPIDs inside an OpenFlow network.

7

3 Virtualisation with FlowVisor

A network consisting of switches capable to run OpenFlow can be separated
into different independent networks using FlowVisor [8]. FlowVisor will be
placed between the OpenFlow switch and the OpenFlow controller and act as a
transparent proxy between them. The switch as well the OpenFlow controller
are not aware that FlowVisor is in between them.

With FlowVisor separate networks can be created by defining different net-
work slices. Each slice is connected to its own OpenFlow controller. In fact a
slice is a reference to such an OpenFlow controller.

By defining FlowSpaces traffic can be classified and attached to a slice. A
FlowSpace is created based on DPID, a match on incoming traffic like a regular
OpenFlow match, a priority as well a slice action.

Fields can belong to multiple FlowSpaces, i.e. a FlowSpace based on in port

1 can belong to slice 1, while the FlowSpace with in port 1 and source IP-
address 192.168.1.1 belongs to slice 2.

Flowspaces are given a priority in the range from 0-231 and the highest
priority will match. So referring to the example above, the FlowSpace with
in port 1 and 192.168.1.1 should get a higher priority than the other.

The sliceaction determines to which slice the FlowSpace belongs and what
rights the slice has. Possible values are DELEGATE, READ and WRITE, a
short description can be found in Table 2.

Table 2: Possible Slice actions
Action value description
DELEGATE 1 delegate control to another slice.
READ 2 read the packet in matches for the flow entry.
WRITE 4 Same as read and ability to write to flow table.

Each slice has its own view on its part of the network topology. Doing
experiments inside one slice should not affect the proper working of other net-
work slices. So in theory experiments can be done safely inside the production
network.

Depending on the mode in which the OpenFlow controller is running the
traffic is handled different by FlowVisor.

In reactive mode the incoming traffic from the switch to the OpenFlow
controller will be intercepted by FlowVisor and depending on the configured
FlowSpaces, the traffic is sent to the designated OpenFlow controller. The
OpenFlow controller then makes the forwarding decision and sends a forwarding
entry to the switch. On the way to the switch FlowVisor will check if the
forwarding entry of the OpenFlow controller is allowed and send it to the switch.

In proactive mode FlowVisor checks if the flow entries that the OpenFlow
controller want to push to the OpenFlow switch match the configured FlowS-
pace. In this case, the flow entry will be forwarded and stored inside the Open-
Flow switch and if not the entry is discarded as can be seen in Figure 4.

Configuring FlowVisor is done using the FlowVisor configuration tool fvctl.
This tool sends the commands to an Extensible Markup Language - Remote
Procedure Call (XML-RPC) running on port 8080. There are plans to replace
the XML-RPC with a JSON interface.

8

Figure 4: The working of Flowvisor in proactive mode

During this research project version 0.8.5 of FlowVisor was the latest sta-
ble version of FlowVisor and was used to conduct the experiments. However,
after conducting the experiments and while writing the report version 0.8.6 of
FlowVisor was released [26].

9

4 Experiments

The experiments during this research are conducted with a basic OpenFlow
topology. It consist of one Pronto 3290 switch [15], some Floodlight Open-
Flow Controllers, one FlowVisor controller and several virtual machines running
Ubuntu 12.04 LTS [27].

By using different setups, several situations were created to test the working
and behaviour of FlowVisor.

The equipment was placed in the Lighthouse [28], a research lab located at
SARA.

The logical topology of the experiments is shown in Figure: 5. Note that this is
a sample topology, in some experiments more OpenFlow controllers were used,
and in other experiments a laptop was attached to the switch instead of a server.

Figure 5: Logical setup of the used OpenFlow topology

Each slice is connected to one Floodlight OpenFlow controller. Because most
of the controllers are used in every experiment they stay the same.

At the begin of the experiments all slices were created. Which are slice1,
slice2, slice3 and slice4. The default configuration of FlowVisor and the

10

Floodlight OpenFlow controllers can be found in appendix B.1. The configura-
tions of each individual experiment can be also found in the appendix.

11

4.1 Experiment 1: Switch-port based slice membership

This experiment is conducted to see and verify that a slice can only control
attributes of its own FlowSpace. This shows in which way the switch resources
are separated, when talking about separation of the switch hardware into several
virtual OpenFlow networks. This is done by FlowSpaces based on switch port.

4.1.1 Slices

Slices slice1 and slice2 are used, each slice consists of two ports with attached
a Virtual Machine (VM) to each port. The slice configuration can be found in
Table 3.

Table 3: Network Slices of experiment 1

Slice Ports
slice1 1 and 2
slice2 3 and 4

Since FlowVisor is a transparent proxy between the OpenFlow switch and
the OpenFlow controller it should not be possible for an OpenFlow controller to
apply rules for ports which do not belong to the slice. The OpenFlow controller
of slice2 should not be able to insert a flow entry for a port in slice1. However
the OpenFlow controller of slice2 should be able to create a flow entry for its
own port. The setup of this experiment can be found in Figure: 6.

4.1.2 Flow entries

During this experiment the OpenFlow controller floodlight 1 was configured
to create a flow for its part of the network (Rule #1). OpenFlow controller
floodlight 2 was configured with a rule that matches the configuration of his
slice (Rule #2) as wel a rule that does not match the FlowVisor configuration
(Rule #3) as described in Table 4.

Table 4: Created Flows for experiment 1

Rule # Controller Flow
1 Floodlight1 in port 1 out port 2
2 Floodlight2 in port 3 out port 4
3 Floodlight2 in port 2 out port 4

4.1.3 Result

Configuring the flow entries on the Floodlight controller yielded the following
flow table inside the OpenFlow switch:

root@XorPlus#ovs-ofctl dump-flows br0

in port=1 actions=output:2

in port=3 actions=output:4

12

Figure 6: Setup of experiment 1: Switch-port based slice membership

As seen rule #1 and rule #2 are inserted correctly to the flow table according
to the configured FlowSpaces, only rule #3 is missing.

But actually no error message was seen while configuring the flow entries.
The floodlight2 controller showed for both rules a entry pushed message, which
means that the entry is stored in the database of the OpenFlow controller. After
looking into the log-file of floodlight one can see the FlowVisor has blocked rule
#3.

10:15:53.208 [New I/O server worker #1-1] ERROR n.f.core.internal.

Controller - Error OFPET FLOW MOD FAILED OFPFMFC EPERM from

[OFSwitchImpl /145.100.37.143:55771 DPID[00:00:e8:9a:8f:fb:c3:5b]]

According to the OpenFlow 1.0 specification the error says that there is a
problem modifying flow entry (OFPET FLOW MOD FAILED), and that the error is
cause due a permissions error (OFPFMFC EPERM)

The message is originating from IP-address 145.100.37.143 which belongs
to FlowVisor and not to the OpenFlow switch.

