UNIVERSITY OF AMSTERDAM

SYSTEM & NETWORK ENGINEERING

Performance optimisation of webmail

July 4, 2013
Authors:
PERIKLIS STEFOPOULOS perilkis.stefopoulos@os3.nl
KATERINA MPARMPOPOULOU katerina.mparmpopoulou@os3.nl
Supervisor:

MICHIEL LEENAARS

mailto:perilkis.stefopoulos@os3.nl
mailto:katerina.mparmpopoulou@os3.nl

Performance optimisation of webmail

Abstract

E-mail is the dominant communication mean over Internet, which generates a signifi-
cant amount of network traffic. Over the world hundreds of millions of end users depend
on Webmail technologies. This paper presents a detailed analysis of the effectiveness
of four different open source Webmail services: Squirrelmail, Roundcube, Horde and
Afterlogic. All of these services are combined with three different IMAP backends in
order for the most efficient solution among these to be found. We mainly focus on the
most common actions that users perform, such as searching through their Webmails for
a certain message or displaying the entire inbox folders. We make our evaluation in two
different dimensions: from a user experience perspective and from a system performance
perspective.

Performance optimisation of webmail

Contents
(1__Introductionl 1
(L1 Related Worklo 2
1.2 E-mail System Components| 2
1.3 E-mail System Protocols| oo oo 4
AbD 6
2.1 Metricd e e e 6
2.2 Data gathering] 7
[3 Experiments| 9
3.1 Experimental Environment| 0000000 9
3.2 Fmail Backendsl. oo 9
B2T PostAxl. o 9
[3.2.2 Security Modules| o oo 10
B.23 Dovecotl o 10
B24 Courlerl e 12
.................................. 12
3.3 Webmail Frontendso oo oo 13
[3.3.1 Squirrelmailf 13
.32 Roundcubelo 13
13.3.3 Afterlogic Webmail Lite] 13
B.34 Horde IMP| o 15
3.4 Experiments|. 15
[4_Results| 17
4. atencylo 17
[4.1.1 Fetching messages| L. 17
4.1.2 Searching from the "Subject”|o 18
[4.1.3 Searching from the entire message| 21
4.2 CPU time & Memory consumption| 25
__Conclusions| 30
[6_Future Workl 31

[Cist of Figures| 32

: 33

Performance optimisation of webmail

1 Introduction

The moment in 1971 when the first message was sent between two computers via the
ARPANET network, marked an important step in the evolution of human communica-
tion. Over the years, developments in computer and Internet technology have rendered
e-mail an essential tool which soon became the dominant communication mean over In-
ternet. Although e-mail is still one of the most used Internet services, which generates
a significant amount of network traffic, it has not evolved much and has stayed pretty
constant.

At present the existing e-mail systems enhance the basic e-mail functionality, that of
sending and receiving quick messages, providing more features. DomainKeys Identified
Mail (DKIM), Pretty Good Privacy (PGP), Secure/Multipurpose Internet Mail Exten-
sions (S/MIME), and various antispam and antivirus filters are some of them. Webmail
is one of the most common services that e-mail providers provide to their customers.
Webmail systems gather all the e-mail characteristics while large software companies
focus on their continuous development in order to meet the new demands of the users.
On the other hand, open source webmail system solutions are often a neglected area of
development.

An open source webmail solution has essential advantages over a proprietary one, such
as customizability, security, interoperability with multiple backends, and certainly the
zero cost. Our primary motivation is to understand the key factors that limit the per-
formance of these webmail systems and subsequently help their further development.
Thus, the following research question is defined:

What are the bottlenecks, in terms of performance, of current Webmail implementa-
tions and which could be the most optimal solution?

A webmail system consists of a webmail application as the frontend and a classical
e-mail service as a backend. In this research the focal point is to profile the performance
of accessing the mailbox of different types of users from the web interface of an integrated
webmail system. We characterize and analyze the results of all experiments that have
been carried out, using three metrics: latency, Central Processor Unit (CPU) time and
memory usage.

The structure of this paper is as follows: At first, the e-mail system components and the
major e-mail protocols are described, followed by the Approach (Chapter [2) where the
used metrics and the way the data was gathered are presented. In Chapter 3| the Exper-
imental Environment is defined along with a short description of the webmail frontends
and backends that were used, concluding with the definition of the conducted experi-
ments. Afterwards in Chapter [the Results are presented. The Conclusions, in Chapter
summerize our findings and provide the answers to the research question while the
Future Work (Chapter @ gathers our ideas concerning all the further research work that

Performance optimisation of webmail

needs to be done.

1.1 Related Work

There is a limited number of research papers published on webmail servers/applications.
In a recent work [I], the authors compare the performance between mail and webmail
services over Cellular networks and also identify the different factors, related to the net-
work configuration, which affect it. Throughput, which has defined as the amount of
bytes transferred at the TCP layer divided by the total duration between the first and
the last packet of the connection, is used as the main performance metric. They show
that performance is significantly degraded in the case of the mail service compared to
the webmail.

Wang and Hu [2] present a performance analysis on an Internet Service Provider (ISP)
mail server. Modifying and using the SPECmail2001 as a benchmark, they evaluate the
performance of the mail server based on realistic network connections, disk storage and
client workloads. Several important results arrived through that research, such as the
considerable impact of 1/O latencies in the data transfer time of the e-mail requests.

The most relevant research to us has been done from Patrick Appiah-Kubi et al. [3].
They describe the architecture and the design of a Webmail server that runs on the bare
hardware without an Operating System acting as the middleware. After conducting
experiments, simulating common Webmail transactions, they conclude that their imple-
mentation gives better performance in terms of processing time.

1.2 E-mail System Components

An ordinary email system can been seen as a collection of distinct and possibly geo-
graphically separated components. Each of these components is organized to accomplish
a specific function or a set of functions in the process of sending or receiving email. For
most users, the operations that they perform are transparent. There are five basic types
of functionality in an email system which make feasible the store-and-forward services
of an electronic message.

When the user wants to compose or read an electronic message he or she contacts the
Mail User Agent (MUA), more commonly referred to as email client. In its original form,
it is a software program which runs on the user’s local computer. Mutt, Pine, Mozilla
Thunderbird and Microsoft Outlook are some of the well known MUAs. Web based
email clients, like Squirrelmail, have the advantage of not requiring any software install
or maintenance. The delivery process starts with the Mail Submission Agent (MSA)
accepting the outgoing message from the MUA. An MSA acts as a submission server,
which determines whether the messages should be accepted. According to RFC 4409

Performance optimisation of webmail

[4], an MSA can also deliver the message or relay it to a Mail Transfer Agent (MTA).
Most of the times, the MSA is either an integrated piece of a MUA, such as in the case
of Pine, or of an MTA.

