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Introduction

E-banking malware;

Man-in-the-browser attack;

”Owns” the browser;
Not possible to detect malware with web techniques, i.e
JavaScript.
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Normal banking web page

Figure 1: Normal banking web page
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Malicious banking web page

Figure 2: Malicious banking web page
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Research question

To what extend is it possible to detect maliciously injected code
into a web page using a heuristic model in order to counteract
fraud and what is the performance of such technique in terms of
accuracy and execution time?
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Current Solutions

Pattern recognition;

Cannot detect injections from unknown malware.
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Related Work

CaffeineMonkey: a method to analyse and detect malicious
JavaScript (Feinstein et. al.);

Prophiler: a filter to examine millions of web pages for
malicious content (Canali, Davide, et al.);

Zozzle: a low-overhead solution that applies Bayesian analysis
to detect JavaScript malware in the browser (Curtsinger,
Charlie, et al.).
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Approach (1)

Supervised machine learning;

Labeling of benign and malicious pages

Server-side detection mechanism;

Goal: detect injections from unknown malware and difficult to
bypass.
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Approach (2)

Figure 3: Normal interaction with an e-banking web site.
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Approach (3)

Figure 4: Overview of fraud detection implementation.
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Model overview

Figure 5: Overview of the fraud detection model.
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Method: feature extraction

Brief selection of features that
are identified:

iframes;

inline styles;

hidden elements;

input fields;

(obfuscated) Javascript;

external Javascript,
stylesheets and images.

Figure 6: Feature extraction
component

A total of 26 relevant features are identified from HTML,
Javascript and URLs
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Method: preprocessor

Transforms the feature data
to a vector as input for the
classifier;

Assigns a maliciousness
score based on the
extracted URL features.

Figure 7: Preprocessor component

Tim Timmermans, Jurgen Kloosterman Research project 2. (13 of 21)



Method: classifier

Näıve Bayes learning
algorithm

Two components

Trainer;
Classification.

Figure 8: Classifier components
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Classifier: trainer

Train the classifier on manual
labeled malicious and benign
pages.

Figure 9: Classifier - trainer
component

Tim Timmermans, Jurgen Kloosterman Research project 2. (15 of 21)



Classifier: classification

Classifies an unknown page
against the training set
using the Bayes’ theorem;

Result consists of a
probability between 0 and
100% for each class.

Figure 10: Classifier - classification
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Results: performance

Mean execution time to classify an unknown page: 0.176 seconds.

Figure 11: Execution time performance
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Results: accuracy

90% accuracy reached with ∼32.000 instances in the training set.

Figure 12: Accuracy measurements
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Results: model validation

Experiment to validate the developed model:

1 Train classifier on page adapter by Zeus malware;

2 Classify a page adapted by Citadel malware.

Result: classified as malicious with a probability of 100%.
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Conclusion

Classifier reaches an accuracy of 90% given the used dataset
(needs validation with more complete set);

The developed model is able to counteract fraud, caused by
(unknown) malware;

Classification process of a web page is performed with a mean
of 0.176 seconds;

Improvement of the model may lower impact on resources and
optimizing executing time.
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