
Detecting client-side e-banking fraud

using a heuristic model

T.Timmermans
tim.timmermans@os3.nl

J.Kloosterman
jurgen.kloosterman@os3.nl

University of Amsterdam
ABN AMRO Bank N.V.

July 11, 2013

Abstract

This research proposes and implements a heuristic
model to detect client-side e-banking fraud caused
by malware. Results show that the model is
promising and is able to detect malicious injec-
tions from malware. To validate the developed
model, an additional experiment is performed
in which unknown web pages, adapted by re-
cent malware are correctly classified based on
historical, malicious pages of a bank. However,
validation of the results with a more representa-
tive dataset is required. The classification process
of a web page is performed with a mean of 0.176
seconds. Improvement of the developed model
may lower impact on resources and execution time.

Supervisor:
Mark Wiggerman
mark.wiggerman@nl.abnamro.com

1 Introduction

For as long as online banking exists, criminal organisa-
tions are actively trying to commit fraud leveraging weak-
nesses in banking applications. Recent cases of fraud [1–3]
have shown that even though the detection mechanisms
have improved, malware continuously evolves to find weak-
nesses in banking applications that are exploited through
infected clients.

Current malware infections include trojans, worms,
viruses, ad- and spyware among others [3]. Uprising of
trojans poses challenges as this type of man-in-the-browser
(MitB) malware is able to dominate the web browser and
is able to inject code in existing web pages to mask the
original page and to hide its malicious behaviour to the
end user.

One of the major problems with client-side security is
that no control can be applied on the underlying platform.
Especially when malware dominates the user’s browser,
every security measure implemented in the web page can
be circumvented. Therefore, responses from the client can
not be trusted. In addition to that, Man-in-the-Browser
threats are very difficult to counter using solely web tech-

niques such as Javascript, as these generally operate on
a higher level and do not have access to the operating
system.

Therefore, this research presents a server-sided model
to detect malicious code on the client-side by validating
the rendered web pages on a server. The analysis on the
server consists of a classification with a set of heuristics, in
order to detect malicious web pages that differ in their set
of features and the probability that an unknown page has
been modified by malware. To review the feasibility of the
technique a proof of concept is created and the accuracy
and execution time have been measured accordingly.

1.1 Research Question

For this research the main research question is:

To what extend is it possible to detect maliciously in-
jected code into a web page using a heuristic model to coun-
teract fraud, and what is the performance of such technique
in terms of accuracy and execution time?

1.2 Project Scope

The scope of this research project is the design and im-
plementation of a proof-of-concept application to detect
e-banking fraud that poses a threat for customers of a
bank. Every client-side defense mechanism put in place is
vulnerable for interception and unintended manipulation.
Thus, the decision is made to develop a server-sided model
to collect the web pages that are susceptible to be used in
an attempt to commit fraud. Although a central solution
introduces additional security and performance problems
by itself, mechanisms to detect fraud have previously not
been able to determine if pages rendered on a client have
been modified by malware.

In this research the web pages have already been ob-
tained before they provide as an input for the model. A
future implementation should provide a client-side mech-
anism to send web pages in an automatic way such that
the response of a banking web site is not changed. The
client-side solution required to aggregate the web pages in
an automatic way is left out of the scope of this research.
Section 3.3 however proposes a method for the client-side

1



implementation.

1.3 Outline

The paper is structured as follows. Existing studies related
to the analysis and detection of malicious websites are
described in section 2. The method used to detect fraud
is detailed in section 3. The results are presented in section
4. Section 5 and 6 contain the discussion and a conclusion
of the method and results. Finally, challenges for further
work are described in section 7.

2 Related Work

In general, e-banking malware tends to inject malicious
scripts and other elements into the web page of a bank.
The work by [4] resulted in the development of a method
to both analyse and detect malicious Javascript. A sand-
boxed environment based on the SpiderMonkey Javascript
implementation was developed in order to deobfuscate, log
and profile Javascript code. This solution can distinguish
both benign and malicious code.