It seems that Floodlight checks and stores the entry in the database and
sent it at the same time to the switch. However it does not check if the pushed
entry is allowed by the switch. So the flow entry stays in the floodlight database
but does not get in to the OpenFlow controller. This can give some problems

13

when checking entries.

14

4.2 Experiment 2: VLAN based slice membership

This experiment is conducted to examine how FlowVisor handles shared ports.
These are ports that are present in two different network slices. To achieve
this VLANs are used. There will be one trunk interface that carries traffic
for two VLANs and two access ports that have untagged network traffic. This
experiment shares a switch resource (port) but is separated based on the VLAN
that is used.

4.2.1 Slices

Slice1 and slice2 were used as showed in Figure: 7. Slice1 will handle traffic
for VLAN 60 and slice2 will handle traffic for VLAN 50.

Figure 7: Setup of experiment 2: VLAN based slices

Each slice will get two FlowSpaces, one for the access port and one for the
trunk port according to Table 5. Port 11 will be shared by slice1 and slice2.

Traffic from switch port 1 should go to switch port 11 and will be tagged
with VLAN 60 and traffic from switch port 10 should go to switch port 11 and
will be tagged with VLAN 50. Traffic back from the trunk port will be handled
based on the VLAN-ID of the packet.

15

Table 5: Network Slices for experiment 2

Slice FlowSpace
slice1 port 1
slice1 port 11 & VLAN 60
slice2 port 10
slice2 port 11 & VLAN 50

The OpenFlow switch will take care of stripping the VLAN from the packet.
Using the OpenFlow strip-VLAN option will cause a connection reset between
the OpenFlow controller and FlowVisor, which seems to be a (old) bug in
FlowVisor [29].

4.2.2 Flow Entries

This setup translates to the following flow entries for the OpenFlow controllers
as shown in Table 6.

Table 6: Created Flows for experiment 2

Controller Match Action
floodlight2 in port 11,vlan-id:50 out port 10
floodlight1 in port 11,vlan-id:60 out port 1
floodlight2 in port 10 set-vlan-id=50 out port 11
floodlight1 in port 1 set-vlan-id=60 out port 11

4.2.3 Result

After configuring the rules on the OpenFlow controllers, the traffic inside the
VLANs was possible. The screenshot in Figure: 8 shows the traffic flow of
VLAN 60. The traffic was captured on the trunk interface therefore the VLAN
is showing up in the packet dump. The IP-address 192.168.1.1 is the IP of
VM01 and IP-address 192.168.1.60 is the IP of the laptop that was connected
to the trunk interface.

Figure 8: Traffic of VLAN 60 between VM01 and the laptop

16

The flow table on the switch looked correct corresponding to the configured
flows on the OpenFlow controllers.

root@XorPlus#ovs-ofctl dump-flows br0

in port=1 actions=mod vlan vid:60,output:11

in port=10 actions=mod vlan vid:50,output:11

in port=11,dl vlan=60 actions=output:1

in port=11,dl vlan=50 actions=output:10

17

4.3 Experiment 3: Application-port based slice member-
ship

This experiment is conducted to have flows based on application ports. Goal of
this experiment is to separate parts of the network to increase security. Certain
application ports will be forwarded to a specific switch port.

4.3.1 Slices

This experiment is setup using three slices, slice1, slice2 and slice3. Each
slice handled an other kind of traffic.

Figure 9 shows the setup of the experiment. Slice1 will handle web traffic
on port 80 (green), slice2 is for web traffic on port 8080 (blue) and finally
slice3 handles MySQL traffic on port 3306 (red) as shown in Figure 9.

Figure 9: Setup of experiment 3: Application-port based membership

Eight FlowSpaces based on in port and application source or destination
port were created as described in appendix B.4

On VM01 a PHP-enabled Apache2 [30] web server was configured. This
webserver serves a file which gets a field of data from a MySQL [31] database

18

back-end that is running on VM02.
When a page is accessed from VM03, the web server will connect to the

database server to get a value from a field stored in the database. The result of
this then is served to the end user on VM03.

On VM02 also an Apache2 web server is running on port 8080. The web
server serves a static file and allows traffic from VM03.

4.3.2 Flow Entries

The described set up can be translated into the Flow entries as shown in Table 7.

Table 7: Created Flows for experiment 3

Controller Flow Action
Floodlight1 ether-type=0x0800,protocol=6, src-port=80, in port 1 out port 3
Floodlight1 ether-type=0x0800,protocol=6, dst-port=80, in port 3 out port 1
Floodlight2 ether-type=0x0800,protocol=6, src-port=8080 out port 3
Floodlight2 ether-type=0x0800,protocol=6, dst-port=8080, in port 3 out port 2
Floodlight3 ether-type=0x0800,protocol=6, src-port=3306 out port 1
Floodlight3 ether-type=0x0800,protocol=6, dst-port=3306 out port 1

4.3.3 Result

Figure 10 shows that web traffic between VM03 and VM01 was possible. The
file index.php includes the value from the field of the MySQL database, which
means that the MySQL connection between VM01 and VM02 functions cor-
rectly.

Figure 10: Get page from server and show contents

Traffic on port 8080 between VM03 and VM02 was also possible, the file
could be downloaded. But VM03 could not access the server on port 3306 to
access the MySQL database, as one can see in the screenshot in Figure: 11.

19

Figure 11: Connection to port 8080 is possible but not to port 3306

4.4 Experiment 4: MAC-address based slice membership

This experiment is conducted to have flows based on destination MAC-address.
Traffic to a destination MAC-address will be sent to the port where the host is
attached. This could simulate the working of a traditional switch.

4.4.1 Slices

For this experiment only slice1 is used. Two FlowSpaces based on destination
MAC-address for the hosts were created and one FlowSpace for ARP traffic.
The configured FlowSpaces can be found in Table 8.

Table 8: Network Slices for experiment 4

Slice FlowSpace
Slice1 dst-mac: 52:54:00:b2:0d:d6
Slice1 dst-mac: 52:54:00:23:8b:87
Slice1 dl type: 0x0806

4.4.2 Flow Entries

After configuring the FlowSpaces the flow entries on the OpenFlow controller
could be inserted. Every host is attached to its own port, therefore a direct
mapping can be done of destination MAC-address and switch port.

To be able to translate the IP-address of a host to its MAC-address a flow
entry that handles ARP-traffic is also inserted. The configured flow entries can
be found in Table 9.

