X

X

X
UNIVERSITEIT VAN AMSTERDAM

RESEARCH PROJECT 2

Load balancing in ESB based
service platform

Author: Supervisor:
Nick Barendregt Yuri Demchenko
nick.barendregt@os3.nl y.demchenko@uua.nl

September 4, 2012

Abstract

The load balancing is an important problem in the enterprise applications built
using the cloud Platform as a Service (PaaS). Most of the currently used web
application platforms already have mechanisms that handles the load balancing
at the level of OS and programming platform. This project will look at load
balancing techniques at higher level at applications and service composition
platforms such as the Enterprise Service Bus (ESB), that should allow upper
layer applications to control or set priorities for applications execution on the
platform. This research is a part of a bigger research on Composable Services
Architecture in the GEANT3 project what provides a motivation and criteria
for the final results.

The goal of this research project is to research possible solutions for opti-
mal load balancing and optimal resources distribution between services inside a
(Fuse)ESB based platform. The project investigates a dynamic way to inform
set of interconnected brokers that should allow load balancing in multi-domain
environment.

The project investigates the possible configuration options within the FuseESB
platform that should allow load balancing. The proposed solution can provide
a basis for dynamic services configuration or additional services deployment to
handle required load. This research is based on already done research in this
field by the University of Amsterdam (UvA) in combination with other research
groups. The project demonstrated that there is no straightforward solution in
ESB to provide control over execution application to the applications them-
selves.

Balancing load inside a FuseESB based platform is possible, there are some
factors that have to be taken in account to specify configuration options. The
presented report explain what steps need to be taken to achieve to create the
dynamically configured infrastructure that allows for balancing load. The report
provides example of code and sample configuration files that demonstrate how
the broker and individual services must be configured.

Contents

(1 _Introduction|
[L.1 _Project objectives|. oL

1.3 Research questions|
[1.4 Project layout|. oo

[2__GEMBus as a platform for Cloud based services composition|
|§.1 Composable Services Architecture (CSA)
22 GEMBuso

|3 Overview Load balancing technologies and practices|

3.1.1 Duplex or non Duplex|

[3.1.3 Conduit subscriptions|
3.1.4 itering| L
3.2 Discovery|]

[4 Balancing Load)|
4.1 Propagation|. L oo

4.2 Balancing consumer load|.

:4.3 anaging producer load|o 0oL

4 Filtering]

W D O

[Design and development|

IA.1 Client Configuration|

|A.1.2 Discovery connection URIf
[A1.3 Discovery multicast connection URJ]

12
12
13
15
15
16

18
18
19
19
20
22

23

24
24
24
24

25

IA.2 Broker Configuration|. 26
|A.2.1 Default transport connector| 26
[A.2.2 Default network connector|. 26
|A.2.3 Static propagation| 27
[A.2.4 Destination filtering| 27
[A25 Shorfestroutd 27
1A.2.6 Multicast discovery Agent| 27
|A.2.7 Fanout protocol URI| 27
|A.2.8 Seperate topics and queues| 28

1 Introduction

Cloud computing defines three basic service models: Infrastructure as a Ser-
vice (TaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
Cloud PaaS service model provides an environment for creating and deploying
applications using one of popular development platforms such as current avail-
able on the market Windows Azure, Google App Engine, or SaleForce.coms
Force.com. Customers use PaaS services to deploy applications on controlled,
uniform execution environments available through the network. IaaS gives a
way to bind hardware, operating systems, storage and network capacity over
the Internet. The cloud based service delivery model allows the customer to
acquire virtualized servers and associated services on demand.

1.1 Project objectives

This project will investigate/research the GEMBus (GEANT Multi-domain
Bus)[B] as one of prospective Cloud PaaS platform for creating composable ser-
vices in the GEAN environment. The GEMBus is being developed as a part of
it is built upon and extends the industry accepted Enterprise Service Bus (ESB)
platform with automated services composition functionality and core services to
support federated network access to distributed applications and resources|I].
With this implementation of ESB providing services like PaaS, deployment can
be fully automated.

An enterprise service bus (ESB) is a software architecture model used for
designing and implementing the interaction and communication between mutu-
ally interacting software applications in a Service Oriented Architecture. As a
software architecture model for distributed computing it is a specialty variant of
the more general client server software architecture model and promotes strictly
asynchronous message oriented design for communication and interaction be-
tween applications. Its primary use is in Enterprise Application Integration of
heterogeneous and complex landscapes like GEANT.

Composable services are useful in bigger enterprises where all kinds of ser-
vices are wanted, not only on a daily bases, but maybe just for a couple of days,
weeks or months. A baseline structure that allows for composable services, such
as PaaS, SaaS or IaaS, is a pre in these enterprise environments.

1.2 Problem statement

As a proof of concept the GEANT3 project created a simple testbed to demon-
strate an example of the distributed multi-domain services composition and
deployment. A simple demo test program has been created on the testbed that
automatically starts up multiple Virtual Machines (VM’s), which get configured
during the startup, automatically geared with the needed modules and preform
their tasks[6].

In this example all connections are setup in advance, so when deploying
multiple times there is a possibility that the load on the broker(s) can get to
high that it can not handle every message that comes in. The presented research

2The GEANT network is the fast and reliable pan-European communications infrastructure
serving Europes research and education community. http://www.geant.net
2http://en.wikipedia.org/wiki/Enterprise_service_bus

http://www.geant.net
http://en.wikipedia.org/wiki/Enterprise_service_bus

is focused on investigating the real time services operation and interaction in
a distributed environment and proposing possible solutions for optimal load
and available resources distribution between services. The intended solutions
should provide a way to automatically balance the load and possibly with extra
adjustments of a report mechanism which reports its load and based on that
route traffic in an other way.