The MTA is the component that in fact transfers the message towards its proper des-
tination using client-server application architecture. Unix Postfix, Sendmail, Exim and
Microsoft Exchange Server are examples of MTAs. After receiving a message, the MTA
applies a "Received” trace header to the message’s header. Cumulatively the ” Received”
headers that the different MTAs append aim to provide information on the message ori-
gin and on the route that the message has taken before reaching its destination. Once
the message’s recipient is a local user, the MTA passes it to the Mail Delivery Agent
(MDA) for the final delivery, otherwise the message is relayed, that is, forwarded to
another remote MTA. Although sometimes the MDA is a separate program, in most
cases it will be a part of MTAs. Maildrop and Procmail, for instance, are such agents
which offer message delivery to the user’s mailbox.

MSA

MUA—————» MTA
L—’ client j
//:;

5
>

MTA server
server

R w
MTA SMEAAer gnt

client
mail server mail server

‘_

accepted
=
o
>

S

spool

individual
mailboxes

Figure 1: Major e-mail Components

The most common scenario today is that the users are connected through Internet to
the mail server in order to receive their new emails. Usually MUAs do not have a direct
access to the message store, the place where the MDA stores the incoming mails for the
individual recipient. Here is where the Mail Access Agent (MAA) comes. Its responsibil-
ity is to interact with the message store on behalf of the MUA after the latter’s explicit
request [5]. Dovecot, Cyrus and Courier are included in this category of agents, among
others.

Finally, in some situations users or sites use a program which acts as a Message Re-
trieval Agent (MRA) in order to send or retrieve messages. The MRA periodically

Performance optimisation of webmail

establishes a connection to the MAA to retrieve the messages from the server message
store and stores them locally. Typical examples of MRAs are getmail and fetchmail.

1.3 E-mail System Protocols

Email, although it is simple to use, relies on several standards and protocols. These
protocols work together and govern both the way the different email system components
communicate to each other as well as the definition of message formats, in order for
the message to be handled, transferred and delivered properly. The most important
email system protocols are the Simple Mail Transfer Protocol (SMTP) for sending email
messages and the Post Office Protocol (POP3) or the Internet Message Access Protocol
(IMAPv4) for retrieving them.

SMTP, as defined in RFC document 2821 [0], is a standard transportation protocol
which provides reliable and efficient email transfer. Basically, when an SMTP email
client contacts an SMTP server, the latter through a set of commands authenticates the
identity of the former (the credentials that the former obtains) and then accepts the
message. Subsequently, the SMTP server looks up the recipient’s mail server and directs
the transfer of the mail accordingly. Obviously, a MUA can act as an SMTP client, while
the role of the SMTP server can be assigned to an MSA or MTA. The other purpose of
SMTP is to allow the relay of mail messages toward their final destinations.

According to RFC document 4409 [4] when email is submitted from MUA to a MSA it
uses the Extended SMTP on TCP port 587 but many MTAs also allow submission on
TCP port 25. The MTA-MTA communication is done using TCP port 25. In order to
provide integrity, confidentiality and authenticity SMTPS can be used. SMTPS is not
a new protocol or an extension to SMTP, it is only the way to secure SMTP on the
transport layer. Client and Server use SMTP at the application layer and SSL/TLS at
the transport layer.

The SMTP can be described as a connection-oriented, text-based protocol in which
the SMTP client (MUA or MSA or MTA) initiates a session with the SMTP server
(MSA, MTA) and within this session the SMTP transactions take place. This transac-
tion starts with the MAIL FROM: "<address>" command which specifies to the receiver
that is about to receive a new message and also the sender address. After a non erro-
neous response from the SMTP server the recipients of a message are defined using the
command RCPT TO:<address>. Finally, the command DATA is used and if the server
replies with 354 End data with <CR><LF>.<CR><LF>, the actual message is sent as a
succession of lines of text. The end of the message is denoted by a period on a line of
its own.

Post Office Protocol (POP) is an e-mail retrieval protocol. It is also a client/server
protocol as SMTP. The e-mail client establishes a TCP communication session with the
e-mail server, on port 110, to retrieve the e-mail messages and stores them in the local

Performance optimisation of webmail

mailbox. After the control commands have been successfully transferred through the
communication channel and the server has responded positively, the user can download
the emails from the server to client, having the option to remove them from the server’s
message store. These messages are stored locally on the user’s hard disk, saving stor-
age space on the server. Since the user may have multiple systems on which he or she
retrieves mail, this may lead to consistency problems in cases where the user wants to
view the e-mail data from a different machine.

Version 3 of POP, which is the current standard, is simple and without many resource
requirements. Thus, the configuration is transparent and not prone to errors. Unlike
SMTP, POP3 uses authentication by default. Also Simple Authentication and Security
Layer (SASL) extension is supported by POP3 since RFC 5034 [7]. POP3 can be de-
ployed using TLS connection for providing encryption and integrity protection on the
transport layer. There are two ways for this to be done. Either by establishing a TLS
connection on port 995, in which POP3 transaction (POP3S) takes place, or by issuing
the STARTTLS command in an existing unencrypted POP3 session to upgrade it to
TLS. More details are discussed in RFC 2595 [§].

Internet Message Access Protocol (IMAP) is also used to retrieve e-mail messages from
the server to the client. It is a connection-oriented, text-based protocol in which a MUA
communicates with an MAA by issuing command strings and supplying necessary data
over a reliable ordered data stream channel, typically a Transmission Control Protocol
(TCP) connection over port 143. The standard defines that the messages are left to
the server message store rather than downloaded locally. This implies a synchronization
between the MUA’s and the server’s mail store. Webmail applications do not store the
messages locally, this is the reason why they use IMAP instead of POP3.

RFC 3501 [9] defines the curent version, IMAP version 4 revision 1 (IMAP4revl). Al-
though IMAP4 is not as simple as POP3, it offers more features and flexibility to the
user, such as providing mail subfolders on the server and concurrent access to the same
mailbox from different clients. RFC 4959 [10] defines the IMAP extension for SASL
authentication while RFC 2595 [8] defines the support for TLS encryption on the trans-
port layer. Also two options are available for encryption, IMAPS on port 993 and the
STARTTLS command for upgrading an unencrypted session to TLS.

Performance optimisation of webmail

2 Approach

2.1 Metrics

The purpose of our analysis is to evaluate the performance of webmail services. To this
end, we characterize and analyze the results of all experiments that have been carried
out, using three metrics: latency, Central Processor Unit (CPU) time and memory usage.

Latency is an important performance metric for a great deal of applications within

CPU

the service provider industries and is closely related to the end-user experience.
Identifying the sources of delay in webmail systems is of critical significance for
their further optimization and fine tuning. Before presenting our results we need
to specify the way we define latency. In this paper, the term latency deals with
the delay between the client request and the first packet of the server response.

A webmail system consists of a backend and a frontend component. When the
user makes a request, these two components exchange and process IMAP messages
causing delays. More specifically, the following sources of delay exist:

- The backend processing time. It is the amount of time needed by the backend
component to process the requests coming from the frontend.

- The frontend processing time. It is the amount of time needed by the frontend
component to process the requests and the responses coming from the end-
user and the backend component respectively.

- The latency incurred due to the communication between the backend and the
frontend component.