Table 9: Created Flows for experiment 4

Controller Flow Action
Floodlight1 dst-mac: 52:54:00:b2:0d:d6 out port 1
Floodlight1 dst-mac: 52:54:00:23:8b:87 out port 2
Floodlight1 ether-type: 0x0806 out port all

20

4.4.3 Result

After pushing the flow entries to the OpenFlow switch, a ping from VM01 on
port 1 to the VM02 on port 2 was possible. Inside the FlowTable of the switch
one could find the following flow entries:

root@XorPlus#ovs-ofctl dump-flows br0

dl dst=52:54:00:23:8b:87 actions=output:2

dl dst=52:54:00:b2:0d:d6 actions=output:1

arp actions=ALL

arp,dl dst=52:54:00:23:8b:87 actions=output:2

arp,dl dst=52:54:00:b2:0d:d6 actions=output:1

As one can see, there are five flow entries inside the switch table present.
However, there were only three flow entries configured. FlowVisor did rewrite
both destination MAC-address flow entries to match the FlowSpace.

The returning ARP traffic, should not be flooded to all ports of the switch
but should only be sent to the designated host.

21

4.5 Experiment 5: Switch events

This experiment is conducted to find out in which way switch events are han-
dled by FlowVisor and the attached OpenFlow controllers. Therefore a simple
network setup is created based on switch ports. To trigger a switch event a
cable will be pulled from the switch.

4.5.1 Slices

Port 1 and port 2 of the switch belong to slice1 and port 3 and port 4 belong
to slice2. The topology can be found in Figure 12.

Figure 12: Setup of experiment 5: Switch events

4.5.2 Flow Entries

Traffic between the ports which are assigned to the same slices is allowed. In
Table 10 one can find the created flow entries that are pushed to the OpenFlow
switch from the OpenFlow controllers. Traffic between port 1 and 2 and traffic
between port 3 and 4 is allowed.

22

Table 10: Created Flows for experiment 5

Controller Flow
Floodlight 1 in port1 out port 2
Floodlight 1 in port2 out port 1
Floodlight 2 in port3 out port 4
Floodlight 2 in port4 out port 3

4.5.3 Result

After configuring the flow entries and finding them in the switch the cable of
port 2 is pulled out of the OpenFlow switch, which causes the port to go down.
After some minutes the cable is put back into the switch and the port became
up again.

Then the log-files of both Flowvisor as well the OpenFlow controllers are
examined. Inside FlowVisor two messages regarding a changed port status were
logged:

1 Oct - 13:33:38 INFO org.flowvisor.log.AnyLogger.log(AnyLogger.java:38)

modifying port 2

1 Oct - 13:36:33 INFO org.flowvisor.log.AnyLogger.log(AnyLogger.java:38)

modifying port 2

The first message is regarding the port that goes down, and the second
message belongs to the upcoming port.

In the log file of Floodlight 1 also messages belonging to a port status are
found, but not in the log file of Floodlight 2, since this controller belongs to the
slice where the port is not located.

Below the messages from the Floodlight log-file:

Remove port:
13:33:38.057 [New I/O server worker #1-1] DEBUG n.f.core.internal.Controller

- Port #2 modified for OFSwitchImpl [/145.100.37.143:42990

DPID[00:00:e8:9a:8f:fb:c3:5b]]

13:33:38.058 [pool-3-thread-13] DEBUG n.f.d.internal.DeviceManagerImpl

- Triggering update to attachment points due to topology change.

13:33:38.059 [pool-3-thread-13] DEBUG n.f.devicemanager.internal.Device

- DEVICE MOVE: Old AttachmentPoints: [],New AttachmentPoints: []

13:33:38.059 [pool-3-thread-13] DEBUG n.f.d.internal.DeviceManagerImpl

- Attachment point changed for device: Device [deviceKey=1,

entityClass=DefaultEntityClass, MAC=00:1c:73:08:11:8d, IPs=[], APs=[]]

Add port:
13:36:33.056 [New I/O server worker #1-1] DEBUG n.f.core.internal.Controller

- Port #2 modified for OFSwitchImpl [/145.100.37.143:42990

DPID[00:00:e8:9a:8f:fb:c3:5b]]

13:36:33.056 [pool-3-thread-5] DEBUG n.f.d.internal.DeviceManagerImpl

- Triggering update to attachment points due to topology change.

23

13:36:33.057 [pool-3-thread-5] DEBUG n.f.devicemanager.internal.Device

- DEVICE MOVE: Old AttachmentPoints: [],New AttachmentPoints: []

13:36:33.057 [pool-3-thread-5] DEBUG n.f.d.internal.DeviceManagerImpl

- Attachment point changed for device: Device [deviceKey=1,

entityClass=DefaultEntityClass, MAC=00:1c:73:08:11:8d, IPs=[], APs=[]]

These messages belong to each the port down and the port up status. In Fig-
ure 13 one can see the port down OpenFlow message that is sent from FlowVisor
to the OpenFlow controller.

Figure 13: OpenFlow protocol port change packet on the wire

This experiment showed that switch events are recognised by FlowVisor and
sent to the responsible OpenFlow controller.

However, debugging a big OpenFlow network can be hard, assuming multiple
switches and controllers are present. Finding an error inside the network can
then be a time intensive task, because all log files have to be inspected.

Flowvisor gives the possibility to grant READ permissions to slices. Which
means to each FlowSpace a monitor slice can be added. So switch events can
be found inside one single log file, which makes finding errors easier.

In experiment 6 a setup is tested which includes a monitor slice.

24

4.6 Experiment 6: MAC-address and application port based
slice membership

This experiment is conducted to have traffic streams either based on a spe-
cific MAC-address that is sent to port X and traffic based on MAC-address
and destination port 80 was sent to port Y. Furthermore, a slice for monitor-
ing purposes was added. This experiment relates to the separation of switch
resources and switch events.

4.6.1 Slices

For this experiment slice1, slice2, slice3 and slice4 were used. The FlowS-
paces were created based on source MAC-address. An overview of the created
FlowSpaces can be found in Table 11. Controller Floodlight 4 got read permis-
sions for all the three slices.

Table 11: Network Slices for experiment 6

Slice FlowSpace
Floodlight1 src-mac: 52:54:00:b2:0d:d6
Floodlight2 src-mac: 52:54:00:23:8b:87
Floodlight3 src-mac: 52:54:00:d4:4d:83

4.6.2 Flow Entries

Traffic will flow between VM01 and VM02, except for traffic on application port
80. This traffic will be sent from VM01 to VM03 and from VM02 to VM03 and
vice versa. The traffic between VM01 and VM02 will be based on MAC-address
and the web traffic matches on the source and destination application port 80.
The created flow entries can be found in Table 12.