In the Internet traffic gets routed through defined paths, when a router gets
overloaded with high volumes of traffic, the rest of the traffic should be redi-
rected over an other route. The same holds within an ESB based platform,
messages get routed over different brokers inside the network, most of the time
over already defined paths. When a broker gets overloaded the rest of the
messages should to take an alternative route. The goal of this research is to in-
vestigate the possibilities of load balancing within an ESB Based platform using
FuseESB software. Because the intention is that services get deployed on a dy-
namic basis. When possible investigate investigate in a real time load balancing
mechanism, to automatically balance load in real time services operations.

As mentioned above with Internet traffic options are already in place on a
lower level to arrange all the rerouting of traffic. Also when we look at web
services for example, a lot of different solutions are out there to control the load
on all servers inside the network. All this is done on a lower level, as application
there is not much to load balance. Creating a program which allows for feedback
mechanisms and is implemented inside an ESB based platform can then greatly
improve performance.

1.3 Research questions

The intention of the research is made clear in the problem statement, to form
this for the project a main research question is formed with a small sub question.

e Is it possible in GEMBus/ESB to create such mechanisms that will allow
controlling of load (load balancing) from applications or from external
brokers in a multi domain environment.

e Does topology play a role in how load is being balanced.

1.4 Project layout

This project made use of the GEMBus/ESB testbed developed at UvA as an
environment and a starting point to investigate the issues with the real time
services operation and synchronization and the existing/proposed load balancing
techniques.

The presented report is organized as follows. Section |3| provides detailed
information about the possible configuration, where section [4] describes how
these techniques can be applied to a Setup. Section [5| gives an overview how
the test setup looked like and with what modifications.

2 GEMBus as a platform for Cloud based ser-
vices composition

2.1 Composable Services Architecture (CSA)

Composable Services Architecture (CSA) provides a framework for cloud based
services design, composition, deployment and operation. CSA allows for flexible
services integration of existing component services. The CSA infrastructure
provides functionalities related to Control and Management planes, allowing the
integration of existing distributed applications and provisioning systems, thus
simplifying their deployment across network and cloud infrastructures. CSA
provides also a basis for provisioning distributed composite services on-demand
by defining composable services lifecycle that starts from the service request and
ends with the service decommissioning. CSA is based on the virtualisation of
component services that in its own turn is based on the logical abstraction of the
component services and their dynamic composition. Composition mechanisms
are provided as CSA infrastructure services.

2.2 GEMBus

The GEMBus framework, being developed within the GEANT project, aims to
build a multi-domain service bus for the GEANT community to provide a com-
mon platform for integration of the existing and new GEANT services. With
the GEMBus as a development and integration platform, new services and ap-
plications can be created by using existing services as building blocks. The
foundation of the GEMBus framework includes the necessary functionality to
create composite (composed) services and effectively use the widely accepted
Service Oriented Architecture (SOA) to building autonomic and manageable
services using the provided mechanisms for composition, adaptation, and inte-
gration of services

More detailed information about how everything works together with autho-
risation and more detailed explanation can be found in [IJ.

‘ Network Infrastructure (aka NaaS) ‘

p
Service-1 Service-2 Service-3

Paas

Message Router Inter—ESBIA Message Router Message Router
{Camel) Inter-domain {Camel) {Camel)

Service-4

i

-

Message Router
(Camel)

Message Broker Message Braker o Message Broker Message Broker
(Activenia) <:> {ActiveMa) {ActiveMQ) <:> (ActiveMQ)
a N N C/ N N

N

FUSE-ESB FUSE-ESB FUSE-ESB FUSE-ESB

VM VM VM VM

Figure 1: UvA Testbed, using an ESB based platform

3 Overview Load balancing technologies and prac-
tices

In this chapter we will discuss different techniques that can help in building a
network of brokers where in the end load can be balanced. The different sections
explain the behavior of the named items, their default values and some possi-
ble changeable parameters. More and information and specific configuration
parameters can be found in the documentation [2] [3] [4].

3.1 Broker network connectors

By default when making a connection, the type for that connection is in “Open-
Wire”. This also seems to be the fastest connection possible with a setup over
a network, without depending on very specific scenarios such that the New I/0
(NIO)E| can be used to improve performance.

Other availible different connection protocols are Stomp, REST, XMPP and
VM. Where the Stomp protocol is a simplified messaging protocol that is spe-
cially designed for implementing clients using scripting languages. The Rep-
resentational State Transfer (REST) protocol is a simple HyperText Transfer
Protocol (HTTP) based protocol which allows you to interact with the message
broker using HyperText Markup Language (HTML) forms and Dynamic HTML
(DHTML) scripts, default GET, POST, PUT and DELETE commands can be
used. The Extensible Messaging and Presence Protocol (XMPP) can accept
connections from for example an Instant Messaging (IM) client. The Virtual
Machine (VM) protocol allows clients to connect to each other inside the same
Java Virtual Machine (JVM) without the overhead of network communication.

The detailed information and how to implement all of these different pro-
tocols is described in detail in the Connectivity Guide [2], in this report we
assuming that we will work over a network where the OpenWire protocol is
used by default.

3.1.1 Duplex or non Duplex

When creating a network connection between brokers the type of duplex can
be of essential meaning. By default a network connection has duplex disabled.
What means that if broker A creates a network connection to connect to broker
B, messages can only propagate from A to B and subscription propagation can
only flow in the opposite direction (from B to A). In short, it will only make
sense that a producer connects to broker A and a consumer to broker B, else
messages and subscriptions wont work over this network connection.

An example of how a non duplex connector looks like is shown in figure
and a duplex connector is showed in figure 2D] a configuration example is given
in example where the duplex attribute is set to true.

3.1.2 Network TTL

By default when creating a network connector the networkTTL attribute has
a value of 1. Which means it can only deliver its messages to the next broker.