More research in this area is performed by [5]. The
product of this research is a filter called Prophiler, which
uses both static and dynamic syntax analysis techniques to
examine millions of web pages for malicious content. The
choice for separating static and dynamic syntax analysis
was made to only put statically unclassified pages through
dynamic analysis. Compared to a situation in which all
web pages were put through dynamic syntax analysis, sys-
tem load with the new filter is reduced by more than 85
percent.

Research performed by [6] developed a tool named ZOZ-
ZLE, which is a low-overhead solution for detecting and
preventing JavaScript malware in the browser. It uses
Bayesian classification and the experimental evaluation
shows that the tool is able to detect JavaScript malware
through static code analysis with a false positive rate of
0.0003%.

When comparing the outline of the research described
in this paper and the referenced research, the data ac-
quisition method is different. [5] is primarily of intent to
apply research on drive-by-downloads and therefore needs
to acquire as much data as possible from a list of unknown
popular pages. For the research in this paper, it is essential
to acquire both benign and malicious pages from a known
collection of web pages in order to find erratic behaviour,
but also to train a heuristic model accordingly. However,
there is an overlap between drive-by-downloads [7] and
the injections performed by e-banking malware. Finally,
a subset of the static syntax analysis techniques applied
on HTML web pages that have been described in [5] have
been independently implemented in the extraction of fea-
tures in this research.

3 Method

E-banking malware such as a trojan horse is able to inject
code into the web pages a client requests from the bank’s
web site. Although the connection is secured to prevent

man-in-the-middle attacks, it is not able to inspect how
the web pages on the client are displayed. A Man-in-the-
browser attack, in which malware hooks on browser events,
is difficult to detect as almost anything on the client-side
can be modified. In general the convention is that clients
can not be trusted and that mechanisms to detect fraud
are placed in a server-side architecture.

3.1 Overview

Figure 1: Overview of the model

Figure 1 describes a model to get insight whether a
client is attempting to commit fraud based on the infor-
mation present in the web page a browser has rendered.
As an end user requests a page, the web browser will re-
quest that particular page and renders it upon retrieval
by the render engine, e.g WebKit 1. A concise comparison
of web browser engines can be obtained from 2.

Given the characteristics of a browser engine a web page
is displayed differently on popular web browsers such as
Mozilla Firefox, Google Chrome and Internet Explorer.
However, these minor differences are not the main prob-
lem, as a trojan horse can add additional elements to the
received page before or while the page is actually shown
to the user.

By obtaining the Document Object Model (DOM) 3

from a web browser, the DOM gives insight into how mal-
ware might have adapted a web page. If this data is ag-
gregated and sent to a separate channel throughout the
time a user is active in the e-banking environment, this
data can be used as a starting point for further analysis.

3.2 Model

Comparable to the research by Canali, et al. [5], the
method in this paper is also divided in several phases (see
figure 2. The initial phase consists of the aggregation of
data from the DOM for a set of clients. In the second
phase, this set of data is analysed by extracting a selec-
tion of features that are stored in a central location. Third,
the extracted features in the database are transformed to a
vector of scores per web page using a preprocessor. With

1https://www.webkit.org/
2https://en.wikipedia.org/wiki/Comparison_of_web_

browser_engines
3http://www.w3.org/DOM/

2

https://www.webkit.org/
https://en.wikipedia.org/wiki/Comparison_of_web_browser_engines
https://en.wikipedia.org/wiki/Comparison_of_web_browser_engines
http://www.w3.org/DOM/


all the vectors as an input, the vectorised data is pro-
cessed in a Bayesian classifier to compute a probability
that a web page is either benign or malicious. Based on
this score, the bank is informed that there are signs that
a client is committing e-banking fraud.

Figure 2: Model components

3.3 Aggregation of data

When a client requests a web page, the web browser re-
quests that particular page. After receiving it, the page is
rendered by the browser engine.