Table 12: Created Flows for experiment 6

Controller Match Action
Floodlight1 src-mac:52:54:00:b2:0d:d6 out port 2
Floodlight1 src-mac:52:54:00:b2:0d:d6,ether-

type:0x0800,protocol:6,dst-port:80
out port 3

Floodlight2 src-mac:52:54:00:23:8b:87 out port 1
Floodlight2 src-mac:52:54:00:23:8b:87,ether-

type:0x0800,protocol:6,dst-port:80
out port 3

Floodlight3 src-mac:52:54:00:d4:4d:83,dst-
mac:52:54:00:b2:0d:d6,ether-
type:0x0800,protocol:6,src-port:80

out port 1

Floodlight3 src-mac:52:54:00:d4:4d:83,dst-
mac:52:54:00:23:8b:87,ether-
type:0x0800,protocol:6,src-port:80

out port 2

Note that controller floodlight 4, which is attached to every FlowSpace as
monitoring slice does not have any flow entries configured.

25

4.6.3 Result

After configuring these flow entries host VM01 could ping host VM02 and vice
versa. Also the web traffic on port 80 between host VM01 and host VM03 as
well between host VM02 and host VM03 functioned as expected.

During the experiment the cable of port 2 was unplugged to see where the
port modify massage are sent to when no FlowSpace based on port is configured.
A log entry about the port was of course present in the log file of Flowvisor.
Furthermore an entry was found in each Floodlight controller. This is caused
due the fact that there is no FlowSpace attached to port 2.

The monitoring slice can read messages from all slices. The message of the
modified port showed up only once. One could maybe expect that the message
showed up tree times.

26

4.7 Experiment 7: Slices based on layer 2, 3 and 4 fields

This experiment is conducted to see how FlowVisor handles FlowSpaces based
on different fields on layer 2, layer 3 and layer 4 when installing Flows that
have this fields wildcarded. For example a FlowSpace based on destination
MAC-address and the Flow is based destination IP-address.

There will be several tests for this experiment, in each section a short de-
scription will be given on which slices are used as well which flow entries are
entered.

4.7.1 MAC Based

Slice slice1 is used. FlowSpaces based on destination MAC-address:
aa:aa:aa:aa:aa:aa and bb:bb:bb:bb:bb:bb:bb were created.

Two flow entries based on source MAC-address are inserted to the OpenFlow
controller as shown in Table 13

Table 13: Created Flows for experiment 7

Controller Match Action
Floodlight1 src-mac:aa:aa:aa:aa:aa:aa out port 2
Floodlight1 src-mac:bb:bb:bb:bb:bb:bb out port 1

After configuring the flow entries on the controller the following flow entries
showed up at the switch:

root@XorPlus#ovs-ofctl dump-flows br0

dl src=bb:bb:bb:bb:bb:bb,dl dst=aa:aa:aa:aa:aa:aa actions=output:1

dl src=bb:bb:bb:bb:bb:bb,dl dst=bb:bb:bb:bb:bb:bb actions=output:1

dl src=aa:aa:aa:aa:aa:aa,dl dst=bb:bb:bb:bb:bb:bb actions=output:2

dl src=aa:aa:aa:aa:aa:aa,dl dst=aa:aa:aa:aa:aa:aa actions=output:2

As one can see four entries are present in the flow table. FlowVisor rewrites the
flow entries to match them to the configured FlowSpace. Since the FlowSpace is
based on destination MAC-address a flow entry with only a source MAC-address
specified must match also the destination MAC-address, therefore both rules are
added.

When running Flowvisor in DEBUG mode, one can see the modifications:
(some output is omitted)

recv from controller: OFFlowMod (...) match=OFMatch[dl src=aa:aa:aa:aa:aa:aa]

(...) actions=OFActionOutput [type=OUTPUT];port=2

send to switch:OFFlowMod (...) match=OFMatch[dl dst=aa:aa:aa:aa:aa:aa,

dl src=aa:aa:aa:aa:aa:aa] (...) actions=OFActionOutput [type=OUTPUT];port=2

send to switch:OFFlowMod (...) match=OFMatch[dl dst=bb:bb:bb:bb:bb:bb,

dl src=aa:aa:aa:aa:aa:aa] (...) actions=OFActionOutput [type=OUTPUT];port=2

expanded fm 2 times

27

FlowVisor expanded the FlowMod 2 times.
Next, I added a flow entry based on destination IP-address 192.168.1.1

and would assume that FlowVisor acted the same and rewrites the rule.
The added rule looked like this in the flow table of the switch:

ip,nw dst=192.168.1.1 actions=output:3

The flow entry was not modified to match the FlowSpace, but when looking
into the log of FlowVisor the following is seen:

recv from controller: OFFlowMod (...) match=OFMatch[dl type=0x800,

nw dst=192.168.1.1] (...) actions=OFActionOutput [type=OUTPUT];port=3

send to switch:OFFlowMod (...) match=OFMatch[dl type=0x800,nw dst=192.168.1.1]

(...) actions=OFActionOutput [type=OUTPUT];port=3

send to switch:OFFlowMod (...) match=OFMatch[dl type=0x800,nw dst=192.168.1.1]

(...) actions=OFActionOutput [type=OUTPUT];port=3

expanded fm 2 times

It seems that FlowVisor want to change something because it says it expanded
the FlowMod 2 times, but actually the flow entry is the same as configured into
the controller. This may be eventually a bug in the software.

Actually this can create a security problem since now all traffic to IP-address
192.168.1.1 is allowed, and not as the FlowSpace says only traffic with desti-
nation MAC-address: aa:aa:aa:aa:aa:aa and bb:bb:bb:bb:bb:bb:bb.

4.7.2 IP Based

Slice1 is used. FlowSpaces based on destination IP-address 172.16.17.18,
priority 100 and 192.168.1.1, priority 200 are configured.

A flow is inserted with a match on destination IP-address 192.168.1.1 and
output port 2.

The flow table of the switch shows the entry:

ip,nw dst=192.168.1.1 actions=output:2

This is an entry which one can expect, because it matches the FlowSpace.

Now a flow entry was added that matches the source IP-address 10.10.10.10.
Since this IP-address is not part of any flow space, one would expect that the
destination IP-addresses 172.16.17.18 and 192.168.1.1 were added to the
flow entry. Looking in to the flow table of the switch shows us that this is not
the case.

ip,nw src=10.10.10.10,nw dst=172.16.17.18 actions=output:3

Only destination IP-address 172.16.17.18 was added to the flow even though

28

it has a lower priority. Thus it seems that priority is ignored.