Shttp://en.wikipedia.org/wiki/New_I/0

http://en.wikipedia.org/wiki/New_I/O

Direction of subscription
propagation

S —

OO 0

—_—
Direction of message (b) Duplex connector
propagation

(a) Non duplex connector

Figure 2: Network Connections
Source: Using Networks of Brokers [4]

When a bigger configuration of brokers is used in the network TTL attribute
should have a value that satisfies the administrators the best. It has to be taken
in mind that this value should be configured prior to deployment to a value
that is large enough so that a message can route through the entire network.
Configuration example shows how the value can be set.

3.1.3 Conduit subscriptions

When a connection is established between 2 brokers messages can pass from
broker A broker B. When a consumer connects to broker B and subscribes to
specific topic (t), broker B will inform to broker A he wants messages from
topic t because he has an active subscription from a consumer. In this way all
messages on topic t delivered to broker A will be send towards the consumer.

When a second consumer connects to broker B, and also informs about his
subscription to the same topic t, broker B will not pass this information towards
broker A. Because there is already a consumer with an active subscription to
topic t on broker B. Instead of informing broker A, broker B will receive 1 copy
of the message send to topic t, and then copy it to both the consumers.

This behavior is called conduit subscription. Subscriptions to the same queue
or topic are automatically consolidated into a single subscription. This example
is explained in figure

Conduit subscriptions prevents against the fact that messages will be du-
plicated and send twice. When conduit subscriptions would be disabled on
the connection between broker A and B, both the consumers C1 and C2 will
subscribe to the same topic t. These subscriptions on broker B will then be for-
warded to broker A. When broker A receives a message on topic t, it will send 2
copies to broker B, where broker B sees 2 messages on topic t, it will send both
messages to consumer C1 and both messages to consumer C2. While 1 message
was send to topic t, both the consumers will receive 2 identical messages. This
element can produce a lot of problem, see section [£.2] for more information
about how avoid these problems.

3.1.4 Filtering

In a multi domain network setup it can be that a particular sub-domain is
not interested in messages that are mend for an other sub-domain. Because

["_Fl) (C2)

Figure 3: Conduit Subscriptions
Source: Using Networks of Brokers [4]

Wildcard | Description

. Separates segments in a path name

* Matches any single segment in a path name

> Matches any number of segments in a path name

Table 1: Destination name wildcards

the network is inter linked to each other to create one big network of brokers
connections still have to exists in order to work properly. Filtering on certain
network connectors can then be the solution to avoid extra load on the edge
broker of the sub-domain.

A filter can be applied in multiple ways, where for instance destinations are
included. This means that every queue or topic matching that rule is allowed to
pass the broker connection, all the other topics and queues are not allowed to
pass. When applying this configuration it is needed to know that this literally
disables all other traffic over that network connection except from the included
filtered destinations.

An other way of applying a filter is to exclude certain destinations. An
example combination of including and excluding different destinations is given
in example Where broker A is interested in all information about any
TRADE.STOCK and PRICE.STOCK as destination, but with excluding the
TRADE.STOCK.NYSE.* and PRICE.STOCK.NYSE.* destinations broker A
wont receive any information going on the New York Stock Exchange (NYSE).

As shown in the example there are some wildcards used in the filters, in
table |1| all possible wildcards are explained.

3.2 Discovery

There are several different techniques which can be used exclusively or com-
bined with each other for the successful discovery of brokers inside a network of
brokers. A discovery protocol builds a connection to a message broker in 2 basic
steps, where the first step is to gather information of all available broker end-
points in a network of brokers and the second step is to connect to one or more

endpoints, according to some selection algorithm. Below is a list of different
discovery protocols where i will elaborate on.

e Failover
e Discovery

e Fanout

3.2.1 Failover

The failover protocol facilitates quick recovery from network failures [3]. Where
there are two ways to setup your failover connection, statically or dynamically.
In a static failover the client is configured to use a failover URI, where inside
that URI reside multiple message brokers where the client can connect to. If the
client tries to establish a connection, he randomly chooses a URI from the list
and attempts to connect to it. When this connection fails a seconds connection
is tried from this list of URIs.

It is possible to give extra options with the connection URI, with these
extra options more specific information about the connection can be defined.
For example how many milliseconds to wait for the first reconnect attempt,
reconnection timeout in milliseconds, maximal reconnection attempts and to
randomize them yes or no. More information about the specifics for these and
the rest of the options are given in the manual: Fault Tolerant Messaging [3].

With dynamic failover both the clients and the brokers must be configured
in such a way that it allows for dynamically updated broker and client lists. On
the client side the failover URI must contain at least one active broker connected
which participates in a network of brokers. This failover URI can also contain
multiple brokers, which can enhance the success rate of the connection. The
brokers in this scenario also have to have a adjusted configuration to allow
the discovery of them selfs and allow others to connect. On the broker on
the connection must have an option which filters the allowed brokers on the
discovery. This discovery is done on the brokerld flag, where the filer looks at,
wild cards are supported so the wild card * can be applied to allow every broker
on the broadcast network. The local network must be configured appropriately
for the IP/multicast protocol to work.

In example [0] is a connection URI visible what can be used as failover.

3.2.2 Discovery

In the section above the discovery of brokers is explained, clients can also use
this discovery protocol to connect to the brokers. Where the brokers have to
configure a transport connector to allow the discovery protocol to work on and
a network connector to start the agent on, clients can use this same protocol
and connection URI to discover active brokers on the local broadcast network.
Where brokers must configure both a transport and a network connector to
allow for dynamic discovery, clients only have to do it in their main connection,
without any prior knowledge of any broker or brokerld.

When a client receives a list of connected brokers, it can use this list for
failover purposes or load balancing. By default when a client has multiple
brokers to connect to, it will pick its broker randomly. This be disabled, so that

10

only the first broker will be chooses, until it fails to connect, then the second
will be chosen, and so on.

In example [7] is a connection URI visible what can be used to get a list all
discovered brokers, from a statically configured broker.

