
UNIVERSITY OF AMSTERDAM

GRADUATE SCHOOL OF INFORMATICS
System and Network Engineering

Minimizing ARP traffic in the AMS-IX
switching platform using OpenFlow

Victor Boteanu <vboteanu@os3.nl>
Hanieh Bagheri <hanieh.bagheri@os3.nl>

July 22, 2013

Supervisor
Martin Pels <martin.pels@ams-ix.net>

University of Amsterdam
Graduate School of Informatics
Science Park 904
1098XH Amsterdam

mailto:vboteanu@os3.nl
mailto:hanieh.bagheri@os3.nl
mailto:martin.pels@ams-ix.net

Contents

List of Figures ii

1 Introduction 1
1.1 AMS-IX Overview . 1
1.2 The Address Resolution Protocol 3
1.3 The ARP Sponge . 3
1.4 OpenFlow . 4
1.5 Related Work . 7
1.6 Research Question . 7

2 Proposed solutions 8
2.1 Solution 1: Forward to OpenFlow controller 8
2.2 Solution 2: Dynamic learning OpenFlow controller 9
2.3 Solution 3: OpenFlow-aided ARP proxy on each PE 10
2.4 Solution 4: Forward to ARP sponge 10
2.5 Solution 5: Forward to target router 11
2.6 Observations on the proposed solutions 11

3 Proof of concept 13
3.1 Setup . 13
3.2 Implementation . 13
3.3 Observations . 14

4 Conclusion 16

5 Acknowledgements 17

Bibliography 18

A Abbreviations 19

B Code listings 20

i

List of Figures

1.1 AMS-IX network overview . 1
1.2 Failover in case of PE failure . 2
1.3 ARP sponge behaviour in the case of a down node 4
1.4 OpenFlow architecture [5] . 5
2.1 arpkeepalive example . 12
3.1 Lab setup . 13
3.2 ARP processing flowchart . 15

ii

Abstract

The AMS-IX ISP Peering LAN connects more than 600 routers. These routers use
ARP in order to establish connectivity with each other. With such a large network, it
can be expected that there are nodes down at any moment. Even if that is not the case,
there are also ARP Requests for IP addresses no longer in use. This causes severe
broadcast traffic in the network.

All the nodes that are listening for ARP messages have to further process the packets,
meaning that all nodes in the network will spend CPU cycles to process these mes-
sages. This is inefficient, as most of the time those messages do not concern them,
and some devices even prioritize ARP processing over, for instance, routing protocol
jobs.

So far, the solution that AMS-IX has implemented is the ARP Sponge. This tool re-
duces the amount of broadcast traffic on the peering LAN by replying to ARP requests
for dead addresses.

The goal of this research project is to investigate the use of OpenFlow to further bring
down the amount of broadcast traffic on the AMS-IX peering LAN.

iii

1 Introduction

1.1 AMS-IX Overview
The Amsterdam Internet Exchange (AMS-IX) is one of the leading Internet exchanges
in the world, with an average total traffic load of 1.47 Tb/s (June 2013)∗. An Internet
exchange is a kind of meeting point for Internet Service Providers (ISPs) where they
can connect to each other. This allows ISPs to minimize upstream traffic to higher-tier
ISPs.

These connections are peering relations set up using the Border Gateway Protocol
(BGP). At the time of this writing, the AMS-IX network has almost 600 connected
networks ∗∗, with a peak traffic of 2 Tb/s.

Due to the continuous increase in traffic over the years, AMS-IX redesigned their
network topology in 2009, now called AMS-IX v4. The peering platform is based
on an MPLS/VPLS [2][3] infrastructure, due to the protocol’s high scalability and
resiliency.

An overview of the current peering LAN is shown in figure 1.1:

Figure 1.1: AMS-IX network
overview The entire network is built around eight core routers (Brocade MLXE-32), and each

Provider Edge (PE) router has connections to multiple core routers. This allows load

∗https://www.ams-ix.net/technical/statistics
∗∗https://www.ams-ix.net/connected_parties

1

https://www.ams-ix.net/technical/statistics
https://www.ams-ix.net/connected_parties

balancing over all core routers and also provides redundancy for the Provider (P)
routers. The P routers are at two different locations, with two P routers per loca-
tion. In case one of the core sites goes down, all the Label Switched Paths (LSPs) will
be moved and load-balanced over the remaining core routers.

LSP signalling is done using Resource Reservation Protocol-Traffic Engineering (RSVP-
TE), while Label Distribution Protocol (LDP) is used in the control plane to distribute
the VPLS labels. Using VPLS allows for the emulation of a LAN in the shared Layer
2 network.

To account for cases in which one of the PE routers fails, Customer Edge (CE) routers
are connected to the PE routers through a Photonic Cross-Connect (PXC). A PXC is a
network device used to switch optical signals without converting them to an electrical
signal. In the case of a PE failure, the PXC will forward all traffic of its connected
routers to the other PE, as illustrated in figure 1.2.

Figure 1.2: Failover in case of
PE failure Current connections to the AMS-IX network use Gigabit Ethernet (GE), 10 GE, 100

GE, or multiples of these values. For Gigabit connections, the access devices are
Brocade MLX-8 routers, while Brocade MLX-16 and MLX-32 routers are used for
the 10 GE and 100 GE connections.

2

1.2 The Address Resolution Protocol
The routers connected to each other on the AMS-IX peering LAN use the Address
Resolution Protocol (ARP) in order to establish connectivity with each other. ARP
is the protocol used for associating a layer 3 address with a layer 2 address. In other
words, ARP is used to bind a logical network address (such as IP) to a physical link
layer address (such as MAC). ARP is a request-reply protocol: a client router sends
an ARP request asking about the MAC address corresponding to a given IP address.
The ARP request is broadcast in the network and the node owning that IP address
announces its MAC by sending a unicast ARP reply.

Each node has an ARP table, which is a mapping between IP and MAC addresses.
When a node wants to send data to another IP∗ address, first it looks up the IP in
the ARP table. If there is a hit, the Ethernet frame will be sent towards the matching
MAC address; otherwise, an ARP request will be broadcast in the network and the
node waits for the ARP reply. When the ARP reply arrives at the node, the MAC
address is extracted.

If a node sends an ARP request and does not receive back any reply in a certain amount
of time, the same ARP request will be broadcast in the network over and over again,
until a node sends an ARP reply for that IP address. In such a large network, it can
be expected that there are nodes down at any moment. Even if that is not the case,
there are also ARP requests for IP addresses no longer in use. When a client is down
and other nodes try to reach it, a huge amount of ARP requests will be flooded in the
network, causing an “ARP storm”.

Because of the growing number of connected routers, ARP storm is a serious issue in
the BGP peering LAN of AMS-IX. When a node is not accessible for a while, every
node looking for it will flood an ARP request. So by adding new nodes to the peering
LAN, the amount of ARP broadcast will grow exponentially.