Although the term latencyﬂ is not the most appropriate one, we make use of it in
order to refer in the summation of these various types of delays.

time is the total amount of time for which the CPU is dedicated to a process and
does not include the time which has been spent waiting for I/O or running other
programs [I1]. According to [I2], CPU time can be calculated by the equation:

CPU time = Number of CPU cycles to execute a program x Cycle time

In particular, in a system with more than one processor the CPU time of an
application is the sum of the time that each processor spends for the execution
of this specific application. We consider CPU time as a substantial metric in
determining how CPU-intensive a program is. Moreover, it is directly associated
with throughput; the less time a program uses the CPU, the longer the central
processor is available, the more processes can be executed without waiting, thus
maximizing the throughput.

IThe term latency is used to describe the delay between a user request and the service response due to
network delays because the processing of a user request during that time is latent (in a state of rest
or inactivity).

Performance optimisation of webmail

Memory usage is another important figure of metric related to measuring performance.
This is because when a software program needs to allocate memory, both for its
code and for data, it takes time and binds resources. Hence, the overall perfor-
mance of the system is affected.

In our research we measure the physical memory usage taking into account not
only the amount of memory used exclusively by the process, but also the shared
memory that the application has access to. The fact that large amount of memory
pages are shared between multiple programs complicates the decent measurement
of memory usage. Two metrics are taken which give us an overall view of the
actual memory usage:

- The Unique Set Size (USS) which is the unshared memory that a process
uses.

- The Proportional Set Size(PSS) which is the portion of the shared memory
that the process has access plus the unshared memory (USS).

The Resident Set Size (RSS), although in many cases is used as a standard to
describe the memory usage, is an overestimated metric because takes into account
all the physical memory that is shared among several processes and not the specific
portion. Consequently this metric is not used in this research paper.

For selecting the above measurement metrics, their characteristics, such as linearity,
reliability, repeatability and consistency were considered. We believe that these met-
rics meet our requirements, allowing for accurate comparisons, thus leading to correct
conclusions.

2.2 Data gathering

Data gathering is done through a selected set of tools:

sar [I3] is a tool that is contained in the sysstat package. It provides the administrator
with a set of reports about system’s activity, such as CPU utilization, I/O transfer
rates and memory and swap space utilization.

smem [I4] reports physical memory usage, taking shared memory pages into account,
offering a more accurate representation of the amount of memory used by each
process.

tcpdump [I5] is an application that prints out a description of the contents of packets
on a network interface.

Whireshark [10] is a network protocol analyzer that lets you interactively browse packet
data from a live network or from a previously saved capture file.

To measure the efficiency of different Webmail services and subsequently propose a com-
plete integrated solution, the above tools were used to extract data for each of the
predefined metrics. Concerning latency, the tcpdump command was used to capture

Performance optimisation of webmail

only the http traffic (port 80) and write the output to a ﬁleﬂ Afterwards, this captured
file was analyzed with the help of Whireshark. The latency was calculated by subtract-
ing the timestamp of the request from the timestamp of the response.

CPU time values were extracted using CPU utilization, reported from the sar in in-
tervals of 1 second. This CPU utilization is expressed in percentage of time of the
available CPU time. Given that in our experiments we use 4 processors, the available
CPU time during 1 second of elapsed time is 4 seconds. This can be formulated:

CPU time = CPU utilization * available CPU time =
CPU utilization x elapsed time x number of CPUs

Finally, for the memory utilization, the smem tool gave us all the required data[ﬂ More
precisely, we limit its output setting the -P parameter followed by the target process.
Table summarizes our metrics and for each one of them the way in which their
corresponding values were derived.

’ Metric ‘ Extraction method
Latency tepdump/Wireshark
CPU time systat/sar
Unique Set Size (USS) smem
Proportional Set Size (PSS) smem

Table 1: Benchmark metrics and their extraction method

2tecpdump port 80 -w file.pcap
3smem -P <process_name >

Performance optimisation of webmail

3 Experiments

The following chapter explains the experiments that were conducted. First the environ-
ment is described, in which these experiments took place. After that, each individual
component is analyzed. Finally, in section the experimental variables are explained
along with the experimental procedure.

3.1 Experimental Environment

To identify and analyse the bottlenecks of different Webmail systems, a stable experi-
mental environment was built. A Dell PowerEdge R210 II server is the actual physical
machine which hosts the different IMAP backends and the Webmail applications. More
specifically the installation of a hosted hypervisor make it feasible for a number of dif-
ferent Virtual Machines (VMs) to run on the server. The base Operating System (OS)
running on this server is Ubuntu-12.04.2 with kernel version 3.5.0. The hypervisor is
Xen version 4.2.1 [I7]. In addition to Xen Hypervisor, the Bind DNS server was also
installed on the base machine and configured with the proper MX records. In this way,
the mail exchanger (MX) records for our email servers could be resolved to an IP address
and subsequently receive e-mail messages.

On the top of Xen, three different email solution backends and four different Webmail
servers were set up. In all our backends we chose Postfix version 2.10 [18] as the MTA
service along with Amavisd 2.8.0 [19], Clam Antivirus 0.97.8 [20] and SpamAssasin [21]
as antispam and antivirus security modules. Moreover, all the email systems make use
of a MySQL database scheme (MySQL Community Server 5.6.12) for managing user
accounts and e-mail forwarding due to the flexibility, security and efficiency it offers.
What distinguishes these machines is the installed MAA server on it. Cyrus along with
the cyrus-sasl authentication module, Courier and Dovecot are the different IMAP server
that were selected for the three backend VMs.

Squirrelmail, Roundecube, Horde and Afterlogic are the Webmail applications that were
set up in the remaining VMs. Their choice based on the fact that they are among the
most well known open source web frontends to mail servers in the hosting industry.

In our experimental setup all the virtual machines that were laid on the Xen Hyper-
visor have the following hardware and OS configuration: 2 GB of memory, 20GB of disk
using EXT3 file system and Ubuntu version 12.04 (Precise Pangolin).

3.2 Email Backends

3.2.1 Postfix

At present Postfix is the most widely used Unix mailer. Developed by Wietse Venema in
1998, Postfix as a complete MTA package was aimed to replace Sendmail. A great part
of its success is due to its modularity. Modularity allows to disable some functions that

Performance optimisation of webmail

are not used and in this manner the execution of the functions that they are needed is
quicker, making the overall performance better. However, its core functionality remains
the same as any other’s MTA. Postfix does not run exclusively in root mode, instead
of a master program, referred to as the ”master daemon” runs as the root and spawns
off processes to handle the different functions. This implies a more advanced security
level and even if a process is being compromised, the rest of the email functionality will
remain intact.

Another implementation advantage is that the configuration of Postfix is pretty straight-
forward as it basically depends on two configuration files; the "main.cf” and the "mas-
ter.cf”. The first one contains parameters that are used by the Postfix programs while
the "master.cf” contains the parameters that Postfix master program uses when runs
the other core processes. In its key characteristics stability is also included, in terms
that the Postfix server can continue to be up and running independently of a component
failure.