3.2.3 Fanout

The fanout protocol, as the name already implies, is a protocol used by produc-
ers to spread their messages to multiple brokers which are not part of a network
of brokers [4]. This is not fully relevant in a load balancing environment, since
this is based on a network where the brokers are not connected to each other.
When brokers are connected to each other and they both receive messages from
the producers which used this fanout protocol, there is a change the a consumer
ends up with 2 identical the same messages.

This can be useful in a setup where a producer is generating messages meant
for more then one domain, which is not connected to an other domain receiving
these messages. A good example to visualize this can be a news article, when
a new article is created it will spread out with the fanout protocol to every
interested network or consumer.

In example [J]is connection URI visible that can be used to spread messages
on the default multicast discovery network.

11

4 Balancing Load

When talking about load balancing in a network of brokers, there are different
methods or solutions used to achieve balancing effect. These mechanisms and
techniques will be explained here and their usability will be discussed.

4.1 Propagation

Without any propagation in the network and no active consumers, no matter
how big the network is, the messages send by a producer will always remain in
the broker where the messages was send to. When a consumer connects to a
broker and subscribes to the topic where the producer just send his message to,
the messages will get forwarded to the consumer. An example of this behavior
is visualized in figure[l Where P is the producer, A,B,C,D and E are brokers in
a network of brokers and C1 is a consumer. M represents the message producer
(P) sends to the queue of broker A. Without any consumer subscriptions the
message will remain in broker A. When consumer C1 connects to the network
and subscribes (S) to the topic where producer (P) send its message (M) to,
the message will propagate to the network until the consumer consumes it from
broker E.

B-O—O—C

Figure 4: Dynamic propagation of queue messages
Source: Using Networks of Brokers [4]

With static propagation traffic can already be shaped before any active sub-
scription is present on a broker, this can prevent spike network usage when after
a long period a consumer connects to the network and all messages have to be
send at once over all the brokers. Static propagation is implemented on the bro-
ker side, where in the network connector to an other broker staticallyIncludedDestinations
are configured. Where such a destination can be a single topic or an entire queue,
filtering and wildcards are allowed here. This has to be configured the same way
on all the brokers in the path. To use the same topology as in figure [broker
A,B,C,D and E have be configured on their network connectors to statically

12

propagate messages from a certain queue. This is better visualized in figure
Where a producer sends 10 messages to Broker A, these messages are then
forwarded to broker B, then broker C and there they will be divided over broker
D and E. When now a consumer connects to broker E there is no need to send
all messages through the chain of brokers because it is already at broker E.

__[5]
4)
",_] 9 W

. ®
P’H@——@—-@i
NG,

*E

Figure 5: Static propagation f queue messages
Source: Using Networks of Brokers [4]

As seen in this example, when a consumer connects to broker E, he can only
see b messages of the 10 send by the producers. This way there is a potential
risk of stalled messages on brokers. When there are no consumers connecting for
a long time to broker D messages will get stuck there. This configuration is in
good use when there are known consumers on the brokers which have statically
propagation enabled.

4.2 Balancing consumer load

With the default configuration of both the brokers and the consumers there is
already a load balance feature present. That is when a broker has 10 messages
in his queue and 2 consumers subscribe to that queue they both will get an even
number of messages. If the both consumers are connected at the same time and
can handle messages in the same speed. So with default configuration this can
have its benefits, just trow more consumers to a broker if the other consumers
can not handle all the messages from the producers. How ever when you change
the topology, where you connect another broker to the broker where already
a consumer was connected balancing the load over consumers does not always
works the way it should. Because topology and settings are important things
to take care of in setting up the right environment this also works here.

When a producer and a consumer are connected to a broker, the consumer
will receive every message, assuming they use the same queue. When a second
consumer connects to the broker, both the consumers will get an even number
of messages, assuming that they can process each message with the same speed.
So when the producer sends 10 messages, consumer 1 will receive 5 messages,
and consumer 2 will also receive 5 messages.

In an other environment where we have a producer and a consumer connected
to broker A, in line broker B also connects to broker A and broker B then again
has 2 consumers (see ﬁgure@. When the producer sends 12 messages, consumer

13

1 will receive 6 of them, and the other 6 will be send to broker B, where the
messages get dived over consumer 2 and 3. This default behavior is explained
in more detail in section conduit subscriptions.

E1pS

(c2)

3)

Figure 6: Message flow with conduit subscriptions enabled
Source: Using Networks of Brokers [4]

There is also an option which can be configured to disable conduit subscrip-
tion over broker links. As explained in section the conduit subscriptions
protect against duplicate topic messages. So turning this option off requires
some extra configuration to work. When we look at the same example given in
figure [6] but now we disable conduit subscription on the broker link between A
and B. Queue messages will get dived equally over all the consumers connected
to the network. This is because every consumer lets broker A know that it is
interested in messages from the example queue (see figure @

(P)
o, v

Figure 7: Message flow with conduit subscriptions disabled
Source: Using Networks of Brokers [4]

Because in this situation we are talking about queue messages only the

14

conduit subscriptions can be disabled, when it also involves topic messages,
things can go wrong and duplicated messages will be delivered. When a load
balance needs to handle both queues and topics, you might want to disable
conduit subscriptions for optimizing queue messages, but you want to enable
conduit subscriptions for topics to avoid duplicated topic messages and to lower
the usage of a network connector where a lot of consumer subscribe to the same
topic.

Since it is not possible to enable and disable the conduit subscriptions on
one single network connector, you can create multiple network connectors and
apply filtering (see section for queue or topic messages only on each of
the network connector.

4.3 Managing producer load

Managing producer load has little to do with the configuration in the process.
There are not many options which can help reducing the load producers and
consumers can produce. When you want to manage the load in a better way
for producers it is better to change the topology style in the network you have
build or are building.