All the nodes that are listening for ARP messages have to further process packets with
Ethertype 0x0806, meaning that all nodes in the network will spend CPU cycles to
process these messages. This is inefficient, as most of the time those messages do not
concern them, and some devices even prioritize ARP processing over, for instance,
routing protocol jobs. Therefore, although ARP does not use too much bandwidth (60
kbps daily ∗∗), the efficiency of the network can be improved by reducing the allocated
processing power for broadcast traffic.

1.3 The ARP Sponge
To solve the problem of broadcast ARP traffic, a tool called the ARP Sponge was
developed at AMS-IX. It is a program that is meant to "sponge" ARP requests for
dead IP addresses. In general, if the sponge sees too many ARP requests destined for
a node that is not answering, it will start replying for them itself after the requests
exceed a threshold (default 1000 unanswered queries with an average rate of 50 or
more per minute†).

The outcome is that if a router with many peerings happens to go down, all its peers
will start sending ARP requests for it, resulting in a broadcast storm. The same sit-
uation can arise when a peer leaves the network permanently but its peers have not
updated their configurations. By answering ARP requests for these nodes, broadcast
storms can be prevented. Figure 1.3 illustrates the ARP sponge’s functionality.

By replying with its own MAC address, the ARP sponge black-holes traffic destined
for nodes that do not exist anymore in the network. In this way, other nodes will not
broadcast ARP requests for that node. In addition to this functionality, the ARP sponge

∗Here, the term “IP” stands for IPv4. The IPv6 protocol does not use ARP and its functionality is
replaced by the Neighbor Discovery Protocol (NDP).
∗∗https://www.ams-ix.net/technical/statistics/sflow-stats/broadcast
†https://www.ams-ix.net/downloads/arpsponge/3.12.2/arpsponge-3.12.2/ar

psponge.txt

3

https://www.ams-ix.net/technical/statistics/sflow-stats/broadcast
https://www.ams-ix.net/downloads/arpsponge/3.12.2/arpsponge-3.12.2/arpsponge.txt
https://www.ams-ix.net/downloads/arpsponge/3.12.2/arpsponge-3.12.2/arpsponge.txt

Figure 1.3: ARP sponge
behaviour in the case of a down

node
also periodically queries addresses to check if their interfaces are back up.

There are three cases in which it will stop sponging an address:

1. If the sponge receives a gratuitous ARP for that address

2. If the sponge sees any ARP or IP traffic from that address

3. If the sponge receives an ARP query for a sponged IP address that seems to
come from IP 0.0.0.0 ("ARP WHO-HAS *xx* TELL 0.0.0.0"). This is used
by many DHCP client implementations to detect duplicate addresses before ac-
cepting an address from the DHCP server). This is mostly a precaution measure.

Other important features of the ARP sponge that are relevant to this project are:

• At startup, it enters a learning state in which it listens to the network, building
its own state table. During this state, it does not participate with traffic.

• When it starts sponging an address, it can send gratuitous ARP messages to the
other nodes, updating their caches such that they do not have to ARP for it any
more.

• It can put addresses in a pending state, in which it probes them for a response.
If no response is received, the nodes are declared dead.

• The ARP sponge can periodically sweep the IP addresses of a network in order
to account for nodes that do not send gratuitous ARP when they come up.

• Logging

As it will later be shown in Section 2, the state table that the sponge builds can be
very useful. The table maps IP addresses to their corresponding MAC addresses, and
keeps their state (ALIVE/DEAD/PENDING) and last update time. By using the ARP
sponge, broadcast traffic is reduced tenfold, as shown in a previous research paper,
which aimed at extending the ARP sponge [4].

1.4 OpenFlow
Network appliance vendors normally do not provide open software for development
and management of their commercial hardware. However, researchers have always
been interested in testing new ideas and developing experimental protocols and the
classical switches and routers do not provide the proper facilities for such activities. In
addition, it is difficult for researchers to build their own hardware and software. Even
if they succeed in doing so, the result of the tests and experiments might not match
the conditions of a production network. OpenFlow is a communication protocol that
allows researchers to test their new ideas at scale in a production network.

In a classic switch, the traffic forwarding component (data plane) and the decision

4

Figure 1.4: OpenFlow
architecture [5]

making component (control plane) reside on the same device. Software-Defined Net-
working (SDN) is a method for separating these two components. OpenFlow is a
communication protocol that enables SDN by getting access to the control plane of
the switch or router.

In an OpenFlow-enabled switch, the data plane still resides on the switch, but the
control plane is moved to a separate machine, called the “OpenFlow controller”. The
OpenFlow-enabled switch and the controller communicate via the OpenFlow protocol.
packet-received, send-packet-out, modify-forwarding-table and
get-stats are some of the exchanged messages in the OpenFlow protocol. Open-
Flow provides an open platform for programming the flow table in an OpenFlow-
enabled switch. As shown in figure 1.4 (from the OpenFlow 1.0 white paper), an
OpenFlow switch consists of three parts [5]:

• A flow table, with an action for each flow entry of the table.

• A secure channel, which connects the OpenFlow controller to the switch and is
used for exchanging packets and commands

• The OpenFlow protocol

Each entry in the flow table has three fields:

• A packet header, which is a set of fields to be matched

• The action that defines the way in which the packets are processed

• Statistics about the number of packets and bytes and also the elapsed time since
the last packet is matched

Different switches support different OpenFlow actions. The three basic actions sup-
ported by all OpenFlow switches are:

• forwarding all the packets of a given flow to a specific port (or to all ports)

• encapsulating packets from a given flow and forwarding them to the controller

• dropping incoming packets from a specific flow

The OpenFlow controller is in charge of adding/removing flows to/from the flow table.
A controller can control multiple switches simultaneously, and a switch can be con-
trolled by different controllers at the same time. When the switch receives a packet,
it tries to match the header with a flow entry (in a priority-based ordering). If there
is a hit, the specified action will be executed. If it could not find a match, it will
send the packet to the controller (in case the default action is forwarding to the con-

5

troller). Depending on the script running in the controller, it might add some flows
to the flow table to tell the switch how to handle similar packets, or it might drop the
packet.

OpenFlow version 1.0 was released on December 31, 2009. Since its release, the
OpenFlow protocol has been rapidly evolving. Support of groups, multiple tables,
MPLS and VLAN, virtual ports, better handling of connectivity loss, are some of the
added features to OpenFlow 1.1 (released on February 28, 2011). OpenFlow 1.2 was
introduced on December 5, 2011. Some of the important features added from this
version on are support of IPv6 and OpenFlow Extensible Match (OXM) for flexible
field matching. OpenFlow 1.3 was released on April 13, 2012. This release adds sup-
port for more flexible table capability description, IPv6 Extension Header handling,
per-flow-meters, per-event connection filtering, Tunnel-ID metadata. OpenFlow 1.3.1,
released in August 2012, is the latest version and adds some minor improvements to
the previous release.

