Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

OpenFlow Enlightenment Extending lightpaths through the campus network

Diederik Vandevenne, Tjebbe Vlieg

Supervisors: Marijke Kaat, Ronald van der Pol

July 3, 2013

Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

Problem

Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

・ロト ・日ト ・ヨト ・ヨト ・日 ・ のへの

OpenFlow

- Software defined networking.
- Dynamic programmable switching/routing.
- Forwarding based on various fields.
- Open interface to network hardware.

Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

Research Question

Given the wide variety of campus networks, what solutions exist to provide end users with fast and easy access to lightpaths in a dynamic and secure way, using OpenFlow on Pica8 3290 switches?

Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

Testbed

- 2x Pica8 3290 OpenFlow switches (with Open vSwitch)
- 2x Linux server

Generic Solution

Routing:

• Create 'tunnel' between switches over supported protocol.

Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

Generic Solution (2)

Authorization:

• Use one field in header to provide access token.

- Check token on other side of tunnel.
- Update token every interval.

7/20

Introduction

Testbed

Solution

Scenarios

Questions

Scenario 1: Layer 2 Switched Network

Characteristics:

- Layer 2 path possible between end user and lightpath entrance (same VLAN).
- No IP routing involved.
- Headers above layer 2 remain unaltered.

Layer 2 Switched Network (2)

Solution: VLAN/MPLS.

- VLAN configured between OpenFlow switches.
- MPLS tag added with lightpath identifier.
- MPLS tag added with access token.
- Tunnel endpoint checks tags and forwards to appropriate lightpath.

Dest. Address	Source Address	VLAN Tag	Type (0x8847)	MPLS (lightpath ID)	MPLS (access token)	Data	FCS
------------------	-------------------	----------	------------------	------------------------	------------------------	------	-----

Layer 2 Switched Network (3)

Solution: Q-in-Q (802.1ad).

- Architecture similar to MPLS solution.
- Lightpath ID and access token combined in inner VLAN tag.

Drawbacks:

• Campus network has to support Q-in-Q (uses other ethertype).

Dest. Address	Source Address	Outer VLAN Tag	Inner VLAN Tag	Туре (e.g.0x800)	Data	FCS
------------------	-------------------	-------------------	-------------------	---------------------	------	-----

Introduction

Testbed

Solution

Scenarios

Conclusio

Questions

Support

Action	OpenFlow v1.2	Pica8 3290
VLAN push	Optional, suggested	Implemented
VLAN pop	Optional, suggested	Implemented
VLAN modify	Optional, suggested	Implemented
MPLS push	Optional	Implemented
MPLS pop	Optional	Implemented
MPLS modify	Optional	Implemented
Q-in-Q	Optional	Not implemented

Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

Support (2)

- All necessary actions are optional in specifications.
- VLAN tag strip does not work as expected.
- MPLS tag push only works for the first packet in an IP/IPv6 flow.

Solutions cannot be implemented on Pica8 3290 with current firmware.

Introduction

Testbed

Solution

Scenarios

Questions

Scenario 2: MPLS Switched Network

Characteristics:

- MPLS label switched path (LSP) between end user and lightpath possible.
- No IP routing involved.
- Multiple MPLS labels can be pushed.

Introduction Testbed Solution Scenarios Conclusion Questions

MPLS Switched Network (2)

Solution: more MPLS.

- MPLS LSPs configured between OpenFlow switches.
- MPLS tag added with lightpath identifier.
- MPLS tag added with access token.
- Tunnel endpoint checks tags and forwards to appropriate lightpath.

Drawbacks:

- Both OpenFlow switches need to participate in routing/label distribution protocols to set up LSP.
- Original ethernet header is stripped.

Dest. Address	Source Address	Type (0x8847)	MPLS (campus)	MPLS (lightpath ID)	MPLS (access token)	Data	FCS
------------------	-------------------	------------------	------------------	------------------------	------------------------	------	-----

Introduction Testbed Solution Scenarios Conclusion Questions

Support

Action	OpenFlow v1.2	Pica8 3290
MPLS push	Optional	Implemented
MPLS pop	Optional	Implemented
MPLS modify	Optional	Implemented

Again:

- All necessary actions are optional in specifications.
- MPLS tag push only works for the first packet in an IP/IPv6 flow.

Solution cannot be implemented on Pica8 3290 with current firmware.

Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

Scenario 3: IP Routed Network

Characteristics:

• No layer 2 path required between OpenFlow switches.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへで

• layer 2 and IP headers can be altered.

Solution

Scenarios

IP Routed Network (2)

Solution: Generic Routing Encapsulation (GRE).

- Set up GRE tunnel between both switches.
- Use GRE key field for lightpath ID and access token.

Drawbacks:

• Original ethernet header is stripped.

Dest. Address	Source Address	Туре (0x800)	IP	GRE	IP	Data	FCS
------------------	-------------------	-----------------	----	-----	----	------	-----

Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

Support

OpenFlow v1.2 support:

- GRE is not included in OpenFlow specification.
- OpenFlow does allow 'logical ports' for tunnels.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ りへぐ

Pica8 3290 support:

- GRE is supported.
- Only IP over GRE possible.

Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

Conclusion

- Multiple solutions to lightpath problem are possible.
 - MPLS
 - Q-in-Q
 - GRE
- OpenFlow (optionally) supports most of those.
- Implementation on Pica8 3290 not yet mature.

Introduction	Testbed	Solution	Scenarios	Conclusion	Questions

Questions?