One way of doing this can be in layers, where the first layer only handles
connections from the producers (can be many) and there are no connections
from consumers coming in. The second layer of brokers is a smaller set of
brokers where each broker from layer 2 connects to each broker from layer 1.
The brokers on the second layer can then function as point where the consumers
can connect to. This way the brokers from the first layer can be optimized to
only handle incoming producer messages and the brokers on the second layer can
be optimized to only serve consumers with messages. See figure[8|how this looks
like. Notice that in this figure the network connectors are all non duplex. This
means that messages will pass in the way the arrows point and subscriptions of
topics and queues only propagate in the opposite direction.

[|
N oy by L |
by 7 SNav b LT T
i |

..”

=

Figure 8: Concentrator topology
Source: Using Networks of Brokers [4]

4.4 Filtering

Load can also be balanced by applying filters on different network connectors.
This can be useful in certain situations where for example an end point in the
broker topology does not need to know information about all topics and queues,

15

but only a specific topic or queue. A nice example for implementing such a filter
is discussed in Using Networks of Brokers [4], where stock quotes are handled.

If we assume that we run a big exchange where multiple cities are connected
to our system, messages to every city and every exchange will come by. When
we for example are in a end broker in New York, maybe we are only interested in
all the stock prices of New York. In the New York broker we can configure that
we only allow messages in a certain destination. Destinations can be created in
different ways as explained in section This way the load on a broker can
be reduced by only allowing certain destinations to pass through.

There is also a way of excluding different destination, while allowing the rest,
when we are interested in everything on the stock marked, but we in New York
are not interested in the stock exchanges that are going on the NASDAQ), we can
exclude those from our broker connection. This example is already discussed in

section and in example

4.5 Topology

Not only configuration is a big issue when you want to create a topology with
brokers, producers and consumers where you want to balance load, the creation
of the topology also plays a very big role.

When you create a topology with only 1 broker, 10 producers and 50 con-
sumers, its most likely that the broker will have to struggle a lot with per-
formance when the producers are sending a lot of messages around. Adding
multiple brokers can already reduce the load where the producers are respon-
sible for. Dedicating one or multiple brokers for consumer connections, this
already reduces the initial load for the one broker mentioned before.

There are different techniques to create a topology. When creating a topol-
ogy it is good to take in mind the default behavior of all the network connectors
and their settings.

The hub and spoke topology in figure [0a] is one of the easiest way of setting
up a network of brokers. The central hub can be used to transfer all messages
around, all connections with duplex enabled, so that every broker can reach
every other broker, the networkTTL is always 2 in this entire network. It is
easy to maintain, the hub only enables one or multiple transport connectors and
every connecting broker initializes the connection to the hub. The downside of
this approach is that if something happens to the central hub, overloading or
has downtime, the entire network suffers from it.

The mesh topology from figure [9] is a network that naturally arises when
you connect brokers geographically with each other and you want to connect to
your neighbors. This topology needs more configuration then the hub and spoke,
but is more robust against failing nodes. The networkTTI increases with every
node which is attached to the outside of the topology, so when configuring this
network, the networkTTL value has special attention if all brokers need to be
reached. Creating 1 management platform where for example the networkTTL
can be configured drastically lowers management overhead.

The complete graph topology from [9¢c|is an example where messages always
will take the shortest route, the networkTTL is always 1 over the entire network.
When manually configuring this topology it can create a lot of problems when
you want to add more brokers, every new broker brings, number of current
brokers + 1 configuration changes. This topology is a nice example how the

16

&H—0
O—&
H—®
O—0O

® O—6—0

’ \ / @

(¢) Complete Graph topology (d) Tree topology

Figure 9: Different topology styles
Source: Using Networks of Brokers [4]

network will be build when discovery is enabled on all of the brokers in the same
broadcast domain. Every broker only configures their own transport connector
to allow discovery and their own network connector to act as a discovery agent.

The tree topology from figure [0d] is a typically example ow how a network
of brokers shall look like after a certain amount of time, where also the physical
topology. First the brokers are setup from multiple domains to connect to root
broker, then after some time other sub brokers are begin connected in side the
local domain to dived the load.

The concentrator topology as already shown in figure [8| can be very useful
when you anticipate that your network will receive a large number of incoming
connections, which can overwhelm a single broker.

17

5 Design and development

In this section the used testbed will be explained in different configurations and
some pieces will be enlightened with configuration examples or pieces of code.

5.1 Test Setup

To start with I created a very small test setup, consisting off 3 brokers connected
to each other with duplex connection. There was no special filtering applied and
no other big changed applied to the setup. The 3 brokers all active on the same
broadcast network and to start with no extra producers or consumers where

inserted in the network.

Figure 10: Initial test setup

<blueprint ... >
<broker brokerName="BrokerA” brokerId="A" ... >
<!—— The transport connectors ActiveMQ will listen to —>

<transportConnectors>
<transportConnector name="openwirel” uri="tcp://0.0.0.0:60001” />
</transportConnectors>

</broker>
</blueprint>

Listing 1: Simple Configuration Broker A

<blueprint ... >
<broker brokerName="BrokerC” brokerId="C" ... >

<networkConnectors>
<networkConnector name="1inkCtoA” uri="static: (tcp://...105:60001)7”
duplex="true” networkTTL="5"></networkConnector>
<networkConnector name="1linkCtoB” uri="static: (tcp://...106:60001)"
duplex="true” networkTTL="5"></networkConnector>
</networkConnectors>

<!—— The transport connectors ActiveMQ will listen to ——>
<transportConnectors>

<transportConnector name="openwirel” uri="tcp://0.0.0.0:60001” />
</transportConnectors>

</broker>
</blueprint>

Listing 2: Simple Configuration Broker C

18

As we can see in figure[10|it is a very simple setup with every node attached
to every node in the network, no special configuration on the “main” broker
A, only a simple open transport controller as we can see in listing [Il In listing
[is visible how the network connectors are setup and broker C creates his
connections to A and B. Broker B has similar configuration only 1 connection
to broker A, since the connection from broker C is in duplex mode.