Postfix is a feature-rich MTA software. It supports many protocols such as TLS en-
cryption and authentication, IPv6, Multipurpose Internet Mail Extensions (MIME),
multiple SASL authentication implementations (Cyrus, Dovecot), DomainKeys Identi-
fied Mail (DKIM), DomainKeys and SenderID authentication (via Milter plug-in) and
PKI-less TLS server certificate verification based on DANE (DNS-Based Authentica-
tion of Named Entities). Additionally, it supports a large number of databases such as
Memcache database, SQLite database, CDB database, PostgreSQL database, MySQL
database, Berkeley DB database and DBM database.

3.2.2 Security Modules

There are many spam filtering tools and antivirus solutions available. Amavis, Spa-
mAssassin and ClamAv are the most popular open-source programs of this category.
Before delivering electronic messages on the local mailbox, Postfix hands them out to
the Amavis content filter. Then Amavis processes and checks the content of the messages
with the help of other antivirus and antispam modules, such as ClamAv and SpamAs-
sassin. Both of them are capable of updating their antivirus definitions and spam rules
without manual intervention. Figure [2] depicts the interaction of Postfix with Amavis,
Clamav and Spamassasin.

3.2.3 Dovecot

Dovecot[22] is an open source IMAP and POP3 email server. Its most remarkable
characteristics are the support of IPv6, SSL/TLS, mbox and maildir format, many dif-
ferent methods for obtaining credentials for authentication (e.g. LDAP, databases like
PostgreSQL, MySQL, SQLite, Dict key-value databases, Passwd-file) and mechanisms
(CRAM-MD5, DIGEST-MD5, GSSAPI). Its installation and configuration procedure is
not laborious and it has a well-maintained and useful online documentation.

10

Performance optimisation of webmail

incnming mail on local or remote
port 25 delivery
—— Postfix MTA |——————>

Amavis Filter

¥ &

Figure 2: Postfix and security modules

Each individual mailbox contains two index files which are created automatically by
Dovecot:

dovecot.index is the main index file and contains information for each stored message,
like the UID, pointer to cache file, summary information on how many messages
exist, how many of them are unseen and how many are marked with the ”deleted”
flag.

dovecot.index.cache is the cached mailbox data and contains information about mes-
sage headers, sent & received date, message’s parsed MIME structure and IMAP’s
BODYSTRUCTURE fields

Dovecot’s functionality is based on the following four processes.

Master process (Dovecot) is the core process which main task is to keep all the other
processes running and passes them the required settings from the configuration
files. Also it is responsible for keeping logs of the IMAP /POP3 service.

Login processes (imap-login, pop3-login) run with the lowest privileges and provide
the required IMAP and POP3 protocol function before the user logs in.

Authentication process (dovecot-auth) carries out the authentication process.

Mail processes (imap, pop3) handle the other IMAP/POP3 functions after the user
successful log on.

11

Performance optimisation of webmail

3.2.4 Courier

Courier IMAP server is part of the Courier Mail server which can also be used with
other MTAs such as Postfix or Exim, provided that maildir message format is used. It
aggregates IMAP and POP3 services. The use of shared folders, the ability of IMAP
over SSL and IMAP/POP3 proxying are some of its features. Courier offers the ad-
ministrator the option to set a variety of restrictions, such as the maximum number of
IMAP logins or the maximum number of logins from the same IP address.

Configuration files are in plain text format, specifically imapd and imapd-ssl files
are used to configure the Courier IMAP daemon and pop3d & pop3d-ssl are used
to configure Courier POP3 daemon. Finally the authentication is done by the Courier
Authentication Library which has modules for different authentication options, like au-
thcram (CRAM-MDS5), authuserdb (DB database files), authpam (PAM), authpgsql
(PostgreSQL), authldap (LDAP) and authmysql (MySQL).

3.2.5 Cyrus

The Cyrus IMAP server was developed at Carnegie Mellon University as part of the
Cyrus E] project at early of 1990. Cyrus uses an hierarchical structured mailbox which
is created automatically when the user logins for the first time or manually using the
cyradm administration tool. In addition to the basic folders, such as Inbox and Drafts,
each Cyrus mailbox contains four binaries:

cyrus.index is the core of the mailbox format. It contains a header with information
about the entire mailbox and one record per message. The header provides in-
formation regarding the number of messages stored in the mailbox, the unique
identifier (UID) and the time of the message which added last in the mailbox.
Fach of the message records holds data like the UID of the message and its size
and header.

cyrus.header metadata file contains the name of the root directory from which the quota
is applied and also a copy of the access lists (ACLs) applied in the mailbox.

cyrus.cache is a binary file used only for performance efficiency. It mainly stores all the
headers come from previous user’s queries, creating a cache.

cyrus.seen contains information about the messages that have been seen already by the
user.

Cyrus IMAP offers a great variety of features. It supports quotas, SIEVE for filter-
ing messages, ACLs for enabling multiple users to access a certain mailbox, bulletin
boards for allowing users to share folders without the administration intervention. Mail
store partitioning is also provided, permitting users to distribute their mailbox in more

Tt was named after Cyrus the Great of Persia (576-530 BC) who initiated one of the first well known
postal systems.

12

Performance optimisation of webmail

than one different physical disks, enhancing scalability. Finally, it uses the Simple Au-
thentication and Security Layer library (SASL) for authentication allowing CRAM-MDS5,
DIGEST-Message-Digest Algorithm 5 (MD5), OTP and PLAIN as authentication mech-
anisms.

Cyrus can be configured through cyrus.conf and imap.conf. The first controls the
services that Cyrus supplies while the second one is the main configuration file for the
IMAP daemon and controls the login mechanisms. Since our main goal is to evaluate the
performance of different open source webmail solutions rather than the in-depth analysis
of the IMAP technologies, we suggest to those who want to acquire more information
regarding Cyrus and Courier to refer to [23].

3.3 Webmail Frontends
3.3.1 Squirrelmail

Squirrelmail is one of the best-known free webmail solutions, first released in 1999. It
is a lightweight application, written in PHP, which allows the users to view and com-
pose their mails through a web browser. At the time of writing the most recent stable
version of Squirrelmail is version 1.4.22. It provides users with shared calendars and
address books while there are also plugins for S/MIME, GPG/OpenPGP and automatic
forwarding of incoming mail to a different address support. A more complete list with
its features can be found in http://squirrelmail.org/wiki/SquirrelMailFeatures.

There are three ways to change the SquirrelMail configuration file: using the config-
uration tool config/conf.pl, using the Administrator plugin, or editing it manually
(config/config.php).

3.3.2 Roundcube

Roundcube is a relatively new, open-source, web-based MUA which has been written in
PHP. It offers full functionality, like shared/global IMAP folders, drag-&-drop message
management, IMAP folder management, IMAP quotas and ACLs. It uses Asynchronous
JavaScript and XML (AJAX) to provide a more fluid user interface. It can be easy
installed and the configuration is administrator friendly. The only requirements are a
Webserver with PHP and a database (MySQL, PostgreSQL, SQLite or MSSQL).