Different OpenFlow controllers can be used in order to interact with the OpenFlow-
enabled switch. Examples of these controllers are:

Open Source Controllers:

• Beacon (Java)

• Floodlight (Java)

• NOX (C++/Python)

• POX (Python)

• Trema (C/Ruby)

• Ryu (Python)

• Open Daylight (Java)

Closed Source / Commercial Controllers:

• Big Network Controller

• ProgrammableFlow

• ONIX

In this research, we aim to use OpenFlow in order to solve the ARP storm problem in
the busy BGP peering LAN at AMS-IX. Since the original ARP protocol uses flood-
ing to send ARP requests through the network, we found OpenFlow to be useful for
changing the normal behaviour of the switch, while handling ARP messages.

6

1.5 Related Work
In an RP2 project from 2009, a related issue was analyzed by (at the time) SNE stu-
dents Niels Sijm and Marco Wessel [4].

In a presentation at MENOG 12, Ivan Pepelnjak has talked about using OpenFlow on
Internet Excahnge Points (IXPs)[6]. The discussed problems and proposed ideas in
his talk are quite relevant to our research.

A team in New Zealand has deployed an SDN-controlled Internet exchange fabric. It
is the first time that SDN is used in a production IXP environment (Citylink IX)∗. The
proposed ideas in this project can be inspiring to our work.

1.6 Research Question
Our main research question is the following:

"Can OpenFlow be used to reduce broadcast ARP traffic in the AMS-IX ISP peer-
ing LAN?"

We define these sub-questions:

"Can the ARP protocol be replaced completely by OpenFlow in the core network?"

"Is OpenFlow a scalable solution for this scenario?"

∗http://pica8.org/blogs/?p=363

7

2 Proposed solutions

As we mentioned in the previous sections, the switching platform of AMS-IX con-
nects a growing number of routers. The connected peers need to know about each
other’s MAC address to be able to communicate, so they use the ARP protocol to
exchange this information. In this section, different approaches for solving the ARP
storm problem are proposed and discussed in detail.

2.1 Solution 1: Forward to OpenFlow controller
In order to reduce the amount of ARP messages, we used the fact that the mapping
between MAC and IP addresses of different peers is known beforehand. All the peer-
ing information is stored in a database compiled from an XML file. By extracting the
IP-to-MAC mapping from the XML file and utilizing OpenFlow, we will be able to
decrease the amount of ARP messages significantly.

The idea of the proposed solution in this section is to import the mapping table ex-
tracted from the .xml file into the controller and use it to reply to the incoming ARP re-
quests. In other words, we do not use the ARP Sponge anymore and the controller acts
as an ARP proxy to answer the ARP requests on behalf of the original nodes.

The steps in this solution are as follows:

1. The mapping table is imported to the controller

2. The controller installs a flow in the switch to forward the incoming ARP mes-
sages to the controller.

3. When an ARP request is forwarded from the switch to the controller, the con-
troller looks up the IP address in the mapping table to find the corresponding
MAC address.

4. If there is a match, the controller makes an ARP reply packet using the extracted
MAC from the table; otherwise, it makes an ARP reply using the MAC address
of the controller. This is done to prevent any more ARP requests from being
sent. If the node is dead it would not get any of the traffic in either case, so
black-holing has no negative effects.

5. The controller sends the ARP reply to the sender of the ARP request

Since the IP-to-MAC mapping table is inside the controller, which is connected to
the PE switch, the ARP requests are not broadcast farther than the PEs, so we expect
not to see any broadcast messages in the core network. In this way, not only can the
controller answer the ARP requests on behalf of the original node, but it can also send
the MAC address of a (temporarily) down or (permanently) dead node to the ARP
sender. Therefore, we can prevent the problem of broadcast storms when a node is
down or dead.

In this solution, the controller plays a similar role to the ARP Sponge present in the
current infrastructure. The differences between the two are listed below:

• The ARP sponge starts “sponging” when it detects an unreachable address. By
implementing this solution, the ARP requests would be sent directly to the con-
troller instead of being broadcast.

8

• The ARP Sponge takes some time to find out if a node is dead or to detect if it
is back again. This behaviour can cause false positives, where the requests are
answered with the sponge’s MAC address instead of the real node’s. In the pro-
posed solution, independent of the target node being up or down, the OpenFlow
controller will send replies to the corresponding ARP requests destined for that
node.

• The ARP Sponge uses its own MAC address to answer the ARP requests des-
tined for a down or dead node. This solution normally replies to the ARP request
using the MAC address of the node itself. In the case where there is no matching
IP, the OpenFlow controller uses its own MAC address to reply to ARP requests.

2.2 Solution 2: Dynamic learning OpenFlow controller
In solution 1, we proposed the idea of exploiting the pre-known peering information to
build an IP-to-MAC table. Another solution can be building the same table by learning
the table entries from the exchanged ARP traffic in the network.

The steps in this solution are as follows:

1. The controller starts with an empty IP-to-MAC table.

2. The controller installs a flow in the switch to forward the incoming ARP mes-
sage to the controller.

3. If there is a hit for a given ARP request, the controller makes an ARP reply
packet using the extracted MAC address from the table; otherwise, it floods the
ARP request to all ports. The controller should keep track of the flooded ARP
requests to avoid sending ARP requests for the same IP address before the reply
comes back.

4. If the ARP reply is not received in a certain amount of time, the controller
assumes that there is no node with the requested IP address, so it replies to
that request with its own MAC address. It also adds an entry with the same
information in the IP-to-MAC table. This entry should time-out, so the nodes
that do not support sending gratuitous ARPs still have the chance to receive
ARP requests.

5. Whenever the controller receives an ARP reply or a gratuitous ARP, it updates
its IP-to-MAC table.

This solution is more dynamic than the previous solution, because it updates the table
according to occurred events in the network (rather than the configuration files being
updated). Receiving ARP replies from different nodes, the controller fills up the table
gradually. After a learning period, the controller will be able to answer most of the
ARP requests using its table. If a node goes down, similar to the previous solution,
the controller still answers ARPs on behalf of that node. In case of changes in con-
figuration (adding a node to the network, changing the MAC address of an existing
interface), when the node brings its interface up, it usually sends a gratuitous ARP to
the controller and causes the proper entries be updated in the table.

Using this method, the table is updated by the real-time events happening in the net-
work. It is an advantage over solution 1, which depends on the correctness of the
configuration files. Although some ARP messages are still exchanged, each ARP re-
quest can just be flooded once.

The disadvantage of this option is the latency for discovering when a node is back up
and it does not support gratuitous ARP. The controller will only be aware of the node’s
state when another client asks for the node’s MAC address.