5.2 Producers and Consumers

Because this configuration was working as the manual said it should do, there
was nothing much to test from this perspective. Because creating some load,
sending some messages to the system seemed to be a good solution, i created
a simple producer based on the example giverEl The producer had a simple
connection to a secondary openwire transport connector on broker A

ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory (”tcp://...105:60002”);

Listing 3: Simple Producer URI configuration

The producer was sending 25 messages on the queue “TEST.NICK” and
with a very simple consumer these messages where consumed from a different
broker. This example showed that the all the messages send from the producer
to broker A, nicely stayed on broker A until a consumer joined the network
and subscribed itself to the test queue. When the consumer subscribed to the
test queue it was visible that the messages left broker A, to be forwarded to
the broker where the consumer was connected to. When only a few messages
where consumed the rest stayed on that broker. This behavior is already been
discussed in this report and is a nice example of stalled messages.

A consumer has almost the identical connection setup as the producer, as
showed in listing [3] But for testing and better read-ability the consumer con-
nects to an other broker and again a different transport connector on that bro-
ker. When executing tests with multiple thousands of messages, it was nice to
see incoming and out going connections on different port numbers to categorize
them.

5.3 Changing Settings

As shown there are only small changes made to the default configurations, where
duplex is set to true and the networkTTL has been increased. The duplex
mode was done to be able to connect any consumer or producer anywhere in
the network and that all the messages on the queues where spread around. The
networkTTL has to be high enough to reach any point in the network, taking
any route. Because the maximum route possible to take consumes at least 2
brokers, the networkTTL has be 2 or higher, I set it to 5 so that the configuration
could change over time.

4Websource: http://activemq.apache.org/hello-world.html

19

http://activemq.apache.org/hello-world.html

5.4 Tests

To test out of the options from the default and adjusted configurations where
working as expected i applied some tests to my setup. The three brokers from
the start are still there, only the connections to them are removed. Every broker
is in its own little network. The producer has a failover connection string, so
that when a broker is not answering in time or tells the producer to back off a
little, the producer can send it to the other brokers. By default when creating
a failover URI the connections are made randomly, meaning every broker in
the URI will get around the same amount of messages. Because that was not
something that i wanted to test out, that value was changed to false. This way
the first broker is always the preferred one, when that one is failing the second
is chosen or at last the third.

public static void main(String[] args) throws Exception {
for (int i=0;i<3000;i++){
thread (new HelloWorldProducer (), false);

}
Thread . sleep (15000);
System.out.println (”Done”);

public static class HelloWorldProducer implements Runnable {
public void run() {
try {

ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory (” failover:” +
"(tep://...105:60002 ,tcp://...106:60002,” +
"tep://...107:60002)?randomize=false”);

producer .send (message);

Listing 4: Simple spam Producer

When executing this code on a single broker this already overloads the bro-
ker. Because there is no timeout in the first for loop this creates a lot of messages
within a short time frame. The 3000 is also because when we go higher, 5000 for
example there where some difficulties with the connection states. The reason
why the brokers are not connected to each other in this test is to see how many
messages will end up on each broker. When the brokers are connected, there is
no good way of telling how many messages there are in each broker. For that I
also used a slightly modified consumer, which connects to 1 broker, counts the
messages, and then rerun on the other brokers.

When executing the code from the producer [4] it was already visible in the
brokers that it cost a lot of load to handle all these requests. The same also
holds for the consumer [5] where it only connects to one broker. Because the test
was more in the sending then the retrieving of the messages, i added a small
delay in the consumer so that i could collect all messages without overloading
the broker non stop.

When executing the test it already became quite clear that the mechanism
of failover works quite well, when sending all message in the same speed to
the brokers, most of them ended up on the first broker in the connection URI
(Broker A), and the rest of the messages ended up on both broker B and C.
After running this test twice it became clear that this was default behavior and

20

the results where about the same. Then for testing with not only the load of the
producer, T also used the program stress Eﬁn combination with nice Hto create
load on one of the brokers time for time.

public static void main(String[] args) throws Exception {

for (int i=0; i<3000;i++){
thread (new HelloWorldConsumer (), false);
Thread . sleep (25);

}
Thread . sleep (10000);

System.out.println (”Done:.” + count);

}

public static class HelloWorldConsumer implements Runnable,
ExceptionListener {

public void run() {
try {
ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory (” failover :(tcp://...107:60004,” +
tep://...107:60003)7?randomize=true”);

if (message != null) count++;

Listing 5: Messages counting consumer

Because the broker was running under the same user as the stress command
and both the programs had the same priority, test results did not came out as
expected. The broker still used some CPU power while the stress command
should have consumed them all. There fore i used the tool nice to decrease
the nice value (Increase the priority) of the stress command will executing the
next tests. Using the stress command with all options enabled, CPU, HDD, 10
and VM, made sure that the broker was busy enough to create some different
results.

As shown in table [2| the first 2 runs there was no extra load generated on
one of the brokers, messages mostly go to A but also some to B and C. When
we stress broker A it is visible that only a very small amount of messages gets
there and the rest goes to B and C. Where broker B has almost all messages.
When we stress broker B it is visible that broker A gets almost all messages B
almost none and the rest is for C. Almost the same holds for stressing broker
C.

When you look at the first test and the second, you wont expect that much
of a difference, but actually there is. When we take a closer look at the first test
we see that broker A has around 1400 messages and both broker B and C around
750. All messages where send in a very short time frame, where initially they
have to go to broker A, when broker A is busy or overloaded by the requests
back off messages will get send back from time to time. This is the time where
the next broker in line is contacted to deliver to. All initial connections go to
broker A, when after some time out period there is no answer, or there is back
off message, other brokers will get contacted.