3.3.3 Afterlogic Webmail Lite

Aterlogic Webmail Lite is an open source webmail frontend. It supports multiple do-
mains, address book, IMAP mail search, IMAP quotas and Sieve for mail filtering,
auto-respond and forwarding. It gives the advantage of safely opening HTML messages
due to blocking javascript and external images. It comes in two flavors, for PHP and
ASP.NET platforms, and MySQL or MSSQL is required. It has a straightforward in-
stallation and configuration procedure through a web-based interface. For fine tuning

13

http://squirrelmail.org/wiki/SquirrelMailFeatures

Performance optimisation of webmail

I Fiiss e 06 |
R [y UG Ticket PE666: Autocomplete: keyboard-autce

W Trah
u T Re [[Query U Tickes FEEEE Awtocomplese keytnard -autar Faery U Tene 2011-05-10 17:46 DRE

& pechive Asocomalese: keyboard-autor 2010-11-18 14:04 %8
| e uncxomglete keyboard-autor
| i o

2010-11-18 1356 %8
i charty B- Seiect | 5 | | Threads 2 Messages 110 7od 7 B e (-]

Query U Trae 2011-05-26 406

i deugaing e e e b e B T e S b =

Figure 3: Roundcube user interface

the settings.xml file can be modified accordingly.

&% Contacts x

€ - C [} liteafterlogic.com/#contacts % =

Seftings Logout

jsmith@afterlogic.com Contacts

£ = B

GROUPS ajones@yahoo.com

AfterLogic
B Alex Jones
A 2jones@yahoo.com Basic info Edit contact

Personal E-mail: ajones@yahoo.com

Liza Green Livingston
elizaveth green@gmail.com New Jersey
Usa

Phone: +1-973-784-1100

See emails with this contact

Figure 4: Afterlogic Webmail Lite user interface

Its strongest point is the use of Asynchronous JavaScript and XML (AJAX). AJAX
scripts run on the client-side, enabling asynchronous communication with the server.
Afterlogic uses AJAX to pre-fetch (without a user interaction) emails, headers and bod-
ies, to the client cache in order to be available instantly.

14

Performance optimisation of webmail

3.3.4 Horde IMP

Horde IMP is a webmail, part of the Horde Project, available for free. Similarly to the
other selected Webmails of this paper, it offers encryption and signing support of mes-
sages (S/MIME and PGP), IMAP quota, shared IMAP folders, message filtering and
searching.

The configuration is pretty simple using only two files, the backends.php and the
conf .php. The first file is to configure the IMAP backend properties and the conf.php
for different webmail options like attachment size limit and reply number limit.

3.4 Experiments

To evaluate the performance of a Webmail system we conduct experiments, based on four
different scenarios. Data about our metrics (analyzed in Section , which concern la-
tency, CPU consumption and memory utilization were collected using the methods that
have been described in Section 2.2l

The first of our scenarios involves the fetching of the first 15 headers of the mailbox’s mes-
sages after the user logs in. The second type of experiments investigates the procedure
in which the user requests the fetching of all the message headers through the webmail
interface. Subsequently, two user actions define the last two experiments: searching the
entire mailbox for mails with a keyword within a mail’s header field, more specifically
the ”Subject” and searching the entire mailbox for mails with a keyword within the
entire message content.

Users ‘ # messages ‘ Contents of messages ‘ Size of the mail dataset

user 1 1500 text only 49.5 MB
user 2 3000 text only 99 MB
user 3 4500 text only 148.5 MB
user 4 6000 text only 188 MB
user 5 1500 text with attachments 2.3 GB

Table 2: The different types of users and the number of messages

All these experiments are performed in a consistent experimental environment, using all
the IMAP servers - Webmail combinations, leading to 12 different Webmail solutions.
For the above scenarios, 5 different types of users act as an additional experimental
variable. Four of them have a mailbox with only text messages, each differentiated by
the number of messages. The fifth one has a mailbox in which the mails, along with
text, contain also attachments. Moreover, the number of the messages in the fifth user’s
mailbox is equal to the number of messages of one of the previous four users. In this
way a directly comparison between a mailbox with and without attachments is feasible,

15

Performance optimisation of webmail

highlighting the impact of attachments in a mailbox. Table [2| demonstrates all the types
of the users, the number of the messages in their mailbox, as well the size of each mail
dataset.

It is worth mentioning that in order to achieve accurate results, all the experiments

were repeated five times. This provided us with enough data, capable of returning an
average, yet reliable result, and also preventing us from erroneous conclusions.

16

Performance optimisation of webmail

4 Results

In this chapter, the results of the previously described experiments are presented and
further analyzed.

4.1 Latency
4.1.1 Fetching messages

The bar chart in Figure 5] shows the average latency for different combinations of IMAP
backends and webmail frontends while the user logs in. We present the average latency
because there was almost no difference in latencies concerning the different mailbox sizes.
All the Webmails are configured to display the first 15 messages by default, as a result
only the first 15 message headers are fetched from the IMAP server. We observe that
although the conversations between the IMAP backends and the Webmail frontends are
almost identical, Squirrelmail and Afterlogic performs slightly better, achieving better
login times compared to Roundcube and Horde.

Average Webmail Login

o

o

Lk . .
2 B Squirrelmail
= B Roundcube
=

= Haorde

L= .

@ B Afterlogic
=

«

>

<L

Dovecot Cyrus Courier

IMAP backends

Figure 5: Average fetching time during login

Courier is the backend with the longest latencies, especially in combination with Round-
cube. After analysing deeper the exchanged messages between these two, we noticed
that for every case (Dovecot-Cyrus), Roundcube opens two tcp sockets simultaneously,
one for fetching the first 15 headers from the inbox folder and another one for getting
the available folders. This does not happen to the Courier solution and also explains the
reason for this difference in performance.

17

Performance optimisation of webmail

Squirrelmail is the only webmail, among the ones selected for our experiments, that gives
the choice to users to display their entire mailbox with only the click of one button. In
Figure [6] we investigate how much the fetching time is affected, for this user action,
by the different mailbox sizes. We did this by coupling Squirrelmail with all the IMAP
backend options.

As expected, as the size of mailbox is increasing, the time where the headers are being
fetched is getting longer. Again Dovecot and Cyrus perform better than Courier with
Dovecot preceding a little. In the case where our experimental user has a mailbox with
1500 mails with attachments, Courier’s behavior diverts from the other IMAP backends.
This is due to the fact that Courier parses all the mail files to get the headers, while the
others do not.