As the Document Object Model (DOM) from a web
browser can be obtained using Javascript, the docu-
ment.documentElement.outerHTML attribute 4 of the
DOM contains a serialized HTML string of the rendered
page. This attribute provides insight how malware
modifies a web page. If this data is aggregated and
sent to a separate channel throughout the time a user
is active in the e-banking environment, this data can be
used as a starting point for automated static analysis.
As described in section 1.2, obtaining the data in an
automatic way is left out of the project’s scope. However,
the next paragraph presents recommendations how this
method can be implemented in a relatively secure manner.

Hiding techniques
Javascript can be used to send a web page, using non-
blocking asynchronous requests, from a client over a
secured channel (e.g HTTPS connection) to a system
that aggregates these web pages for further analysis [8].
It is important to acknowledge that everything on the
client-side can be manipulated. It is difficult to protect
Javascript code, since it is not compiled into byte or bi-
nary code [9]. Therefore, a number of recommendations
are presented how Javascript code can be obfuscated to
make it difficult to tamper with.

Function Reordering Randomly reorder function dec-
larations. Makes it harder to properly reference dif-
ferent parts of the code.

4https://developer.mozilla.org/en-US/docs/Web/API/

element.outerHTML

Dead code Injection Randomly inject dead code,
preferably derived from the source code. It can be
isolated using opaque predicates.

Literal replacement Replace literals with randomly
generated numbers of ternary operators.

String encoding Using different types of encoding to
hide the plain text the source code.

The above recommendations are all part of the obfus-
cation process to make the source code harder to under-
stand, even with the help of computing resources. The
script should be placed in a random place in the HTML
document upon each request. This makes it harder for at-
tackers to strip the code from the page. Also, the source
must be obfuscated with different parameters in order to
serve multiple versions of the script. This is possible by us-
ing different encodings and using randomly injected code.
Obfuscation techniques, algorithms and available tools are
discussed in [9, 10].

3.4 Feature extraction

This component uses the input of captured web pages as
a start to extract features. Both malicious and benign
pages are analyzed to identify a representative set of fea-
tures to construct a classification model. The features are
divided into three categories: HTML, Javascript and URL
features. The features are based on anomalies found dur-
ing the analysis of the pages that distinguish benign from
malicious pages.

The first category, HTML, contains features about the
HyperText Markup Language (HTML) structure of the
web page. The second category, Javascript, contains fea-
tures based on Javascript snippets found in the HTML.
The Javascript features focus on identifying malicious
Javascript. The third category, URL, contains features
for identifying malicious URLs that are found in the web
page. Appendix A.1 shows the entire set of identified fea-
tures and their descriptions.

The output of the feature extraction module is a key
value list for each category. This output can be forwarded
directly to the preprocessor or stored in a database.

3.5 Preprocessor

The preprocessor component transforms the output from
the feature extraction into a vector array that is expected
as input for the classifier. Besides the mapping of data,
the preprocessor also contains important logic that is used
to identify the maliciousness of URLs.

The features extracted from each URL are translated
to a total url score. The scoring mechanism is based on
a rule-based system that assigns points based on the out-
come of a condition. For example, if the domain is outside
the scope of the bank’s website the score increases. An-
other example: an URL in the src attribute of a script tag
does not contain a .js extension and has multiple param-
eters.

The URL’s from the known benign pages are placed
on a whitelist, since they are extracted from a trusted

3

https://developer.mozilla.org/en-US/docs/Web/API/element.outerHTML
https://developer.mozilla.org/en-US/docs/Web/API/element.outerHTML


source. Therefore, those URLs are skipped from the score
assigning process in order to reduce processing time.

URL Classification Score
https://www.abnamro.nl/

nl/logon/

benign 0

https://ajax.

googleapis.com/ajax/

libs/jquery/1.4.2/

jquery.min.js

malicious 30

https://approvehost.

net/nl/inl.php?un=LAB1_

E532648AFE2B7396&bn=

abnamro&st=

undefined&get_drow=get

malicious 50

Table 1: Example URLs and their assigned score using a
rule-based approach

Table 1 shows three example URLs and their assigned
score. The first URL resides within the scope of the bank’s
domain and is also listed on the whitelist, created during
training, and therefore classified as benign. The second
URL, a popular Javascript library, is injected by malware
and used to modify elements on the page. Classified as
malicious and assigned a score of 30. The last URL is also
injected by malware and due to the used TLD and number
of parameters it has a score of 50.