4.7.3 Application port Based

For this test slice1 is used. FlowSpaces based on destination port 80 and 443

are used.
When adding a flow based on destination port 80 and with action output

port 1 the result is as expected. Since destination port 80 matches the config-
ured FlowSpace:

root@XorPlus#ovs-ofctl dump-flows br0

tcp,tp dst=80 actions=output:1

After adding a flow based on destination IP-address 192.168.1.1 and action
output port 2. One would expect that both application ports 80 and 443 are
added by FlowVisor to match the FlowSpace. But this is unfortunately not the
case, as can seen in the flow entry on the switch:

root@XorPlus#ovs-ofctl dump-flows br0

tcp,nw dst=192.168.1.1 actions=output:2

This behaviour is the same as with the first MAC based test, FlowVisor shows
also that the flow entry is not edited.

Trying again to add a flow entry but now with source MAC-address bb:bb:bb:bb:bb:bb
and output port 1. The output on the switch looks the same, only the MAC-address
is present in the flow table.
root@XorPlus#ovs-ofctl dump-flows br0

dl src=bb:bb:bb:bb:bb:bb actions=output:1

But when looking into the FlowVisor output, one can see that FlowVisor changes
the flow entry to match both destination ports 80 and 443:

recv from controller: OFFlowMod (...) match=OFMatch[dl src=bb:bb:bb:bb:bb:bb]

(...) actions=OFActionOutput [type=OUTPUT];port=1

send to switch:OFFlowMod (...) match=OFMatch[dl src=bb:bb:bb:bb:bb:bb,tp dst=443]

(...) actions=OFActionOutput [type=OUTPUT];port=1

send to switch:OFFlowMod (...) match=OFMatch[dl src=bb:bb:bb:bb:bb:bb,tp dst=80]

(...) actions=OFActionOutput [type=OUTPUT];port=1

expanded fm 2 times: OFFlowMod

However, this change is for an unknown reason not seen and received by the
switch and therefore not applied to the flow table.

4.7.4 Results

Based on the observed output during the different tests it seems that not every-
thing is working properly as one would assume after reading the documentation.

29

When using wildcards it seems that not every time a match for the FlowSpace
is created, which opens the whole network for unwanted traffic.

30

5 Summary of results

In this chapter the results of the conducted experiments from the previous chap-
ter will discussed in relation to the research questions.

Experiment 1: Switch-port based slice membership
Experiment 1 showed that an OpenFlow controller only can insert flows for the
slice where the controller belongs to when trying to insert flows for other slices
FlowVisor gives a permission error message. FlowVisor takes care of the sepa-
ration of the switch resources when talking about hardware. This experiment
answered the question: In which way are the switch resources separated?

Experiment 2: VLAN based slice membership
This experiment showed the working of a topology using VLANs with a shared
trunk port. Traffic was assigned to different network slices based on the VLAN.
For a short time a bug caused a disconnection between FlowVisor and the Open-
Flow controller. This experiment did answer two questions: ”In which way are
the switch resources separated?” and ”Which kind of bugs are known and still
present?”

Experiment 3: Application-port based slice membership
One saw in this experiment that creating slices based on application ports are
a good way to separate traffic streams between several servers. When using
VLANs a similar setup was possible, but a router would be needed to allow
traffic between the VLANs. With OpenFlow and FlowVisor this can be done
with a switch, which reduces hardware costs. This experiment answered the
question: In which way are the switch resources separated?

Experiment 4: MAC-address based slice membership
This experiment showed that a switch like configuration could be setup us-
ing OpenFlow. By defining flow entries based on a match on destination
MAC-address and as action the port where the host is attached, the network
acts in a way as a normal switch does. The flow entry for the ARP traffic was
necessary to let the hosts find the MAC-address of the host which it want to
reach. This experiment answered the question: In which way are the switch
resources separated?

Experiment 5: Switch events
This experiment showed how switch events are handled. Basically the switch
shows only port up and port down messages that could be seen in the logs of
FlowVisor and the OpenFlow controller where the port belongs to. However
this messages inside the logs originate from the OpenFlow packets that are sent
on the wire. This experiment answered the question: How are switch events
handled?

Experiment 6: MAC-address and application port based slice mem-
bership
This experiment was combination of experiment 3, 4 and 5. Several traffic
streams based on different fields of a packet worked as expected. The traffic
streams were separated. In experiment 6 the switch messages were sent to all

31

OpenFlow controllers since there was not a single slice attached to one port.
This experiment did answer two questions: ”In which way are the switch re-
sources separated?” and ”How are switch events handled?”

Experiment 7: Slices based on layer 2, 3 and 4 fields
The last experiment showed that when having FlowSpaces and flow entries based
on different values of a packet the rewriting of this flow entries doesn’t always
work.

Using only MAC-address based flow entries as well FlowSpaces worked well,
but as soon as an other layer is involved something went wrong. One would
expect the same behaviour using different layers, for example MAC-address and
IP-address. This experiment answered the question: In which way are the switch
resources separated?

32

6 Conclusion

In this chapter a conclusion is given based on the results of the experiments
that are conducted during this research project.

The main research question of the project was:

”Is the current FlowVisor implementation version 0.8.5 suitable to
create stable virtual networks in production environments?”

To answer this research question several sub-research-questions were created,
which were answered by conducting experiments.

• How stable is an FlowVisor environment? Overall there were no is-
sues regarding the stability of FlowVisor, once running FlowVisor did its
job. However, bugs could cause a connection disconnect between FlowVi-
sor and the OpenFlow controller.

Although I used a VM during the research to run FlowVisor and several
OpenFlow controllers on it, that did not give a bad performance at all.
Sometimes it took some seconds to insert a command using the fvctl-tool,
but this was a reasonable amount of time.

• Is FlowVisor user friendly? This is surely not an easy question to an-
swer, it will heavily depend on the user who is using FlowVisor. However,
based on the user-experience I would call FlowVisor not that user friendly.
Having to enter the password every time when issuing a command using
the fvctl-tool is a bit annoying. Although a password file can be speci-
fied when using the fvctl-tool this introduces some kind of security issues,
storing such a powerfull password in clear text on the server. Even when
the password is stored encrypted in a file, an attacker could use this to
bring down the network or create slices for his own purposes.

An interface called FlowVisor CLI is in development which offers a console
to the user. In this console the FlowVisor commands can be entered, with-
out password. This will improve the user experience and makes FlowVisor
more user friendly.

• In which way are the switch resources separated? The resources
of the switch are separated according to the created slices. A slice should
not be able to enter flow entries for a slice it does not belong to.

Separating switch resources can be done based on application port or
based on VLAN membership. FlowVisor ensures that only the responsible
OpenFlow controller can add flow entries.

However, when using wildcarded flow entries like in experiment 7 it seems
that the separation of the switch resources not always works as one would
expect. FlowVisor does not in every case rewrite the flow entry to match
the FlowSpace.