9

2.3 Solution 3: OpenFlow-aided ARP proxy on each PE
Because the functionality of the ARP sponge has been thoroughly tested, a solution
that basically distributes the sponge over all PEs can be advantageous. For this to
work, each PE must have an updated table mapping MACs to IP addresses. This can
be done in the switch’s ARP table. Since the goal is to eliminate broadcast traffic from
the core network, this table should be updated by the OpenFlow controller. Steps for
this case are as follows:

1. The OpenFlow controller builds an IP-to-MAC table

2. The OpenFlow controller uses this table to update each PE’s ARP cache

3. The switches can now respond to ARP requests based on their own ARP caches

4. The controller keeps the ARP caches up-to-date

As described in previous solutions, the OpenFlow controller could build up its own
table; after this step, it will send gratuitous ARP messages for each node in its table
to each PE. In this way, all the PEs will have these entries in their ARP caches. The
controller should make sure that these are updated before they time out.

When a client would send an ARP request, the switch will have all the information
necessary to answer it itself, on behalf of the requested node. As with other proposed
solutions, if the client requests an unknown IP (not in the table), the request can either
be answered with the device’s MAC or sent to the controller. The controller can then
either query that IP to see if it exists, or reply with its own MAC address. With this
implementation, broadcast ARP is contained between the CE and the PE.

The most important fact to mention regarding this solution is that it will only be im-
plementable if the switches have an ARP proxy feature. The reason for this is that the
switches need to be able to answer requests based on their own ARP caches.

2.4 Solution 4: Forward to ARP sponge
This solution aims to make use of the ARP sponge. The motivation behind this so-
lution is the advanced feature-set of the ARP sponge, which can be more easily ex-
tended. By forwarding the ARP requests to the sponge, they could be more accurately
handled. To avoid overhead, the OpenFlow controller and the ARP sponge can be
configured on the same physical machine.

The needed steps in this solution are as follows:

1. The controller installs a flow in the switch to forward every incoming ARP
request to the ARP Sponge.

2. The ARP Sponge uses its internal ARP table to answer the ARP requests.

3. The ARP Sponge updates the table using the mentioned methods in section 1.3

4. The ARP Sponge monitors the network and answers the ARP requests destined
for the dead nodes using its own MAC address

Since the current infrastructure uses the ARP Sponge, this solution can better integrate
with the switching platform of AMS-IX , so it is less likely that this solution causes any
undesirable effect on the network. However, because of the needed time for learning
process in the ARP Sponge, we cannot completely prevent ARP broadcast(due to the
learning period of the ARP sponge).

10

2.5 Solution 5: Forward to target router
Another solution can be using the ARP table from solution 1 and sending the ARP
requests directly to the target node (instead of broadcasting). This is similar to the
idea of unicast poll for ARP cache validation [1]. In unicast poll, to make sure that an
entry in the ARP cache is still valid, a point-to-point ARP request is sent to the remote
host. If after N attempts, no reply is received, the entry should be discarded from the
ARP cache. arping (from the iputils package ∗) is an ARP level ping, which
uses unicast ARP to reduce the amount of broadcast ARP traffic. arping starts with
sending broadcast traffic and when a reply is received, it will switch to unicast ARP.
Keeping this idea in mind, we can use the table from solution 1 and forward the ARP
requests to the target. The needed steps in this solution are as follows:

1. The mapping table is imported to the controller

2. The controller installs a flow in the switch to forward the incoming ARP re-
quests to the controller.

3. When the controller receives an ARP request, it looks up the IP address in the
mapping table to find the corresponding MAC address.

4. If there is a match, the controller sends a unicast ARP request to the correspond-
ing MAC address; otherwise, it makes an ARP reply using the MAC address of
the controller.

5. If the controller receives a gratuitous ARP from one of the clients, the IP-to-
MAC table is updated

Using this approach, the OpenFlow-enabled switch reduces the scope of ARP to
simple unicast requests, thus lowering the broadcast traffic in the core. Moreover,
the received ARP replies from the original nodes update the CAM tables in the PE
switches.

2.6 Observations on the proposed solutions
When implementing either of the proposed solutions, consideration should be given to
VLAN and VPLS configurations, as well as supported feature sets. Although VLAN
tagging (per destination port) is available, support of MPLS label operations is added
to OpenFlow from version 1.1 on. Since the current implementation of the Brocade
MLX switches is based on OpenFlow 1.0, controlling MPLS operations using Open-
Flow is not possible. If Brocade decides to support a newer version of OpenFlow,
support of MPLS will be provided.

In a normal network where ARP would be broadcast, CAM tables on all switches
would be constantly updated without any other interaction. However, since one of the
aims of this project is to reduce and even eliminate broadcast traffic from the AMS-IX
core, updating CAM tables becomes an issue.

In the current AMS-IX network, a lot of the peering is done using a route server. In
short, a route server allows distribution of prefixes for its BGP peers. This eliminates
the need of having a separate BGP session with each peer; instead, a session is needed
only with the route server. However, because asymmetric load balancing is also used,
there are cases in which traffic is unidirectional from one node to another. This means
that the receiving node has some ports which do not have updated CAM tables.

A special tool developed at AMS-IX called arpkeepalive is already implemented,
in order to solve this problem. It works by periodically sending ARP requests to
each CE, telling it to reply to a forged, nonexistent, MAC address. This will cause
all the CEs to reply, and all the switches will flood this message since they do not
have the destination MAC in their CAM tables. The way in which arpkeepalive
functions is shown in figure 2.1, in a topology with only three PEs with one customer
each. Thus, all the CEs have updated their CAM tables. With this tool in place, CAM

∗http://linux.die.net/man/8/arping

11

tables no longer pose a problem for our proposed OpenFlow solutions. Another option
would be to implement the same functionality in the OpenFlow controller. Upon
establishing a connection to each switch, it would periodically send the same forged
ARP requests(with fake reply_to MAC address) to each client in order to update the
PEs. One advantage of this option is that it does not depend on the ARP sponge like
arpkeepalive does (it gets the list of customer IPs from a table generated by the
sponge). This could potentially make it easier to update with new information.

Figure 2.1: arpkeepalive
example

In cases where one of the requested nodes is down, it is generally better to reply with
the controller’s MAC address, instead of that node’s address. If a node is indeed down,
its MAC address will timeout (60 seconds) from other CAM tables, leaving the node
unreachable. If the node is unreachable but all other nodes believe it is still alive, they
will continue sending traffic to it, causing (unknown) unicast storms. The best way
to prevent this is to periodically check nodes for their state, and update the relevant
tables.