Squirrelmail against different IMAF backends
user fetches all the headers from the mailbox

B Dovecot
W Cyrus
Courier

Fetching time (sec)

L= e L N I T L B =7 B B = =

1500 text 1500 aftach 3000 text 4500 text 6000 text

serswith different mailbox sze

Figure 6: Users request to display all the mails from their inbox

4.1.2 Searching from the " Subject”

In this section we study the required time from the point where the user searches a
keyword from the mail’s ”Subject” field until the time when the response is produced.
To give an overall picture, again we conduct the experiments for all the IMAP server-
Webmail combinations. Figures[7] (a) and (b) demonstrate the change in behavior in the
increment of the user’s mailbox size when Dovecot and Cyrus are implemented. Clearly,
Afterlogic and Squirrelmail handle the request of the user faster than the others, in time
less than 0.3 seconds. Roundcube is slightly slower, while Horde completes the search

18

Performance optimisation of webmail

within a time interval from around 0.5 to 0.9 sec. To display the search results, Horde
uses a new page, that needs to send, unlike the others which send only the part of the
page that has been changed.

Searching from the "Subject”

Dovecot IMAP backend

W Squirrelmail
= B Roundcube
& Horde
2 B Afterlogic
=

1500 text 1500 — attach 3000 text 4500 text G000 text
Userswith different mailbox size
(a)
Searching from the "Subject”
Cyrus IMAP backend

W Squirrelmail
= B Roundcube
& Horde
2 B Afterlogic
=

1500 text 1500 — attach 3000 text 4500 text 6000 text

Userswith different mailbox size

(b)

Figure 7: Users search a keyword from the ”Subject” field: Dovecot-Cyrus comparison

As for the mailbox size, in the case of Cyrus it seems that it does not affect the searching
time. Namely, each of the Webmails performs the search request in the same time, apart
from the mailbox size. In contrast, when Dovecot is the IMAP backend the searching
time is being increased along with the number of emails.

Figure 8| presents respectively the changes in behavior when Courier is used. Undoubt-

19

Performance optimisation of webmail

edly, Courier cannot carry out the search requests the same well as Dovecot and Cyrus.
The times exceed the ranges of 1 second, reaching even the 6.5 second when the mailbox
of the user stores 1500 messages with attachments. This poor performance is because
Courier parses the mails in order to find the requested keyword in contradiction with
the others which use indexing. Moreover it can be observed the overhead in latency that
Horde webmail adds, compared to the other webmail frontends.

Searching from the "Subject”

Courier IMAP backend

?.

6 ’

B B Squirrelmail
= 1 B Roundcube
a Horde
a2 3 m Afteriogic
|:

1500 text 1500 — attach 3000 text 4500 text G000 text

Lserswith different mailbox size

Figure 8: Users search a keyword from the ”Subject” field: Courier as a backend

Finally, based on the previous results, the most efficient webmail system solutions were
selected for a further comparison. In this comparison, we consider as efficiency their
speed in searching within the mailbox for a keyword from the ”Subject” field. For each
of them, Figure [9] depicts their behavior, regarding the size and the type of user’s inbox.

20

Performance optimisation of webmail

Searching from "Subject”

0.35
0.3
0.25
0.2
0.15 W 1500 text
= 01 W 1500 — attach
& ' 3000 text
= 0.05 B 4500 text
= B 5000 text

different solutions

Figure 9: Comparison of the most effective Solutions regarding searching from ”Subject”

4.1.3 Searching from the entire message

Within this section the results of our experiments, regarding searching the mailbox for
a keyword from the entire message are demonstrated.

Figure shows the change in behavior in the increment of the user’s mailbox size
when Dovecot is implemented. In this bar chart we can see that as the mailbox size,
in terms of number of messages, grows the searching needs more time to be completed.
The time needed to search through 1500 messages with attachments is equivalent with
time to search through 1500 messages without any attachments. This happens because
Dovecot searches for the keyword only on the first part of the body of the stored message
and not on the second part of the body which includes the attachment.

As illustrated in Figure Courier behaves the same as Dovecot when the messages in
the inbox are increased in number. However, in the case of an inbox full of messages
with attachments, Courier searches for the keyword also in the part of the message
that contains the attachment. Justifiably, this adds an extra overhead in the searching
time. Apart from that it is more than obvious that the overall performance is poor in
comparison with Dovecot.

21

Performance optimisation of webmail

Searching from the Entire Message

Dovecot IMAP backend

B Squimrelmail
= B Roundcube
& Horde
= H Afterogic
':

1500 text 1500 — aftach 3000 ftext 4500 text G000 text

Isers with different mailbox ske

Figure 10: Users search a keyword from the Entire Message Content: Dovecot

Searching from the Enrtire Message

Courier IMAP backend

B Squimrelmail

B Roundcube
Horde

W Aftedogic

Time (sec)
0 = k3 L = N S = 0D

1500 text 1500 - aftach 3000 text 4500 text 6000 text

Users with diffierent mailbox size
Figure 11: Users search a keyword from the Entire Message Content: Courier
The shortest response times are found in implementations with Cyrus as the IMAP

backend. It is clear that the number of messages does not significantly affect the response

22

Performance optimisation of webmail

times of Cyrus. The most noticeable increment in latency is in the case of the 1500
attached messages but is negligible comparing to Dovecot and Courier. This verifies
that the indexing service that Cyrus uses, considerably speeds up the search within the
mailbox.

Searching from the Entire Message

Cyrus IMAP backend

0.8
ne
no7 - B Squirrelmail
06 B Roundcube
0s Haorde

04 - B Afterlogic
03
0.2

Time (sec)

1500 text 1500 — attach 3000 text 4500 text 6000 text

sers with different mailbox size

Figure 12: Users search a keyword from the Entire Message Content: Cyrus

As before, the most efficient webmail system solutions were selected for a further com-
parison. Here, in this comparison, we consider as efficiency their speed in searching
within the mailbox for a keyword from the entire message content. For each of them,
Figure [13| depicts their behavior, regarding the size and the type of user’s inbox.

23

Performance optimisation of webmail

Searching from the Entire Message

W 1500 text
= B 1500 — attach
8 3000 text
= N 4500 text
= W 6000 text

different solutions

Figure 13: Comparison of the most effective Solutions regarding searching from the entire
message content

24

Performance optimisation of webmail

4.2 CPU time & Memory consumption

A proper evaluation of a webmail system is not consisted solely of the best possible per-
formance that a user perceives. Besides, our results that concern the user experience, our
aim is to analyze and evaluate also the impact of these solutions in the performance from
the system perspective. In this section, the CPU utilization and the memory consump-
tion of the different IMAP backends are examined. Although, relevant measurements for
webmail frontends were taken, the results were insignificant, compared to the utilized
resources from the IMAP backends, thus, they are neglected.

We start from analyzing the system resources that are utilized when a user attempts to
display all the messages, that is when all the headers from the inbox are fetched. The
line graphs in Figure [I4] reflect the CPU consumption in terms of CPU time,which has
been calculated as specified in Section

CPU consumption when user feches all the headers from the mailbox CPU concumption when user fetches all the headers from the mailbox

Dovecot IMAP backend Courier IMAP backend

o
w

=Y
i
@

o
[

== CFU Time == CFU Time

o
N
o

=
-

CPU time (sec)

CPU time (sec)
[T =)

o
o
@

0 0
1500 text 1500 — attach 3000 text 4500 text 6000 text 1500 text 1500 — attach 3000 text 4500 text 6000 text

users with different mailbox size users with different mailbox size
(a) (b)

Figure 14: Users request to display all the mails from their inbox: CPU time consump-
tion for Dovecot and Courier IMAP backends

Compared to Courier, Dovecot needs less CPU operations for the same function, leading
to less CPU time, that does not exceed the 0.3 second, even in the case of an inbox of
6000 text messages. On the other hand, Courier utilizes the CPU at least for 0.5 second
when the inbox is of 1500 text messages, rising up to 1.6 seconds for 6000 messages.
One noticeably detail is that the CPU time jumps to 5.7 seconds when the mailbox is
consisted of 1500 messages with attachments. Surprisingly, with Cyrus the levels of CPU
consumption were less than with Dovecot and almost equal to zero for all the types of
users.