3.6 Classifier

The näıve Bayes classifier [11,12] is the model’s core com-
ponent. This is the process that identifies to which of a set
of categories a web page belongs to. A Bayes probabilis-
tic classifier is based on applying the Bayes theorem [13]
that relies on the assumption that the features that were
obtained from the preprocessor are independent.

There are two steps required in order to use the classi-
fier: training and classification. Training is the process of
taking content that is known to belong to specified classes
and creating a classifier on the basis of that known con-
tent. Classification is the process of using the classifier
with such training content and running it on unknown
content to determine class membership.

The basis is a training set that contains class instances
(malicious or benign), which are the principles of super-
vised machine learning [14]. The classifier used in this
research can be compared to a Bayesian spam filter [15],
which distinguishes ’spam’ and ’nospam’ categories. More
specifically, the Naive Bayes algorithm for multinomial
distributed data is used [16].

3.7 Dataset Evaluation

This section evaluates the dataset that is used to conduct
the experiments. To gather samples for the creation of the
dataset, benign samples of the banks web site are created
with Internet Explorer, Firefox and Google Chrome. It
is taken into consideration that users may have plugins
installed that inject elements and code into the web site.
These injections are benign and the classifier needs to be

trained on this behavior in order to distinguish them from
malicious characteristics.

Therefore, benign samples are created with Firefox and
Google Chrome that have multiple plugins activated (1,
5 and 25 activated plugins). Currently, no statistics are
published by both Google and Mozilla about the num-
ber of installed plugins. Accordingly, it is assumed that
the majority of Chrome and Firefox users extended the
default browser functionality with plugins. The created
benign samples should ensure for a representative set that
corresponds to the real world.

The experiments are performed with web pages from
a major bank in the Netherlands. This bank provided a
small number of known malicious samples. These sam-
ples are web pages, adapted by ZeuS, Citadel and SpyEye
malware. However, the number of malicious samples is
too limited in order to sufficiently train the classifier. Al-
though this limitation, it is still possible to create a large
dataset with mostly benign samples.

4 Results

This section describes the results derived from the exper-
imental concept.

4.1 Feature Relevance

As described in section 3.4 the important features are iden-
tified by analyzing known samples that were modified by
malware. However, an additional validation mechanism
is required to determine the relevance of each individual
feature. It is for example possible that a feature does not
show enough deviation to distinguish a malicious from a
benign page.

Figure 3: Normal distribution of the body attrib length fea-
ture

Therefore, for each feature, the mean and standard de-
viation for the benign and malicious dataset are calcu-
lated to verify their relevance. In figure 3, normal dis-
tribution is applied to visualize the distribution of the
body attrib length feature between the different datasets.
The figure shows that a large deviation exists between the
two datasets for this feature. Hence, the feature can be
used to distinguish between malicious and benign charac-
teristics. Table 3 in A.2 shows how the mean and standard
deviation for both malicious and benign web pages differ.

4

https://www.abnamro.nl/nl/logon/
https://www.abnamro.nl/nl/logon/
https://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js
https://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js
https://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js
https://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js
https://approvehost.net/nl/inl.php?un=LAB1_E532648AFE2B7396&bn=abnamro&st=undefined&get_drow=get
https://approvehost.net/nl/inl.php?un=LAB1_E532648AFE2B7396&bn=abnamro&st=undefined&get_drow=get
https://approvehost.net/nl/inl.php?un=LAB1_E532648AFE2B7396&bn=abnamro&st=undefined&get_drow=get
https://approvehost.net/nl/inl.php?un=LAB1_E532648AFE2B7396&bn=abnamro&st=undefined&get_drow=get
https://approvehost.net/nl/inl.php?un=LAB1_E532648AFE2B7396&bn=abnamro&st=undefined&get_drow=get


Figure 4: Normal distribution of the unique elements fea-
ture

The opposite of figure 3 is shown in figure 4. The dis-
tribution does not show that there is a deviation between
the two datasets for the unique elements feature. There-
fore, the feature is not relevant as it has no influence to
distinguish a page from malicious or benign.

