Using Git to circumvent censorship
of access to the Tor network

Bjorgvin Ragnarsson and Pieter Westein
University of Amsterdam
Research Project 2




Outline

» Introduction
» Research Question

» Git overview

» Design overview
» Demo

» Performance measurements
» Prototype evaluation

» Conclusion and Future work

» Questions

Slide 2 of 18




Tor overview

EDJ Tor node

.« = Unencrypted |ink

Ef) How Tor Works: 1

——p ancrypted link

Alice

= =

e —

Step 1: Alice's Tor
client obtains a list

of Tor nodes from + . -
adirectory server. - — — Jane
R el .
Dave - — = = Bob

EH) How Tor Works: 2

Alice

== = - =
m——

tDJ Tor node

- - - unencrypted link
——p oncrypted link

1
1
A
{
|
1

Step 2: Alice's Tor client
picks a random path to
destination server. Green
links are encrypted, red
links are in the clear.

Dave

i+

(I

Source: https://www.torproject.org/about/overview.html.en

Slide 3 of 18




Censorship and resistance

» Tor relays are public, easy to block
» Introduction of Bridges
» Scanners actively trying to reach Bridges

» Introduction of Pluggable Transports

Slide 4 of 18



Pluggable Transports

» Modules for obfsproxy framework

» Can be used for other purposes than Tor
> as a SOCKS proxy

» Existing transports

- Obfs2,0bfs3, Skype, ScrambleSuit, Dust,
StegoTorus, flashproxy

Slide 5 of 18



Research Question

» Is it possible to shape Tor traffic in such a
way that it looks identical to the Git protocol?

» How could a censor identify Tor bridges and
users using such an obfuscated protocol?

Slide 6 of 18



Git overview

» Version control system
» Push and pull mechanism

» Four transports protocols
> SSH, Git, HTTP, HTTPS

Slide 7 of 18



Pushing

Client

git-receive-pack
=

Have: List of references
2

Want: List of references
g

Sending Objects
g

FIN-ACK
=

ACK
=

Server

Slide 8 of 18



Pulling

Client

git-upload-pack
=

Have: List of references

g

Want: List of references

2

Sending Objects
g

FIN-ACK
=

ACK
=

Server

Slide 9 of 18



Object Storage

» Files compressed and stored in the Git
database

» SHAT hash of the content used as reference
B B




Design overview

» TCP stream is stored as files in Git

» The Git program does the transfer
- Makes it harder to fingerprint

- Provides four transports in one:
« (SSH/Git/HTTP/HTTPS)

» Client initiates send/receive

Slide 11 of 18



Obfsproxy

R .."'"i
=7 S
)
— _
B g
=
Tor Clien Obfsproxy client DPI Obfsproxy server Tor bridge

Internet

Slide 12 of 18




Demo time!




Performance measurements

» Downloading a 10MB file using git over ssh

> 7 KB/s over ssh through Tor
- 166 KB/s over ssh without Tor

1000 -

KB persecond
=
2

=
o
|

M Direct download

ETor

B Git obfsproxy

B Git obfsproxy over Tor

Slide 14 of 18



Prototype evaluation

» The frequency of pushes and pulls

» Tor data is compressed (not hidden)

» Git traces on disk

Slide 15 0of 18



Conclusion

» Tor usage can be obfuscated as Git traffic
> or any other VCS

» Prototype is slow, compared to normal Tor

» Polling and disk writes are weak points

Slide 16 of 18



Future work

» Using publicly available Git servers for
relaying

» Layered obfuscation

» Eliminate disk writes

Slide 17 of 18



Questions?

Thank you for your attention

Track development at:
https://trac.torproject.org/projects/tor/ticket/9192