Afterwards, CPU consumption when the user searches from the ”Subject” field was
measured, providing us the following graphs of Figure We observe that when Dove-
cot is implemented the values of CPU times are roughly stable while in case of Courier
there is an increasing trend, especially for the type of user with the 1500 messages with

25

Performance optimisation of webmail

attachments. We can also support that searching the entire mailbox for a keyword from
the ”"Subject” field is cheaper, in terms of resources consumption, than displaying all
the messages. Again, the levels of CPU consumption with Cyrus were less than Dovecot
and almost equal to zero for all the types of users.

Resources consumption when user searches from the "Subject” Resources consumption when user searches from the "Subject”
Dovecot and Cyrus IMAP backends Courier IMAP backend

0.08

0.07
0.06
0.05 W i it —m—Dovecot

0.04 Cyrus

——CPU Time

0.03
0.02
0.01
0 0
1500 text 1500 - attach 3000 text 4500 text 6000 text 1500 text 1500 - attach 3000 text 4500 text 6000 text

CPU Time (sec)

CPU Time (sec)
N -

users with different mailbox size users with different mailbox size

(a) (b)

Figure 15: Users search a keyword from the ”Subject” field: CPU time consumption for
Dovecot and Courier IMAP backends

Finally, the graph on Figure [I6] presents the CPU consumption when the user searches
for a keyword from the entire message content. Both with Dovecot and Courier the
CPU time is being increased as the number of messages in the inbox grows. However,
in solutions with Dovecot IMAP backend the CPU time is quite shorter. Especially, for
the second type of user, the one with the 1500 attachments in the inbox, Courier needs
almost 6 seconds of CPU time while Dovecot does not need more than 1 second. One
more time, the results with Cyrus tend to zero.

To avoid erroneous assumptions while studying the above graphs, the line does not indi-
cate continuous CPU increment. The measurements consider only five different sizes of
mailboxes. The lines which connect the values of CPU time for the corresponding sizes
of mailboxes are placed only for the ease of the reader.

The following three graphs depict the average memory consumption when the differ-
ent IMAPs process user requests through webmail. As for the first graph in Figure
we need to point out that in the idle state, this is the state where no communication
takes place between the frontend and Dovecot IMAP, only three of these processes are
running; dovecot, dovecot/log and dovecot/anvil. The other four are spawned when a
user logs in and uses the IMAP server and for each user a different dovecot/imap process
is started. The dovecot/imap process differentiates approximately from 2500 Kbytes to
6000 Kbytes.

When Courier is in idle state only three different processes are running; courier-authdaemon,

26

Performance optimisation of webmail

Resources consumption when the user searches from the Entire Message

8

7

6
g S —— Dovecot
E 4 —a— Courier
= 3 Cyrus
& 2

1

0

1500 text 1500 — attach 3000 text 4500 text G000 text

usarswith different IMAP backends

Figure 16: Users search a keyword from the Entire Message Content: CPU time con-
sumption for Dovecot and Courier IMAP backends

Memory Consumption

Dovecot IMAP backend

B UsSS
P55

Memory Consumption (Klytes)

Processes

Figure 17: Average memory consumption of different processes of Dovecot

27

Performance optimisation of webmail

couriertcpd and courierlogger, while the other two are spawned whenever it is needed.
The bar chart in Figure [18| presents the average memory consumption when a user in-
teracts with the Courier IMAP server.

Memory Consumption

Courier IMAF backend

4000
3500
3000

w

= 2500

=

¥ 2000

|

5 1500 mUSS

2 P55

= 1000

E 500

= 0

(=]

E

[k

=

processes

Figure 18: Average memory consumption of different processes of Courier

Cyrus IMAP in idle state is running cyrus-imapd process and about 14 imapd daemons
occupying 932 Kbyte and 1014 Kbyte USS and PSS respectively each of them. When
a user logs in and uses the IMAP server only three of these processes differentiate in
terms of memory usage (imapd #1, #2 and #3). The average memory consumption for
Cyrus IMAP is depicted in Figure

Concluding, Cyrus has the highest memory consumption, followed by Dovecot and finally
by Courier. Based also on the previous results, which concern the latency that a user
perceives when sends requests such as searching a keyword or displaying all the messages,
it seems that the more efficient the backend the more the memory it consumes.

28

Mermaory Consumption (KBytes)

Performance optimisation of webmail

Memory Consumption

Cyrus IMAP backend

4000
3500
3000
2500 mUSS
2000 HPss

1500
1000
200

imapd #1 imapd #2 Imapd #3 Imapd #4 cyrus-imapd

processes

Figure 19: Average memory consumption of different processes of Cyrus

29

Performance optimisation of webmail

5 Conclusions

This paper has presented a detailed analysis of the effectiveness of four different open
source Webmail services, Squirrelmail, Roundcube, Horde and Afterlogic. All of these
services were combined with three different IMAP backends in order for the most effi-
cient solution to be found. We mainly focused on the most common actions that users
perform, such as searching through their Webmails for a certain message or displaying
the entire inbox folders. We made our evaluation in two different dimensions: from
user experience perspective and from system performance perspective. To this end three
metrics were used: latency, CPU time and memory consumption.

After our experiments, it seems that Squirrelmail is the fastest, among the selected
webmail applications, during the user login. This is due to its lightweight page. After-
logic achieves shortest latencies for both searching from the ”Subject” field and from
the entire message content. In addition, because of the AJAX use (pre-caching on client
side), Afterlogic provides responsiveness similar to desktop email clients. On the other
hand, Horde has the longest response time, especially during searching. This happens
because Horde sends a new page to display the search results, unlike the others which
send only the part of the page that has been changed.

It is observed that the major bottleneck in an integrated webmail system is the IMAP
backend. Experiments were conducted with Dovecot, Courier and Cyrus implementa-
tions. All of them perform almost the same, in term of latency, when a user logs in
through the webmail frontends. Dovecot and Cyrus can carry out the search from ”Sub-
ject” request, with relatively the same latency, and much better than Courier. However,
when the user searches a keyword from the entire message content, the latency is far
shorter if Cyrus is the IMAP backend, followed by Dovecot. The indexing feature that
Cyrus and Dovecot provide is capable of more efficient searching.

