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Censorship and resistance

» Tor relays are public, easy to block
» Introduction of Bridges
» Scanners actively trying to reach Bridges

» Introduction of Pluggable Transports

Slide 4 of 18



Pluggable Transports

» Modules for obfsproxy framework

» Can be used for other purposes than Tor
> as a SOCKS proxy

» Existing transports

- Obfs2,0bfs3, Skype, ScrambleSuit, Dust,
StegoTorus, flashproxy
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Research Question

» Is it possible to shape Tor traffic in such a
way that it looks identical to the Git protocol?

» How could a censor identify Tor bridges and
users using such an obfuscated protocol?

Slide 6 of 18



Git overview

» Version control system
» Push and pull mechanism

» Four transports protocols
> SSH, Git, HTTP, HTTPS
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Pushing
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Pulling
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Object Storage

» Files compressed and stored in the Git
database

» SHAT hash of the content used as reference
B B




Design overview

» TCP stream is stored as files in Git

» The Git program does the transfer
- Makes it harder to fingerprint

- Provides four transports in one:
« (SSH/Git/HTTP/HTTPS)

» Client initiates send/receive
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Demo time!




Performance measurements

» Downloading a 10MB file using git over ssh

> 7 KB/s over ssh through Tor
- 166 KB/s over ssh without Tor
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Prototype evaluation

» The frequency of pushes and pulls

» Tor data is compressed (not hidden)

» Git traces on disk
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Conclusion

» Tor usage can be obfuscated as Git traffic
> or any other VCS

» Prototype is slow, compared to normal Tor

» Polling and disk writes are weak points
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Future work

» Using publicly available Git servers for
relaying

» Layered obfuscation

» Eliminate disk writes
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Questions?

Thank you for your attention

Track development at:
https://trac.torproject.org/projects/tor/ticket/9192