Although all solutions depend on the controller, it is even more essential for solutions
1, 2 and 5 since they rely on it to reply to all the ARP requests. If the controller would
go down, it would not pose an immediate problem in the case of solutions 3 and 4,
because the flow table entry stays installed on the Brocade MLX even thought the
connection to the controller is lost. The flow table entry will be removed/replaced/up-
dated once the connection to the controller is back up. However, multiple controllers
can be connected to each PE for redundancy.

From a security point of view, defense against MAC address spoofing attacks is an
important concern in the AMS-IX platform. Among the proposed solutions, the ones
that use the extracted IP-to-MAC mapping from the configuration files can better deal
with MAC spoofing. They can use the mapping to validate the origins of the ex-
changed ARP messages in the network. So solution 1 and solution 3 can be used to
mitigate the MAC spoofing attacks.

12

3 Proof of concept

3.1 Setup
The aim of the lab environment is to simulate a portion of the real network. Our ex-
perimental setup thus consists of 3 major elements: the clients, the OpenFlow enabled
switch, and the OpenFlow controller.

We used two ports on an Anritsu MD1230B∗ traffic generator to simulate traffic from
two communicating clients. Each port from the traffic generator connects to one
switchport. The switch used was a Brocade MLX series, on which two 1 GbE ports
were used. To benefit from the latest features of the switch (hybrid-port mode), we
installed version 5.5b of the IronWare OS.

The switch has OpenFlow enabled on both ports, and connects to the OpenFlow con-
troller. We used a Debian virtual machine on which we installed POX as the Open-
Flow controller. The topology, and basic network configurations, are shown in figure
3.1.

Figure 3.1: Lab setup

POX is one of many available OpenFlow controllers. It is a Python-based SDN con-
troller, and is part of the NOX project (C++ controller)∗∗. We also made use of
Mininet†, a network emulator, for initial testing and debugging.

3.2 Implementation
We chose to implement solution 1 for the proof of concept because of its direct ap-
proach, and all the required features were already supported by the Brocade MLX
switch. To implement the first proposed solution, we first had to gather all the MAC
addresses and corresponding IP addresses of the entire network. AMS-IX does this by
keeping an updated database with all the details of the connections (port ID, VLAN,
MAC, IP etc.). This database is generated from an XML file, which has a tag for each

∗http://www.anritsu.com/en-US/Products-Solutions/Products/MD1230B.asp
x
∗∗http://www.noxrepo.org/pox/about-pox/
†https://github.com/minine0t/mininet

13

http://www.anritsu.com/en-US/Products-Solutions/Products/MD1230B.aspx
http://www.anritsu.com/en-US/Products-Solutions/Products/MD1230B.aspx
http://www.noxrepo.org/pox/about-pox/
https://github.com/minine0t/mininet

such detail. An example for a VLAN definition, is shown in the listing below:

1 < v l a n i d ="501" mode=" u n t a g g e d ">
2 <mac−a d d r e s s >782b . cb5a . bb68 </ mac−a d d r e s s >
3 < r o u t e r i p a d d r = " 1 9 5 . 6 9 . 1 4 5 . 0 " fqdn =" r s 2 . ams−i x . n e t " asnum ="6777" >
4 < a t t r i d =" r o u t e−s e r v e r " v a l u e ="1" / >
5 < p e e r i n g n e i g h b o r = " 3 . 1 4 . 1 5 9 . 2 " / >
6 < p e e r i n g n e i g h b o r = " 6 5 . 3 5 . 8 9 . 7 9 " / >
7 < p e e r i n g n e i g h b o r = " 3 2 . 3 8 . 4 6 . 2 6 " / >
8 </ r o u t e r >
9 < r o u t e r i p a d d r ="2001 :7 F8 : 1 : : A500 : 6 7 7 7 : 2 " fqdn =" r s 2 . i pv6 . ams−i x . n e t " asnum

="6777" >
10 < a t t r i d =" r o u t e−s e r v e r " v a l u e ="1" / >
11 < p e e r i n g n e i g h b o r ="2001 :7 F8 : 1 : : A500 : 1 2 0 0 : 1 " / >
12 < p e e r i n g n e i g h b o r ="2001 :7 F8 : 1 : : A500 : 1 2 0 0 : 2 " / >
13 </ r o u t e r >
14 </ v lan >

The idea is to have a table, very similar to a regular ARP table, in which OpenFlow
can look up MAC addresses by IP addresses, as shown in figure 3.1. In this way, when
the controller receives the ARP request from a client, it can answer that request with
the information from the table, and send back an ARP reply. We use a simple python
script (Annex B) to generate this table based on the XML file. Although the XML file
is updated multiple times per day, our proof of concept used it as a static source. The
script we wrote can be extended to regularly check updates in the file, and generate a
fresh table.

The OpenFlow controller then installs a flow entry in the OpenFlow table of the
switch, matching all packets with the ARP EtherType 0x0806 and destination MAC
address FF:FF:FF:FF:FF:FF. It only matches on the broadcast address in order to avoid
sending unicast ARP(gratuitous ARP) as well. The action for this flow entry is "send
to controller", meaning that any broadcast ARP messages will be sent to the controller.
This flow entry is shown in listing 3.1.

Listing 3.1: Switch OpenFlow table entry
1 # sh openf low f l o w s f l o w i d 22586
2 Flow ID : 22586 P r i o r i t y : 28672 S t a t u s : A c t i v e
3 Rule :
4 D e s t i n a t i o n Mac : f f f f . f f f f . f f f f
5 D e s t i n a t i o n Mac Mask : f f f f . f f f f . f f f f
6 E t h e r t y p e : 0 x00000806
7 Ac t i on : FORWARD
8 Out P o r t : send t o c o n t r o l l e r

The controller then looks up the IPv4 address from the ARP request, gets the corre-
sponding MAC address, and constructs an ARP reply that is sent to the client.

By configuring the OpenFlow enabled ports on the switch to work in hybrid-port
mode∗ , any traffic that is not matched to the flow table rules is forwarded to the
normal switching fabric. In this way, normal traffic is guaranteed to be unaffected by
the OpenFlow rules. Figure 3.2 shows the steps carried out for each ingress packet on
the OpenFlow enabled ports of the switch.

3.3 Observations
It is important to mention that the table only maps IPv4 addresses, since IPv6 uses
Neighbor Discovery and is out of the scope of this project. Special MAC addresses
for LACP (Link Aggregation Control Protocol) links are also listed in the file, but
these are answered by the PE itself. For these links, we use the main MAC of the link
for the table.