Other resource separating features like slice resource limits in the meaning
of a limit in how many flow entries a slice can use, will be implemented in
future releases of FlowVisor, see section 7.

33

• How are switch events handled? Switch events are handled by FlowVi-
sor in a way that they are sent to the appropriate OpenFlow controller that
is responsible for the slice where the switch event happens. If there is no
OpenFlow controller, which is only connected to a switch port the message
regarding the switch event is sent to all possible Openflow controllers. To
have only one place to look for switch events one can implement monitor
slices, which get all switch events.

The switch events are sent through the OpenFlow protocol and interpreted
by FlowVisor as well the OpenFlow controller.

One could develop a module that gets the OpenFlow messages from FlowVi-
sor and/or the OpenFlow controller. To receive all messages at a single
point. It could be also maybe an extension to current monitoring tools
like Nagios [32] or Cacti [33].

• What kind of bugs are known and still present? During experiment
2: VLAN based slice membership I did encounter the problem that the
connection between FlowVisor and the OpenFlow controller was closed
when using the stip-VLAN option in a flow entry.

Furthermore during experiment 7 some difficulties showed up when using
wildcards in flow entries to match fields in FlowSpaces, which created
some holes in the network so that unwanted traffic could be inserted from
an other slice.

FlowVisor is not a finished product and bugs are present. Even when
FlowVisor is finished there may be bugs. However, it may that some bugs
are present but do not influence the working of FlowVisor in a specific
setup, because the feature that has the bug is not used.

Based on the answers to the sub-research questions I want to answer my
main research question

”Is the current FlowVisor implementation version 0.8.5 suitable to
create stable virtual networks in production environments?”

as follows:

The current implementation of FlowVisor is not suitable to run in production
environments. During the research several setups are used and they mostly
turned out to work well. But some advances setups introduced some security is-
sues. It may depend on the need of the user how complex a FlowVisor topology
should be. Some users may be happy with a simple setup with only port based
slices, to get some hands on experience with OpenFlow. Others may really need
more advanced setups, and when using these one should really know what he is
doing. Not only how to configure this kind of setup, but more important how
to handle the setup in case of an unexpected error.

34

7 Future Research

FlowVisor is not a finished product yet, new releases are published every few
months. Therefore future research in the field is needed. One thing that should
be tested is the new released version 0.8.6 [26] and 0.10.0rc1 [34] that were
released recently. They give some improvements to version 0.8.5, which is used
during the research [26]. Some of these improvements are:

• Hard slice resource limits of the TCAM space a slice can use.

• Path and naming mismatches between FlowVisor package and documen-
tation.

• FlowVisor 0.6.x package improvements.

• Missing instructions for package install.

They all relate to some bugs, missing documentation or feature requests
from users. There are more improvements, which can be found in the references
that are stated above.

Furthermore a more advanced/bigger OpenFlow setup should be tested, with
multiple OpenFlow switches. FlowVisor requires a lot of hardware resources
according to the system requirements. During the research I worked with a very
basic OpenFlow topology that consists of only one switch, this didn’t add that
much load to the VM where I ran Flowvisor as well the OpenFlow controllers.
Although sometimes it took some seconds to insert a FlowSpace but this did
not interrupt the use of FlowVisor.

Also the ignored priorities of the FlowSpace should be further investigated
since this is an essential feature of FlowVisor to be able to classify traffic based
on this priority, where more specific FlowSpaces get a higher priority.

One can have also a look into slicing a slice. Which means to use a Flowvisor
on top of an other FlowVisor instance. Creating the right matching FlowSpaces
may become harder in this situations.

35

A List of Acronyms

API Application Programming Interface
ARP Address Resolution Protocol
DPID Datapath Identifier
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
JSON JavaScript Object Notation
MAC-address Media Access Control address
REST REpresentational State Transfer
SDN Software Defined Networking
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
VLAN Virtual Local Area Network
VM Virtual Machine
XML-RPC Extensible Markup Language - Remote Procedure Call

36

B Configurations

B.1 Default Configuration

The default configuration of the setup:

Switch
Pronto 3290 with Open vSwitch installed provided by SARA
Br0 created including the OpenFlow interfaces
Switch DPID: 00:00:e8:9a:8f:fb:c3:5b

Virtual Machines
Some pre-installed VMs were provided by SARA with running Ubuntu 12.04
LTS.
Each VM has two interfaces:
eth0: is used to configure the VMs from outside using SSH, and the OpenFlow
controllers are connected through this interface.
eth1: is connected to the Pronto switch.

IP configuration of the VMs

VM01: VM02:
eth0: 145.100.37.140 eth0: 145.100.37.142

eth1: 192.168.1.1 eth1: 192.168.1.2

VM03: VM04:
eth0: 145.100.37.143 eth0: 145.100.37.144

eth1: 192.168.1.3 eth1: 192.168.1.4

FlowVisor was cloned from repository and compiled from source.

Configuration of FlowVisor on VM03

FlowVisor:
Port: 3366

RPC-Port: 8080

The floodlight controllers were cloned from the repository, some fields in
the file floodlightdefault.properties from the src-directory were edited
according to the table below. Thereafter floodlight was compiled.

Configurations of the Floodlight controllers on VM3

Floodlight 1: Floodlight 2:
port: 6634 port: 6635

RPC-port: 8081 RPC-port: 8082

Floodlight 3: Floodlight 4:
port: 6636 port: 6637

RPC-port: 8083 RPC-port: 8084

37

B.2 Configuration of experiment 1

Slices:
fvctl createSlice slice1 tcp:145.100.37.143:6634 slice1@example.com

fvctl createSlice slice2 tcp:145.100.37.143:6635 slice2@example.com

FlowSpaces:
fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=1 Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=2 Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=3 Slice:slice2=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=4 Slice:slice2=4

Flowentries:
curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow-1-2",

"cookie":"0","ingress-port":"1","active":"true", "actions":"output=2"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow-3-4",

"cookie":"0","ingress-port":"3","active":"true", "actions":"output=4"’

http://127.0.0.1:8082/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"wrong-flow-2-4",

"cookie":"0","ingress-port":"2","active":"true", "actions":"output=4"’

http://127.0.0.1:8082/wm/staticflowentrypusher/json

38

B.3 Configuration of experiment 2

Slices:
fvctl createSlice slice1 tcp:145.100.37.143:6634 slice1@example.com

fvctl createSlice slice2 tcp:145.100.37.143:6635 slice2@example.com

FlowSpaces:
fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=1 Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=10 Slice:slice2=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=11,dl vlan=60

Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=11,dl vlan=50

Slice:slice2=4

Flowentries:
curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow1",

"cookie":"0","ingress-port":"11","vlan-id":"50","active":"true",

"actions":"output=10"’ http://127.0.0.1:8082/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow2",

"cookie":"0","ingress-port":"11","vlan-id":"60","active":"true",

"actions":"output=1"’ http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow3",

"cookie":"0","ingress-port":"1","active":"true","actions":"set-vlan-id=60,

output=11"’ http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow4",

"cookie":"0","ingress-port":"10","active":"true","actions":"set-vlan-id=50,

output=11"’ http://127.0.0.1:8082/wm/staticflowentrypusher/json

39

B.4 Configuration of experiment 3

Slices:
fvctl createSlice slice1 tcp:145.100.37.143:6634 slice1@example.com

fvctl createSlice slice2 tcp:145.100.37.143:6635 slice2@example.com

fvctl createSlice slice3 tcp:145.100.37.143:6634 slice3@example.com

FlowSpaces:
fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=3,tp dst=80

Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 101 in port=1,tp src=80

Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 102 in port=3,tp dst=8080

Slice:slice3=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 103 in port=2,tp src=8080

Slice:slice3=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 103 in port=1,tp dst=3306

Slice:slice2=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 103 in port=2,tp src=3306

Slice:slice2=4

Flowentries:
curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"fromwebserver",

"cookie":"0","ether-type":"0x0800","protocol":"6","src-port":"80",

"ingress-port":"1","active":"true", "actions":"output=3"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"towebserver",

"cookie":"0","ether-type":"0x0800","protocol":"6","dst-port":"80",

"ingress-port":"3","active":"true", "actions":"output=1"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"mysqlroclient",

"cookie":"0","ether-type":"0x0800","protocol":"6","src-port":"3306",

"active":"true","actions":"output=1"’

http://127.0.0.1:8082/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"mysqltoserver",

"cookie":"0","ingress-port":"2","ether-type":"0x0800","protocol":"6",

""dst-port":"3306",active":"true","actions":"output=1"’

http://127.0.0.1:8082/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"fromwebserver2",

"cookie":"0","ether-type":"0x0800","protocol":"6","src-port":"8080",

"active":"true","actions":"output=3"’

http://127.0.0.1:8083/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"towebserver2",

"cookie":"0","ingress-port":"3","ether-type":"0x0800","protocol":"6","dst-port":"8080"

,"active":"true","actions":"output=2"’

40

http://127.0.0.1:8083/wm/staticflowentrypusher/json

41

B.5 Configuration of experiment 4

Slices:
fvctl createSlice slice1 tcp:145.100.37.143:6634 slice1@example.com

FlowSpaces:
fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 dl dst=52:54:00:b2:0d:d6

Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 dl dst=52:54:00:23:8b:87

Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 dl type=0x0806 Slice:slice1=4

Flowentries:
curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"macvm01",

"cookie":"0","dst-mac":"52:54:00:b2:0d:d6","active":"true", "actions":"output=1"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"macvm02",

"cookie":"0","dst-mac":"52:54:00:23:8b:87","active":"true", "actions":"output=2"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"arp",

"cookie":"0","ether-type":"0x0806","active":"true", "actions":"output=all"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

42

B.6 Configuration of experiment 5

Slices:
fvctl createSlice slice1 tcp:145.100.37.143:6634 slice1@example.com

fvctl createSlice slice2 tcp:145.100.37.143:6635 slice2@example.com

FlowSpaces:
fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=1 Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=2 Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=3 Slice:slice2=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 in port=4 Slice:slice2=4

Flowentries:
curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow-1-2",

"cookie":"0","ingress-port":"1","active":"true", "actions":"output=2"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow-2-1",

"cookie":"0","ingress-port":"2","active":"true", "actions":"output=1"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow-3-4",

"cookie":"0","ingress-port":"3","active":"true", "actions":"output=4"’

http://127.0.0.1:8082/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow-4-3",

"cookie":"0","ingress-port":"4","active":"true", "actions":"output=3"’

http://127.0.0.1:8082/wm/staticflowentrypusher/json

43

B.7 Configuration of experiment 6

fvctl createSlice slice1 tcp:145.100.37.143:6634 slice1@example.com

fvctl createSlice slice2 tcp:145.100.37.143:6635 slice2@example.com

fvctl createSlice slice3 tcp:145.100.37.143:6634 slice3@example.com

fvctl createSlice slice4 tcp:145.100.37.143:6635 slice4@example.com

FlowSpaces:
fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 dl src=52:54:00:b2:0d:d6

Slice:slice1=4,Slice:slice4=2

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 dl src=52:54:00:23:8b:87

Slice:slice2=4,Slice:slice4=2

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 dl src=52:54:00:d4:4d:83

Slice:slice3=4,Slice:slice4=2

Flowentries:
curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"vm01-vm02",

"cookie":"0","src-mac":"52:54:00:b2:0d:d6","active":"true", "actions":"output=2"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"vm01-web",

"cookie":"0","src-mac":"52:54:00:b2:0d:d6","ether-type":"0x0800","protocol":"6",

"dst-port":"80","active":"true", "actions":"output=3"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"vm02-vm01",

"cookie":"0","src-mac":"52:54:00:23:8b:87","active":"true", "actions":"output=1"’

http://127.0.0.1:8082/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"vm02-web",

"cookie":"0","src-mac":"52:54:00:23:8b:87","ether-type":"0x0800","protocol":"6",

"dst-port":"80","active":"true", "actions":"output=3"’

http://127.0.0.1:8082/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"web-to-vm01",

"cookie":"0","src-mac":"52:54:00:d4:4d:83","dst-mac":"52:54:00:b2:0d:d6",

"ether-type":"0x0800","protocol":"6",src-port":"80","active":"true",

"actions":"output=1"’ http://127.0.0.1:8083/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"web-to-vm02",

"cookie":"0","src-mac":"52:54:00:d4:4d:83","dst-mac":"52:54:00:23:8b:87",

""ether-type":"0x0800","protocol":"6",src-port":"80","active":"true",

"actions":"output=2"’ http://127.0.0.1:8083/wm/staticflowentrypusher/json

44

B.8 Configuration of experiment 7

B.8.1 MAC based

fvctl createSlice slice1 tcp:145.100.37.143:6634 slice1@example.com

FlowSpaces:
fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 dl dst=aa:aa:aa:aa:aa:aa

Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 dl dst=bb:bb:bb:bb:bb:bb

Slice:slice1=4

Flowentries:
curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flowa",

"cookie":"0","src-mac":"aa:aa:aa:aa:aa:aa","active":"true",

"actions":"output=2"’ http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flowb",