Shttp://weather.ou.edu/~apw/projects/stress
Shttp://en.wikipedia.org/wiki/Nice_(Unix)

21

http://weather.ou.edu/~apw/projects/stress
http://en.wikipedia.org/wiki/Nice_(Unix)

Stressed: | None | None A A B B C C
Broker A 1442 | 1370 122 156 | 2298 | 2236 | 2054 | 1753
Broker B 795 953 | 2111 | 2038 94 | 167 | 808 | 1096
Broker C 763 677 | 767 | 806 | 608 | 597 | 138 | 151

Table 2: Test Results

When we look at the third test you would suspect that a lot more messages
will end up on broker C then there are now. But when we think back how this
mechanism works it makes more sense, because broker A is so overloaded it will
reject a lot of messages and a lot of messages will receive a time out. Because
this tests also takes a lot longer to complete, the rate at which the messages
ends up on broker B is a lot slower then they arrived at broker A in test one
and two. This way broker B can handle a lot more messages then broker A in
the firsts tests.

Also because of this behavior it is visible that in test five and six (Broker B
stressed) A gets a lot more messages. While in tests seven and eight (broker C
stressed) broker A will receive again less messages because B can handle more
then previous tests.

5.5 Extra

As shown in table 2] I only conducted 2 test runs on each stress test on a
broker, nothing where I change the parameters of the servers to tweak or work
together to balance load in other ways. This was due to the fact that these
tests where only conducted in the last day of my research. Due to the failed
initial installation and the more theoretical approach of this research, the test
are only seen as extra and are there to proof in the smallest sense how and
that the load balancing works. Because these tests where conducted on a single
server running multiple Virtual Machines, the stress command also had effect on
the entire machine. Therefore testing on different kinds of hardware, different
locations and over different kind of connections can show other test results then
displayed here.

22

6 Conclusion

When looking back on the entire research and the included research question,
the goal is not ultimately met. The goal of the research was to investigate
in a real time load balancing mechanism, to automatically balance load in real
time services operations. Because the configuration options within the FuseESB
platform won’t allow values which can make this happen.

Reading into everything because the lack of knowledge when starting the
research took quite some time. After reading all matrial for a week, implement-
ing the demo source code from the UvA testbed seemed a good start to setup
and investigate into the possibilities within FuseESB software. The first try to
recreate the test bed did not worked out because the wrong module was used.
After discussion an other angle of investigation was used where the configura-
tion options within the FuseESB software are investigated and figured out if
these are useful within a big implementation. Creating a test setup where the
load balancing options could be tested was successful, however implementing
the source code from the earlier testbed did not worked out well.

There are inside the FuseESB environment a lot of configuration options
available which result in various ways of balancing load, none of them really
reflect to that goal we are trying to achieve. All the options rely most of the
time on link basis, this means based on the network connectors that are created
too and from brokers. When configuring options for these network connectors
most of the time the network connection is setup on a static way. This does not
work within an environment where most of the network connections have to be
created on a dynamic way.

This reflects to the option where filtering is used, when a topology is made
in advance filtering can have a lot of benefits on the load of the links between
brokers or sites. But when filtering is applied on every new network connection
which will be made dynamically this can work against the goal of that newly
created broker.

Creating a dynamic network connection is only possible with discovery or
updating the configuration file on every broker and update the running config-
uration. When discovery is enabled, which has its pros and cons, all settings to
the discovery connector applies to all the connections made with the discovery
protocol.

When setting up a network of brokers, the topology plays a big role in the
success of the created network. When creating a bigger network which consists
out of multiple sites, which are or are not geographically totally different, set-
ting up static brokers on the edges to communicate with each site can be very
beneficial. Inside a site there can be taken advantage of the discovery protocol
to discover all the brokers, but setting up one or more static brokers to always
rely on can be very useful too. The discovery protocol can be useful to auto-
matically create a full mesh topology so that in a site every broker has a direct
connection to any other broker. So that producers and consumers can attach
every where and be connected inside this network of brokers.

When there is a certain situation where there are a lot of producers, as ex-
plained earlier, the previous topology is also something that you do not want.
So thinking about how the network is going to look like can be the biggest gain
in such a load balancing ESB platform. Create solid end to end point through
multiple sites, setup discovery for a lot of joining and leaving of consumers/pro-

23

ducers, when a lot of traffic is expected plan for it.

7 Summary and future work

7.1 Results achieved

The presented report provided analysis of load balancing methods in applica-
tions to ESB platform for services composition and proposed that creating a
good topology already contributes in balancing load and setting up predefined
paths can help in some cases to increase performance. Setting up basic fail
over connectors showed that that could be accomplished quickly and broker
independently.

Due to the time limits for the presented research, it was not possible to fully
design and test a module which could dynamically informs other brokers of the
current load and status of the running service. Future work will include creating
such a module, which informs other brokers of current load statuses. Based on
these assumptions creation of new brokers can be redirected or placed on totally
different server or other underlying created service, other routes can be used to
transfer messages to reduce the load on the overloaded service.

Creating a setup with all normal settings on a small environment already
showed that configuring fail over and connectors was a feasible option. Using
this knowledge it can help in future research based on this.

There is no research been done in this field, no publications are made where
balancing load in any way is researched within an ESB based platform, finding
references to papers therefore was not easy and hard to start with.

7.2 Lesson learned

Having prior knowledge of the ESB platform and all of the functions and imple-
mentations, can have great advantages before starting to investigate further on
this matter. Because this already took away a week of the research time before
I could continue investigating in the documentation found.

The demo source code worked with a different underlying system of creat-
ing and deploying virtual machines, recreating this setup to test newly created
modules can proof its work better then the setup created this research without
the working source code. When such a setup is created, document it so that
recreation takes less time to set up. Loosing time setting up a system that in
the end will not work with the provided tools is not a nice starting point.