Another observation is the fact that some IPv4 addresses are mapped to two MAC ad-
dresses. AMS-IX customers sometimes change their MAC address (hardware changes
for example). Because each switch filters ingress traffic based on MAC address, when
a customer changes his address, it has to be updated in the access-list on the switch.
This means that it also has to be updated in the XML file, so that traffic still goes

∗http://community.brocade.com/community/discuss/sdn/blog/2013/04/19/
the-practical-path-to-sdn-brocade-openflow-hybrid-port-mode

14

http://community.brocade.com/community/discuss/sdn/blog/2013/04/19/the-practical-path-to-sdn-brocade-openflow-hybrid-port-mode
http://community.brocade.com/community/discuss/sdn/blog/2013/04/19/the-practical-path-to-sdn-brocade-openflow-hybrid-port-mode

Figure 3.2: ARP processing
flowchart

through while the change is happening. This can pose a problem, because the Open-
Flow controller needs to be aware of what MAC is in use. At the time of this writing,
the XML lists both the old and the new MAC addresses. The script that we used in
this setup just uses the last MAC address introduced in the file, and assumes it is the
one currently in use.

Tests were also done using multiple controllers running on the same VM, but on differ-
ent ports. One controller used port 6633 and the other used port 6634; both controllers
were configured in active mode on the switch. In an active connection configuration,
the switch will seek the controller and attempt to connect to it; in a passive configura-
tion, it is the controller that seeks switches in order to connect to them. In this setup,
the controller which was the last to connect was the one that pushed the flow into the
OpenFlow table of the switch.

Although there is no mention of Link Aggregation Group (LAG) support for Open-
Flow in the Brocade documentation, we have tested a scenario in which the client is
connected through a LAG to the switch. In this scenario, packets coming in through
the LAG are matched accordingly and there were no errors. However, two other cases
remain to be tested:

• when the LAG is between the controller and the switch

• when the output port for a table entry is a LAG

OpenFlow provides documentation and support for LAGs only in later versions than
OpenFlow v1.0.0. The current Brocade implementation (OpenFlow v1.0.0) does sup-
port forwarding to a set of ports. This would make the setup less dynamic because
the script would have to be changed every time a port would be removed/added to the
LAG. Referencing the LAG by an ID would make the controller independent of the
LAGs port set and configuration.

15

4 Conclusion

The main conclusion of this research project is that, indeed, OpenFlow can be used
to reduce ARP traffic in the layer 2 ISP peering LAN of AMS-IX. We have presented
five possible solutions that can be implemented to reach this goal. The proposed
solutions explore different options and allow for a degree of flexibility depending on
the latest features supported by the Brocade switches and resources available (multiple
controllers, the ARP sponge).

The ARP protocol can still be used for a short learning period or in unicast mode. In
either situation, the amount of ARP traffic is much lower than in the current setup.
Thus, the load on the CPUs of the network devices is brought down significantly.
The ARP protocol still functions normally between the CE and the PE nodes of the
network, but the effects of broadcasting are not seen on the network any more.

OpenFlow represents a flexible and scalable solution to the problem of ARP broad-
cast traffic. Because OpenFlow interacts so deeply with the hardware of the devices,
matching and forwarding is done at line speed, having no side-effects on bandwidth.
Moreover, with the recent implementation of hybrid-port mode on the Brocade MLX,
normal traffic can be easily isolated from OpenFlow rules.

Multiple OpenFlow controllers can be connected redundantly in order to account for
failures of the controller. Even in the case in which a single controller is used, the
flow table rules remain loaded in the switch until another connection to a controller is
set.

16

5 Acknowledgements

This project could not have been made possible without the help of some people.
We would like to thank our coordinator, Martin Pels, for his guidance, patience, and
support. Joerg Ammon was of special help as well, giving us a lot of support and
insight into Brocade’s latest developments regarding their OpenFlow implementation
and future plans. The AMS-IX team as a whole was very supportive of our project
and provided useful feedback that helped us constantly improve our project (and our
minigolf skills).

17

Bibliography

[1] Braden, R. 1989. RFC 1122: Requirements for Internet Hosts – Communication
Layers.

[2] K. Kompella, M. Lasserre. 2007a. RFC 4762: Virtual Private LAN Service
(VPLS) Using Label Distribution Protocol (LDP) Signaling.

[3] K. Kompella, Y. Rekhter. 2007b. RFC 4761: Virtual Private LAN Service (VPLS)
Using BGP for Auto-Discovery and Signaling.

[4] Marco Wessel, Niels Sijm. 2009. Effects of IPv4 and IPv6 address resolution on
AMS-IX and the ARP Sponge. M.Phil. thesis, Universiteit van Amsterdam.

[5] Nick McKeown, Tom Anderson, Hari Balakrishnan Guru Parulkar Larry Peterson
Jennifer Rexford Scott Shenker Jonathan Turner. 2008. OpenFlow: Enabling Inno-
vation in Campus Networks. ACM SIGCOMM Computer Communication Review,
38(2), 69–74.

[6] Pepelnjak, Ivan. 2013. Could IXPs Use OpenFlow To Scale? The Middle East
Network Operators Group (MENOG) 12.

18

A Abbreviations

AMS-IX Amsterdam Internet Exchange

ARP Address Resolution Protocol

BGP Border Gateway Protocol

CAM Content Addressable Memory

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

GE Gigabit Ethernet

ISP Internet Service Provider

IP Internet Protocol

LAG Link Aggregation Group

LAN Local Area Network

MAC Media Access Control

MPLS MultiProtocol Label Switching

P Provider router

PE Provider Edge router

CE Customer Edge router

LDP Label Distribution Protocol

LSP Label Switched Path

NDP Neighbor Discovery Protocol

PXC Photonic Cross-Connect

RSVP-TE Resource Reservation Protocol - Traffic Engineering

SDN Software Defined Networking

VLAN Virtual LAN

VPLS Virtual Private LAN Service

19

B Code listings

Script for extracting MAC and IP addresses from an XML file, and creating a new file
with the MAC-IP table.

1 from B e a u t i f u l S o u p i m p o r t B e a u t i f u l S o u p
2 i m p o r t r e
3 i m p o r t s u b p r o c e s s
4

5 x = open (’ a g g r e g a t e s . xml ’)
6 y = B e a u t i f u l S o u p (x)
7

8 a l l _ a g g = y . d a t a b a s e . f i n d A l l (" a g g r e g a t e ")
9

10 emptyTable = " t o u c h m a c _ t a b l e . t x t "
11 p r o c e s s = s u b p r o c e s s . Popen (emptyTable . s p l i t () , s t d o u t = s u b p r o c e s s . PIPE)
12 o u t p u t = p r o c e s s . communicate () [0]
13

14 m a c _ t a b l e = open (" t e s t _ m a c _ t a b l e . t x t " , "w")
15

16 f o r i i n r a n g e (0 , l e n (a l l _ a g g)) :
17

18 # i f i t a c t u a l l y has a VLAN e n t r y , and t h u s a mac−a d d r e s s t a g
19 i f y . d a t a b a s e . f i n d A l l (" a g g r e g a t e ") [i] . v l a n and y . d a t a b a s e . f i n d A l l (" a g g r e g a t e ") [i