"cookie":"0","src-mac":"bb:bb:bb:bb:bb:bb","active":"true",

"actions":"output=1"’ http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flow100",

"cookie":"0","ether-type":"0x0800","dst-ip":"192.168.1.1","active":"true",

"actions":"output=3"’ http://127.0.0.1:8081/wm/staticflowentrypusher/json

B.8.2 IP-based

fvctl createSlice slice1 tcp:145.100.37.143:6634 slice1@example.com

FlowSpaces:

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 nw dst=172.16.17.18

Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 200 nw dst=192.168.1.1 Slice:slice1=4

Flowentries:
curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flowa",

"cookie":"0","ether-type":"0x0800","dst-ip":"192.168.1.1",

"active":"true", "actions":"output=2"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flowb",

"cookie":"0","ether-type":"0x0800","src-ip":"10.10.10.10",

"active":"true", "actions":"output=3"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

45

B.8.3 Application port Based

fvctl createSlice slice1 tcp:145.100.37.143:6634 slice1@example.com

FlowSpaces:
fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 100 tp dst=80 Slice:slice1=4

fvctl addFlowSpace 00:00:e8:9a:8f:fb:c3:5b 200 tp dst=443 Slice:slice1=4

Flowentries:
curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flowc",

"cookie":"0","ether-type":"0x0800","dst-port":"80","protocol":"6",

"active":"true", "actions":"output=1"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flowa",

"cookie":"0","ether-type":"0x0800","protocol":"6","dst-ip":"192.168.1.1",

"active":"true", "actions":"output=2"’

http://127.0.0.1:8081/wm/staticflowentrypusher/json

curl -d ’"switch": "00:00:e8:9a:8f:fb:c3:5b", "name":"flowb",

cookie":"0","src-mac":"bb:bb:bb:bb:bb:bb","active":"true",

"actions":"output=1"’ http://127.0.0.1:8081/wm/staticflowentrypusher/json

46

References

[1] Software-defined networking: The new norm for networks. White Paper,
April 2012.

[2] Openflow. Website. available at http://www.openflow.org/; on 04th
September 2012.

[3] Openflow @ google. Presentation. available at http://opennetsummit.

org/talks/ONS2012/hoelzle-tue-openflow.pdf; on 05th October 2012.

[4] Network development and deployment initiative (nddi). Website. available
at http://www.internet2.edu/network/ose/; on 27th September 2012.

[5] Global environment for network innovations (geni). Website. available at
http://www.geni.net/; on 27th September 2012.

[6] Japan gigabit network extreme (jgn-x). Website. available at http://www.
jgn.nict.go.jp/english/info/technologies/openflow.html; on 27th
September 2012.

[7] Openflow in europe: Linking infrastructure and applications. Website.
available at http://www.fp7-ofelia.eu/; on 27th September 2012.

[8] Flowvisor. Website. available at https://openflow.stanford.edu/

display/DOCS/Flowvisor; on 04th September 2012.

[9] Rob Sherwood, Glen Gibby, Kok-Kiong Yapy, Guido Appen-
zeller, Martin Casado, Nick McKeowny, and Guru Parulkar. Can
the production network be the testbed? Website. available
at http://www.deutsche-telekom-laboratories.de/~robert/

flowvisor-osdi10.pdf; on 27th September 2012.

[10] Rob Sherwood, Glen Gibby, Kok-Kiong Yapy, Guido Appenzeller, Martin
Casado, Nick McKeowny, and Guru Parulkar. Flowvisor: A network
virtualization layer. Website. available at www.openflow.org/downloads/
technicalreports/openflow-tr-2009-1-flowvisor.pdf; on 27th
September 2012.

[11] Sara. Website. available at https://www.sara.nl/; on 5th October 2012.

[12] Surfnet. Website. available at http://www.surfnet.nl/; on 5th October
2012.

[13] Ronald van der Pol. D1.2 openflow. Website. available at https://

noc.sara.nl/nrg/publications/RoN-2011-D1.2.pdf; on 27th Septem-
ber 2012.

[14] Openflow tutorial. Website. available at http://www.openflow.org/wk/

index.php/OpenFlow_Tutorial; on 03th October 2012.

[15] Pica8 3290. Website. available at http://www.pica8.org/products/

p3290.php; on 5th October 2012.

[16] Open vswitch. Website. available at http://openvswitch.org/; on 5th
October 2012.

47

[17] Openflow switch specification. Website. available at http://www.

openflow.org/documents/openflow-spec-v1.0.0.pdf; on 3th October
2012.

[18] Openflow 1.2. Website. available at https://www.opennetworking.org/

images/stories/downloads/specification/openflow-spec-v1.2.pdf;
on 3th October 2012.

[19] Beacon openflow controller. Website. available at https://openflow.

stanford.edu/display/Beacon/Home; on 3th October 2012.

[20] Floodlight. Website. available at http://floodlight.openflowhub.org/;
on 04th September 2012.

[21] Maestro. Website. available at http://code.google.com/p/

maestro-platform/; on 3th October 2012.

[22] Nox/pox. Website. available at http://www.noxrepo.org/; on 3th Octo-
ber 2012.

[23] Trema - full-stack openflow framework in ruby and c. Website. available
at http://trema.github.com/trema/; on 14th October 2012.

[24] Static flow pusher api. Website. available at http://www.openflowhub.

org/display/floodlightcontroller/Static+Flow+Pusher+API; on 3th
October 2012.

[25] The floodlight rest api. Website. available at http://www.openflowhub.

org/display/floodlightcontroller/REST+API; on 3th October 2012.

[26] Flowvisor 0.8.6 released. Website. available at https://mailman.

stanford.edu/pipermail/openflow-discuss/2012-October/003705.

html; on 11th October 2012.

[27] Ubuntu 12.04.1 lts (precise pangolin). Website. available at http:

//releases.ubuntu.com/12.04/; on 11th October 2012.

[28] Lighthouse - joint research lab. Website. available at https://www.sara.
nl/project/lighthouse; on 19th September 2012.

[29] Strip vlan id action causes connection reset. Website. available
at https://mailman.stanford.edu/pipermail/openflow-discuss/

2011-January/001808.html; on 22nd October 2012.

[30] Apache http server. Website. available at http://httpd.apache.org/; on
10th October 2012.

[31] Mysql. Website. available at http://www.mysql.com/; on 10th October
2012.

[32] Nagios homepage. Website. available at http://www.nagios.org/; on 2nd
November 2012.

[33] Cacti. Website. available at http://www.cacti.net/; on 2nd November
2012.

48

[34] Flowvisor 0.10.0rc1 released. Website. available at https://mailman.

stanford.edu/pipermail/openflow-discuss/2012-October/003706.

html; on 11th October 2012.

49