4.2 Performance

The performance of the system is divided into several
parts:

• training of the classifier;

• feature extraction;

• classification of a web page.

Training of the classifier
The trainer fetches all the features from the database that
are stored by the feature extraction. The features are pro-
cessed by the preprocessor. Finally, the processed features
are passed to the classifier to train on the data. Figure 5
shows the performance of the preprocessor and the trainer
of the classifier.

Figure 5: Performance of the trainer

It takes the preprocessor 307 seconds to process 8192
elements. The training of the classifier only takes 0.046
seconds. The preprocessor processes both HTML and
URL features and highly depends on the database infras-
tructure. The training process consists of calculating the
distribution of the data.

Feature Extraction

The feature extraction exists of two components: HTML
features and features extracted from (Uniform Resource
Locator) URLs found in a web page. Figure 6 shows the
performance of the two components. Both variables show
an increase in time when the character count increases in
a logarithmic scale.

Figure 6: Performance of the feature extraction

Classification
The classification of an unknown page consists of three
steps. First, features are extracted from the page. Sub-
sequently, the features are processed by the preprocessor.
The result from that process is a vector that is used to clas-
sify the page using the, already trained, classifier. Figure
7 shows the individual performance of the three different
components that are required to perform the classification.
The execution time variable is the sum of all components.

Figure 7: Performance of the classification

The increase of execution time is caused by the feature
extraction and preprocess components that have to parse
more data if the page length increases. The classification
of a page takes only 0.0001 seconds, which is independent
of the page length.

4.3 Classification Accuracy

As described in section 3.7 the used dataset contains a
limited number of known malicious samples. Therefore,
it is not possible to perform a valid test to measure the
accuracy of the classifier. Although this limitation, an
experiment is conducted to determine the current accuracy
of the technique. The results from this experiment are an
estimate on how the classifier could perform on novel data.

5



A test set with a total of 10 known malicious and be-
nign samples is created and tested against the training set.
This is an iterative process performed with an increasing
amount of samples in the training set. The training set
consists of mostly of benign samples due to the lack of
known malicious samples. Only three malicious samples
are used to train the classifier.

Figure 8: Classification accuracy

Figure 8 shows the results of the experiment. With only
8 samples in the trainer, the classifier is able to correctly
classify 50% of the unknown instances in the test set. By
increasing the number of benign samples, the classifier is
more accurate. With 32,000, mostly benign, samples in
the training set, the classifier reaches an accuracy of 90%.

Therefore, the hypothesis is formulated that a strong,
benign baseline improves the classification process in
order to detect unknown malicious pages. However, this
can only be verified with a larger dataset and it is also
required to verify the results from this experiment.

Model Validation
The results from the classification accuracy are promis-
ing (see figure 8). However, an experiment with a larger
dataset is needed to verify the results. A simple experi-
ment is conducted in order to validate that the model is
able to correctly classify unknown malicious pages.

First, the classifier is trained on pages, adapted by ZeuS
malware [17]. Subsequently, the classifier is tested on an
unknown page, adapted by malware from the Citadel [18]
family. In this test, the unknown page is classified as ma-
licious with a probability of 100%.

5 Discussion

Although the developed concept is in an experimental
state, the performance can be evaluated as reasonable,
but further optimization will certainly reduce execution
time. Areas of interest include a more extensive selection
of features, a more efficient implementation to extract fea-
tures from web pages and the usage of a high performance
database system to lower the time to execute the prepro-
cessor.

In addition to that, the decision to choose for a näıve
Bayes classifier is primarily based on the fact that this
classifier reaches its asymptotic error quickly with regards
to the number of training examples [19]. Therefore, it is

the preferred choice when using limited number of training
instances.