] . v l a n . r o u t e r :
20

21 # f i l t e r o u t t h o s e annoy ing LACP MACs
22 i f n o t y . d a t a b a s e . f i n d A l l (" a g g r e g a t e ") [i] . v l a n . f i n d (t y p e =" l a c p ") :
23

24 # l i s t a l l MACs from t h a t a g g r e g a t e
25 f o r j i n r a n g e (0 , l e n (y . d a t a b a s e . f i n d A l l (" a g g r e g a t e ") [i] . v l a n . f i n d A l l (" mac−

a d d r e s s "))) :
26 va r1 = y . d a t a b a s e . f i n d A l l (" a g g r e g a t e ") [i] . v l a n . f i n d A l l (" mac−a d d r e s s ") [j] .

s t r i n g
27 va r2 = va r1 . s p l i t (’ . ’)
28 va r3 = ’ ’ . j o i n (va r2)
29 va r4 = r e . f i n d a l l (’ . . ’ , v a r3)
30 f i n a l = ’ : ’ . j o i n (va r4)
31 # f i l t e r o u t IPv6 a d d r e s s e s
32 i f l e n (y . d a t a b a s e . f i n d A l l (" a g g r e g a t e ") [i] . v l a n . r o u t e r [’ i p a d d r ’]) <= 1 5 :
33 m a c _ t a b l e . w r i t e (f i n a l + " " + y . d a t a b a s e . f i n d A l l (" a g g r e g a t e ") [i] . v l a n .

r o u t e r [’ i p a d d r ’] + " \ n ")
34

35 m a c _ t a b l e . c l o s e ()

OpenFlow controller script, based on the original arp_responder.py script from the
POX installation.

1 # C o p y r i g h t 2011 ,2012 James McCauley
2 #
3 # Th i s f i l e i s p a r t o f POX.
4 #
5 # POX i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r modify
6 # i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
7 # t h e Free S o f t w a r e Founda t ion , e i t h e r v e r s i o n 3 of t h e L icense , o r
8 # (a t your o p t i o n) any l a t e r v e r s i o n .
9 #

10 # POX i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
11 # b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
13 # GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
14 #
15 # You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
16 # a l o n g wi th POX. I f not , s e e < h t t p : / / www. gnu . o rg / l i c e n s e s / > .
17

18 from pox . c o r e i m p o r t c o r e
19 i m p o r t pox
20 l o g = c o r e . g e t L o g g e r ()
21

22 from pox . l i b . p a c k e t . e t h e r n e t i m p o r t e t h e r n e t , ETHER_BROADCAST
23 from pox . l i b . p a c k e t . a r p i m p o r t a r p
24 from pox . l i b . a d d r e s s e s i m p o r t IPAddr , EthAddr

20

25 from pox . l i b . u t i l i m p o r t d p i d _ t o _ s t r , s t r _ t o _ b o o l
26 from pox . l i b . r e c o c o i m p o r t Timer
27 from pox . l i b . r e v e n t i m p o r t E v e n t H a l t
28

29 from xml . dom i m p o r t minidom
30 from B e a u t i f u l S o u p i m p o r t B e a u t i f u l S o u p
31

32 i m p o r t pox . openf low . l i b o p e n f l o w _ 0 1 as o f
33

34 i m p o r t t ime
35

36

37 c l a s s E n t r y (o b j e c t) :
38 d e f _ _ i n i t _ _ (s e l f , mac , s t a t i c = F a l s e) :
39 # s e l f . t i m e o u t = t ime . t ime () + ARP_TIMEOUT
40 # s e l f . s t a t i c = s t a t i c
41 i f mac i s True :
42 # Means use swi t ch ’ s MAC, i m p l i e s True
43 s e l f . mac = True
44 s e l f . s t a t i c = True
45 e l s e :
46 s e l f . mac = EthAddr (mac)
47

48 d e f __eq__ (s e l f , o t h e r) :
49 i f i s i n s t a n c e (o t h e r , E n t r y) :
50 r e t u r n (s e l f . s t a t i c , s e l f . mac) ==(o t h e r . s t a t i c , o t h e r . mac)
51 e l s e :
52 r e t u r n s e l f . mac == o t h e r
53 d e f __ne__ (s e l f , o t h e r) :
54 r e t u r n n o t s e l f . __eq__ (o t h e r)
55

56

57 c l a s s ARPTable (d i c t) :
58 d e f _ _ r e p r _ _ (s e l f) :
59 o = []
60 f o r k , e i n s e l f . i t e r i t e m s () :
61 i f e . s t a t i c : t = "−"
62 mac = e . mac
63 i f mac i s True : mac = "< Swi tch MAC>"
64 o . append ((k,"%−17 s %−20s %3s " % (k , mac , t)))
65

66 o . s o r t ()
67 o = [e [1] f o r e i n o]
68 o . i n s e r t (0,"−− ARP Tab le −−−−−")
69 i f l e n (o) == 1 :
70 o . append (" < < Empty > >")
71 r e t u r n " \ n " . j o i n (o)
72

73 d e f _ _ s e t i t e m _ _ (s e l f , key , v a l) :
74 key = IPAddr (key)
75 i f n o t i s i n s t a n c e (va l , E n t r y) :
76 v a l = E n t r y (v a l)
77 d i c t . _ _ s e t i t e m _ _ (s e l f , key , v a l)
78

79 d e f _ _ d e l i t e m _ _ (s e l f , key) :
80 key = IPAddr (key)
81 d i c t . _ _ d e l i t e m _ _ (s e l f , key)
82

83 d e f s e t (s e l f , key , v a l u e =True , s t a t i c =True) :
84 i f n o t i s i n s t a n c e (va lue , E n t r y) :
85 v a l u e = E n t r y (va lue , s t a t i c = s t a t i c)
86 s e l f [key] = v a l u e
87

88

89 d e f _dpid_ to_mac (dp id) :
90 # Should maybe look a t i n t e r n a l p o r t MAC i n s t e a d ?
91 r e t u r n EthAddr ("%012x " % (dp id & 0 x f f F F f f F F f f F F ,))
92

93

94 c l a s s ARPResponder (o b j e c t) :
95 d e f _ _ i n i t _ _ (s e l f) :
96

97 c o r e . a d d L i s t e n e r s (s e l f)
98

99 d e f _handle_GoingUpEvent (s e l f , e v e n t) :
100 c o r e . openf low . a d d L i s t e n e r s (s e l f)
101 l o g . debug (" Up . . . ")
102

103 d e f _hand le_Connec t ionUp (s e l f , e v e n t) :
104 i f _ i n s t a l l _ f l o w :
105 fm = of . ofp_flow_mod ()
106 fm . p r i o r i t y = 0 x7000 # P r e t t y h igh
107 fm . match . d l _ t y p e = e t h e r n e t . ARP_TYPE
108 fm . a c t i o n s . append (o f . o f p _ a c t i o n _ o u t p u t (p o r t = o f . OFPP_CONTROLLER))
109 e v e n t . c o n n e c t i o n . send (fm)
110