Besides, our results that concern the user experience, our aim was to analyze and eval-
uate the impact of these webmail system solutions in the performance from the system
perspective. Cyrus has the highest average memory consumption for all the IMAP func-
tions, followed by Dovecot and finally by Courier. On the contrary, Cyrus has the lowest
CPU utilization followed by Dovecot and Courier.

Summarizing the solution of using Cyrus IMAP combined with Afterlogic Webmail Lite
performs better in terms of both user experience and system overall performance.

30

Performance optimisation of webmail

6 Future Work

Over the world hundreds of millions of end users depend on e-mail technologies. How-
ever, open source web frontends to mail servers remain a neglected area of development.
Hopefully, the work that has been done here will be a contribution to better understand-
ing how the performance of web mail applications is determined. We consider that this
is a prerequisite for better tuning and further development of webmail applications.

Through our remarks, which have been derived from experimental results, our expecta-
tion is to trigger the further development of the products to improve their performance.
We think that there is enough room for improvement both in Webmail and IMAP back-
end projects.

In our research, the data set used was made from e-mail messages from the mailbox
of an actual user. While this provided reliable real-world data, a larger synthetic test
suite (from e.g. Wikipedia content) based on the general characteristics of an email box
would have produced experiments reproducible by others, including the developers of
the various applications. We therefore recommend the creation of such a test suite as a
next step of future research in this area.

Our future plans include the evaluation of different functions that a webmail system
provides, like deleting or copying messages. Moreover, we are interested in an evalua-
tion of an integrated webmail system, while an IMAP proxy is implemented between
the webmail server and the different IMAP servers. A relevant and also interesting re-
search would be to investigate how the amount of load of these systems impacts their
responsiveness.

31

Performance optimisation of webmail

List of Figures

1 Major e-mail Components| 3
[2 Postfix and security modules| 0L, 11
3 Roundcube user intertacel oL 14
|4 Afterlogic Webmail Lite user interface] 14
15 Average fetching time during loginl, 17
|6 Users request to display all the mails from their inbox{ 18
|7 Users search a keyword from the ”Subject” field: Dovecot-Cyrus comparison| 19
18 Users search a keyword from the ”Subject” field: Courier as a backend| . . 20
[9 Comparison of the most effective Solutions regarding searching from ” Sub- |
ject”| . oL e e 21

[10 Users search a keyword from the Entire Message Content: Dovecot| 22
11 Users search a keyword from the Entire Message Content: Courier| 22
12 Users search a keyword from the Entire Message Content: Cyrus| 23
13 Comparison of the most effective Solutions regarding searching from the |
entire message content|o Lo Lo 24

[14 Users request to display all the mails trom their inbox: CPU time con- |
sumption for Dovecot and Courier IMAP backends| 25

[15 Users search a keyword tfrom the ”Subject” field: CPU time consumption |
[for Dovecot and Courier IMAP backends|. 26
16 Users search a keyword from the Entire Message Content: CPU time |
consumption for Dovecot and Courier IMAP backends| 27

[17 Average memory consumption of different processes of Dovecot| 27
118 Average memory consumption of different processes of Courier| 28
19 Average memory consumption of different processes of Cyrus| 29

32

Performance optimisation of webmail

Bibliography

1]

Hafsaoui Aymen et al. ”A study of email usage and performance over Cellular tech-
nology”. Communications and Networking (ComNet), 2010 Second International
Conference on. IEEE, 2010.

Jun Wang and Yiming Hu. ”A4 performance study on Internet Server Provider mail
servers”. Computers and Communications, 2004. Proceedings. ISCC 2004. Ninth
International Symposium on. Vol. 1. IEEE, 2004.

Ramesh Karne Appiah-Kubi, Patrick and Alexander Wijesinha. ”Design and Per-
formance of a Webmail Server on Bare PC”. High Performance Computing and
Communications (HPCC), 2010 12th IEEE International Conference on. IEEE,
2010.

Randall Gellens and John C. Klensin. ”Message Submission for Mail”. RFC 4409,
2006.

C. P. J. Koymans and J. Scheerder. ””Email.” Handbook of Network and System
Administration”. Elsevier Science, 2007.

John C. Klensin. "Simple Mail Transfer Protocol”. RFC 2821, 2001.

A. Menon-Sen R. Siemborski. ”The Post Office Protocol (POP3) Simple Authenti-
cation and Security Layer (SASL) Authentication Mechanism”. RFC 5034, 2007.

C. Newman. ”"Using TLS with IMAP, POPS3 and ACAP”. RFC 2595, 1999.
M. Crispin. ”Internet Message Access Protocol - Version 4revi”. RFC 3501, 2003.

A. Gulbrandsen R. Siemborski. "IMAP FExtension for Simple Authentication and
Security Layer (SASL)”. RFC 4959, 2007.

David A. Patterson and John L. Hennessy. ”Computer organization and design: the
hardware/software interface”. Morgan Kaufmann, 2008.

Chandra Thimmannagari. "CPU design: answers to frequently asked questions”.
Springer, 2004.

[Online]. Available: http://packages.ubuntu.com/precise/sysstat.
[Online|. Available: http://packages.debian.org/sid/utils/smem.
[Online|. Available: http://www.tcpdump.org/.

[Online|. Available: http://www.wireshark.org/download.html.

Xen.org, Xen hypervisor 4.2.1 Download. [Online|. Available: http://www.xen.
org/download/index4.2.1.html/.

33

http://packages.ubuntu.com/precise/sysstat
http://packages.debian.org/sid/utils/smem
http://www.tcpdump.org/
http://www.wireshark.org/download.html
http://www.xen.org/download/index 4.2.1.html/
http://www.xen.org/download/index 4.2.1.html/

Performance optimisation of webmail

[18] [Online]. Available: ftp://ftp.nl.uu.net/pub/unix/mail/postfix/.

[19] [Online]. Available: http://www.ijs.si/software/amavisd/.

[20] [Online]. Available: http://www.clamav.net/lang/en/download/sources/.
[21] [Online]. Available: http://spamassassin.apache.org/.

[22] ”Dowvecot Wiki”. [Online] Available: http://wiki2.dovecot.org/.

[23] Peer Heinlein and Peer Hartleben. ”The Book of IMAP: Building a Mail Server
with Courier and Cyrus”. No Starch Press.

34

ftp://ftp.nl.uu.net/pub/unix/mail/postfix/
http://www.ijs.si/software/amavisd/
http://www.clamav.net/lang/en/download/sources/
http://spamassassin.apache.org/
http://wiki2.dovecot.org/

	Introduction
	Related Work
	E-mail System Components
	E-mail System Protocols

	Approach
	Metrics
	Data gathering

	Experiments
	Experimental Environment
	Email Backends
	Postfix
	Security Modules
	Dovecot
	Courier
	Cyrus

	Webmail Frontends
	Squirrelmail
	Roundcube
	Afterlogic Webmail Lite
	Horde IMP

	Experiments

	Results
	Latency
	Fetching messages
	Searching from the "Subject"
	Searching from the entire message

	CPU time & Memory consumption

	Conclusions
	Future Work
	List of Figures
	Bibliography