Using the hold out method to evaluate the performance
of the classifier, the dataset is partitioned into two mutu-
ally exclusive subsets. It is common to designate two third
of the data to train the classifier and the remaining one
third is used as test set to measure the performance [20].

The dataset used in this research does not allow for this
cross-validation technique, as the dataset only contains a
few number of malicious instances (see section 3.7). Due
this limitation, the use of the m-fold cross-validation is
also not possible. Therefore, a fixed test set is created
with a total of 10 malicious and benign instances. The
result from the classifier accuracy experiment (see section
4.3) can only be used as an estimate for further research.

Furthermore, due the shortage of malicious instances in
the dataset, the used method to validate the model can
be inappropriate and could lead to over-fitting. This term
describes the situation in which a classifier is more accu-
rate in classifying known data than predicting novel data.
This is in general a problem when using small training
sets [21].

Another subject of discussion are the privacy implica-
tions involved in an implemented model. If a client sends
rendered web pages to a validation server, the implementa-
tion should consider the presence of privacy related data
in these pages. In case of a financial organization, it is
advised to handle that data with the same care as other
sensitive customer data.

6 Conclusion

This research proposed and implemented an heuristic
model for client-side fraud detection. Although the used
dataset contains a limited number of malicious instances,
the results from the experiments are promising. The clas-
sifier reaches an accuracy of 90%, but needs validation
with a larger, more complete dataset. To validate the
model and the used technique, a second experiment is
conducted. By training the classifier on malicious pages,
adapted by Zeus malware, it correctly classified an un-
known page, adapted by Citadel malware as malicious.

The performance measures show that the classification
of an unknown page is performed with a mean of 0.176
seconds. This also includes the feature extraction and pre-
process operation. The training of the classifier with 8192
instances only takes 0.046 seconds. The preprocessing of
the data, before the training, is a more expensive oper-
ation which takes 307 seconds for 8192 instances. After
the preprocessing and training of the data, the classifier
can be kept in memory and re-training is only required for
new train data.

To conclude, with some certainty it can be ensured that
the developed model is feasible to counteract fraud. Based
on the used data set and validation method, the reached
accuracy is satisfactory and can be used as an estimate
for further research. The execution time to classify an un-
known page is within bounds, since the requests can be
handled asynchronous. However, since it is an experimen-
tal concept, further improvements can be made to lower

6



the impact on resources and optimizing execution time.

7 Further Work

Classification accuracy validation The major chal-
lenge for further work is validating the classification
accuracy (see section 4.3). The limited number of mali-
cious instances in the training set are not representative
for the accuracy result. Although the classifier reaches
an accuracy of 90%, this result is achieved by training
the classifier on mostly benign instances. Also, the test
set consisted more malicious instances than present in
the training set. The used validation method might
be inappropriate and a new experiment with a more
complete dataset is required.

Hybrid implementation All components in the
model are implemented on the server side. Therefore,
the clients send the rendered web pages to a validation
server. The easiest method, for malware, to by-pass
the validation is executing the injections after the page
validation process has completed. In order to counteract
this, multiple validations of a page are required.

Sending a page multiple times to the validation server
can lead to performance issues and an increase in band-
width. To lower the impact on the validation servers,
the feature extraction process can be implemented on
the client-side using Javascript. Although such imple-
mentation significantly lowers the size of the requests,
it is possible for attackers to disassemble the code and
understand on which features the page is validated.
Research on this field is required to determine if such a
solution is feasible to implement.

Optimization of the model As an experimental
proof of concept, the model is implemented in Python.
The performance results (see section 4.2) show that most
time is required for the feature extraction process. The
feature extraction is implemented using the Beatiful
Soup5 library for Python. Optimizing the code, using
another library or using a lower level programming
language can improve performance.

Increase number of features A total number of
26 features are identified from the HTML, Javascript and
URLs. Probably, more features can be identified in order
to make the classifier more accurate.

References

[1] Lucian Constantin. Researchers warn of in-
creased zeus malware activity this year.
"https://www.networkworld.com/news/2013/

052413-researchers-warn-of-increased-zeus-

270142.html", May 24, 2013.