111 d e f _ h a n d l e _ P a c k e t I n (s e l f , e v e n t) :
112 s q u e l c h = F a l s e
113

21

114 dp id = e v e n t . c o n n e c t i o n . dp id
115 i n p o r t = e v e n t . p o r t
116 p a c k e t = e v e n t . p a r s e d
117 i f n o t p a c k e t . p a r s e d :
118 l o g . warn ing ("% s : i g n o r i n g u n p a r s e d p a c k e t " , d p i d _ t o _ s t r (dp id))
119 r e t u r n
120

121 a = p a c k e t . f i n d (’ arp ’)
122 i f n o t a : r e t u r n
123

124 l o g . debug ("% s ARP %s %s => %s " , d p i d _ t o _ s t r (dp id) ,
125 { a r p . REQUEST : " r e q u e s t " , a r p . REPLY : " r e p l y " } . g e t (a . opcode ,
126 ’ op:% i ’ % (a . opcode ,)) , s t r (a . p r o t o s r c) , s t r (a . p r o t o d s t))
127

128 i f a . p r o t o t y p e == a r p . PROTO_TYPE_IP :
129 i f a . hwtype == a r p . HW_TYPE_ETHERNET:
130 i f a . p r o t o s r c != 0 :
131

132 i f _ l e a r n :
133 l o g . i n f o ("% s l e a r n e d %s " , d p i d _ t o _ s t r (dp id) , a . p r o t o s r c)
134 _ a r p _ t a b l e [a . p r o t o s r c] = E n t r y (a . hwsrc)
135

136 i f a . opcode == a r p . REQUEST:
137 # Maybe we can answer
138

139 i f a . p r o t o d s t i n _ a r p _ t a b l e :
140 # We have an answer . . .
141

142 r = a r p ()
143 r . hwtype = a . hwtype
144 r . p r o t o t y p e = a . p r o t o t y p e
145 r . hwlen = a . hwlen
146 r . p r o t o l e n = a . p r o t o l e n
147 r . opcode = a r p . REPLY
148 r . hwdst = a . hwsrc
149 r . p r o t o d s t = a . p r o t o s r c
150 r . p r o t o s r c = a . p r o t o d s t
151 mac = _ a r p _ t a b l e [a . p r o t o d s t] . mac
152 i f mac i s True :
153 # S p e c i a l c a s e −− use o u r s e l f
154 mac = _dpid_ to_mac (dp id)
155 r . hwsrc = mac
156 e = e t h e r n e t (t y p e = p a c k e t . type , s r c = _dpid_ to_mac (dp id) ,
157 d s t =a . hwsrc)
158 e . p a y l o a d = r
159 l o g . i n f o ("% s a n s w e r i n g ARP f o r %s " % (d p i d _ t o _ s t r (dp id) ,
160 s t r (r . p r o t o s r c)))
161 msg = of . o f p _ p a c k e t _ o u t ()
162 msg . d a t a = e . pack ()
163 msg . a c t i o n s . append (o f . o f p _ a c t i o n _ o u t p u t (p o r t =
164 of . OFPP_IN_PORT))
165 msg . i n _ p o r t = i n p o r t
166 e v e n t . c o n n e c t i o n . send (msg)
167 r e t u r n E v e n t H a l t i f _ e a t _ p a c k e t s e l s e None
168

169 # Didn ’ t know how t o h a n d l e t h i s ARP, so j u s t f l o o d i t
170 msg = "%s f l o o d i n g ARP %s %s => %s " % (d p i d _ t o _ s t r (dp id) ,
171 { a r p . REQUEST : " r e q u e s t " , a r p . REPLY : " r e p l y " } . g e t (a . opcode ,
172 ’ op:% i ’ % (a . opcode ,)) , a . p r o t o s r c , a . p r o t o d s t)
173

174 i f s q u e l c h :
175 l o g . debug (msg)
176 e l s e :
177 l o g . i n f o (msg)
178

179 msg = of . o f p _ p a c k e t _ o u t ()
180 msg . a c t i o n s . append (o f . o f p _ a c t i o n _ o u t p u t (p o r t = o f . OFPP_FLOOD))
181 msg . d a t a = e v e n t . o fp
182 e v e n t . c o n n e c t i o n . send (msg . pack ())
183 r e t u r n E v e n t H a l t i f _ e a t _ p a c k e t s e l s e None
184

185

186 _ a r p _ t a b l e = ARPTable () # IPAddr −> E n t r y
187 _ i n s t a l l _ f l o w = None
188 _ e a t _ p a c k e t s = None
189 _ l e a r n = None
190

191 d e f l a u n c h (no_f low = F a l s e , e a t _ p a c k e t s =True ,
192 n o _ l e a r n =True , ∗∗kw) :
193 g l o b a l _ i n s t a l l _ f l o w , _ e a t _ p a c k e t s , _ l e a r n
194 _ i n s t a l l _ f l o w = n o t no_f low
195 _ e a t _ p a c k e t s = s t r _ t o _ b o o l (e a t _ p a c k e t s)
196 _ l e a r n = n o t n o _ l e a r n
197 f i l e = open (’ m a c _ t a b l e _ f i n a l . t x t ’)
198

199 c o r e . I n t e r a c t i v e . v a r i a b l e s [’ arp ’] = _ a r p _ t a b l e
200 f o r k , v i n kw . i t e r i t e m s () :
201 _ a r p _ t a b l e [IPAddr (k)] = E n t r y (v , s t a t i c =True)
202 f o r l i n e i n f i l e . r e a d l i n e s () :

22

203 l i n e = l i n e . s t r i p ()
204 # p r i n t l i n e
205 co l1 , c o l 2 = l i n e . s p l i t ()
206 p r i n t c o l 1 , c o l 2
207 _ a r p _ t a b l e [IPAddr (c o l 2)] = E n t r y (EthAddr (c o l 1) , s t a t i c =True)
208 c o r e . r e g i s t e r N e w (ARPResponder)

23

	List of Figures
	 Introduction
	 AMS-IX Overview
	 The Address Resolution Protocol
	 The ARP Sponge
	 OpenFlow
	 Related Work
	 Research Question

	 Proposed solutions
	 Solution 1: Forward to OpenFlow controller
	 Solution 2: Dynamic learning OpenFlow controller
	 Solution 3: OpenFlow-aided ARP proxy on each PE
	 Solution 4: Forward to ARP sponge
	 Solution 5: Forward to target router
	 Observations on the proposed solutions

	 Proof of concept
	 Setup
	 Implementation
	 Observations

	 Conclusion
	 Acknowledgements
	Bibliography
	 Abbreviations
	 Code listings