7.3 Future research

Future work will include creating the load monitoring module, which could in-
form the network of brokers about current load status. In wider scope, the
future research can look into creating a larger test scenario where multiple ma-
chines and different sites are used. This should create a better real life example
that reflects the typical topology (multi domain / multiple sites) that should
allow wider and more targeted experimentation.

24

8

References

References

[1]

(6]

Yuri Demchenko Canh Ngo Pedro Martinez-Julia Elena Torroglosa Mary
Grammatikou Jordi Jofre Steluta Gheorghiu Cees de Laat. Gembus based
services composition platform for cloud paas. 2011.

FuseSource. Fuse M@Q Enterprise - Connectivity Guide, 7.0 edition, Apr
2012.

FuseSource. Fuse M@ Enterprise - Fault Tolerant Messaging, 7.0 edition,
Apr 2012.

FuseSource. Fuse M@ Enterprise - Using Networks of Brokers, 7.0 edition,
Apr 2012.

M. Grammatikou C. Marinos S. Kafetzoglou P. Martinez-Julia Y. Dem-
checko R. Hedberg J. Jofre S. Gheorghiu A. Perez-Morales E. Torroglosa M.
Debowiak L. Dolata K. Dombek M. Gorecka-Wolniewicz T. Wolniewicz S.
Milsom. Gembus cookbook. march 2012.

Canh Ngo Yuri Demchenko. Joint gembus/esb testbed at uva. 2011.

25

A Appendix

A.1 Client Configuration
A.1.1 Failover connection URI

failover: (tcp://host—a.com:61616 ,
tcp://host—b.com:61616)?initialReconnectDelay =100

Listing 6: Client failover connection URI

A.1.2 Discovery connection URI

discovery://(static://(tcp://host—a.com:61616))

Listing 7: Client static discovery connection URI

A.1.3 Discovery multicast connection URI

discovery://(multicast://default)

Listing 8: Client multicast discovery connection URI

A.1.4 Fanout URI

‘ fanout://(multicast://default)

Listing 9: Fanout multicast URI

A.2 Broker Configuration

A.2.1 Default transport connector

<transportConnectors>
<transportConnector name="openwire’
uri="tcp: //0.0.0.0:61001” />
</transportConnectors>

5

Listing 10: Default broker transport connection

A.2.2 Default network connector

<networkConnectors>
<networkConnector name="linkToBrokerB”
uri="static: (tcp://localhost:61002)”
networkTTL="5" duplex="true” />
</networkConnectors>

Listing 11: Default broker network connection, duplex enabled

26

A.2.3 Static propagation

<networkConnectors>
<networkConnector name="linkToBrokerB”
uri="static: (tcp://localhost:61002)”
networkTTL="3">
<staticallyIncludedDestinations>
<queue physicalName="TEST.FOO” />
</staticallyIncludedDestinations>
</networkConnector>
</networkConnectors>

Listing 12: Static propagation

A.2.4 Destination filtering

<networkConnectors>
<networkConnector name="linkToBrokerB”
uri="static: (tcp://localhost:61002)”
networkTTL="3">
<dynamicallyIncludedDestinations>
<queue physicalName="TRADE.STOCK.>"” />
<topic physicalName="PRICE.STOCK.>"” />
</dynamicallyIncludedDestinations>
<excludedDestinations>
<queue physicalName="TRADE.STOCK.NYSE.*” />
<topic physicalName="PRICE.STOCK.NYSE.*” />
</excludedDestinations>
</networkConnector>
</networkConnectors>

Listing 13: Destination filters, included and excluded

A.2.5 Shortest route

<networkConnectors>
<networkConnector name="linkToBrokerB”
uri="static: (tcp://localhost:61002)”
networkTTL="3"
decreaseNetworkConsumerPriority="true” />
</networkConnectors>

Listing 14: Network connector for choosing the shortest route

A.2.6 Multicast discovery Agent

<transportConnectors>
<transportConnector name="openwire”
uri="tcp://localhost:61001”
discoveryUri=" multicast: //default” />
</transportConnectors>

Listing 15: Enabling a Discovery Agent on a Broker

A.2.7 Fanout protocol URI

fanout: //(multicast://default)?initialReconnectDelay=100

Listing 16: Fanout protocol URI

27

A.2.8 Seperate topics and queues

<networkConnectors>
<networkConnector name="queuesOnly”
uri="static: (tcp://localhost:61002)”
networkTTL="3" conduitSubscriptions="false”>
<dynamicallyIncludedDestinations>
<queue physicalName=">" />
</dynamicallyIncludedDestinations>
</networkConnector>
<networkConnector name="topicsOnly”
uri="static: (tcp://localhost:61002)”

networkTTL="3">
<dynamicallyIncludedDestinations>
<topic physicalName=">" />
</dynamicallyIncludedDestinations>
</networkConnector>
</networkConnectors>

Listing 17: Separate configuration of topics and queues

28

	Introduction
	Project objectives
	Problem statement
	Research questions
	Project layout

	GEMBus as a platform for Cloud based services composition
	Composable Services Architecture (CSA)
	GEMBus

	Overview Load balancing technologies and practices
	Broker network connectors
	Duplex or non Duplex
	Network TTL
	Conduit subscriptions
	Filtering

	Discovery
	Failover
	Discovery
	Fanout

	Balancing Load
	Propagation
	Balancing consumer load
	Managing producer load
	Filtering
	Topology

	Design and development
	Test Setup
	Producers and Consumers
	Changing Settings
	Tests
	Extra

	Conclusion
	Summary and future work
	Results achieved
	Lesson learned
	Future research

	References
	Appendix
	Client Configuration
	Failover connection URI
	Discovery connection URI
	Discovery multicast connection URI
	Fanout URI

	Broker Configuration
	Default transport connector
	Default network connector
	Static propagation
	Destination filtering
	Shortest route
	Multicast discovery Agent
	Fanout protocol URI
	Seperate topics and queues