[2] emc.com. Phishing in season - tax time mal-
ware, phishing and fraud. "http://www.emc.

5http://www.crummy.com/software/BeautifulSoup/

com/collateral/fraud-report/rsa-april-2013-

fraud-report.pdf", April 2013.

[3] Panda security press. Pandalabs q1 report:
Trojans account for 80set new record. "http:

//press.pandasecurity.com/news/pandalabs-

q1-report-trojans-account-for-80-of-

malware-infections-set-new-record/", May
3, 2013.

[4] Ben Feinstein, Daniel Peck, and I SecureWorks. Caf-
feine monkey: Automated collection, detection and
analysis of malicious javascript. Black Hat USA, 2007,
2007.

[5] Davide Canali, Marco Cova, Giovanni Vigna, and
Christopher Kruegel. Prophiler: a fast filter for
the large-scale detection of malicious web pages. In
Proceedings of the 20th international conference on
World wide web, pages 197–206. ACM, 2011.

[6] Charlie Curtsinger, Benjamin Livshits, Benjamin
Zorn, and Christian Seifert. Zozzle: Fast and precise
in-browser javascript malware detection. In USENIX
Security Symposium, pages 33–48, 2011.

[7] Marco Cova, Christopher Kruegel, and Giovanni Vi-
gna. Detection and analysis of drive-by-download at-
tacks and malicious javascript code. In Proceedings of
the 19th international conference on World wide web,
pages 281–290. ACM, 2010.

[8] Linda Dailey Paulson. Building rich web applications
with ajax. Computer, 38(10):14–17, 2005.

[9] Jiancheng Qin, Zhongying Bai, and Yuan Bai. Poly-
morphic algorithm of javascript code protection. In
Computer Science and Computational Technology,
2008. ISCSCT’08. International Symposium on, vol-
ume 1, pages 451–454. IEEE, 2008.

[10] Benôıt Bertholon, Sébastien Varrette, and Pascal
Bouvry. Jshadobf: A javascript obfuscator based on
multi-objective optimization algorithms. In Network
and System Security, pages 336–349. Springer, 2013.

[11] Eamonn Keogh. Näıve bayes classifier.
"http://www.cs.ucr.edu/~eamonn/CE/Bayesian%

20Classification%20withInsect_examples.pdf".

[12] Gama J. Bayesian learning: An introduc-
tion. "http://www.dcc.fc.up.pt/~ines/aulas/

0809/MIM/aulas/bayes08.pdf", 2008.

[13] Stanford Encyclopedia of Philosophy. Bayes’
theorem. "http://plato.stanford.edu/entries/

bayes-theorem/", Revised September 30, 2003.

[14] Mehryar Mohri, Afshin Rostamizadeh, and Ameet
Talwalkar. Foundations of machine learning. The
MIT Press, 2012.

[15] Ion Androutsopoulos, Georgios Paliouras, Vangelis
Karkaletsis, Georgios Sakkis, Constantine D Spy-
ropoulos, and Panagiotis Stamatopoulos. Learn-
ing to filter spam e-mail: A comparison of a naive

7

"https://www.networkworld.com/news/2013/052413-researchers-warn-of-increased-zeus-270142.html"
"https://www.networkworld.com/news/2013/052413-researchers-warn-of-increased-zeus-270142.html"
"https://www.networkworld.com/news/2013/052413-researchers-warn-of-increased-zeus-270142.html"
"http://www.emc.com/collateral/fraud-report/rsa-april-2013-fraud-report.pdf"
"http://www.emc.com/collateral/fraud-report/rsa-april-2013-fraud-report.pdf"
http://www.crummy.com/software/BeautifulSoup/
"http://www.emc.com/collateral/fraud-report/rsa-april-2013-fraud-report.pdf"
"http://www.emc.com/collateral/fraud-report/rsa-april-2013-fraud-report.pdf"
"http://press.pandasecurity.com/news/pandalabs-q1-report-trojans-account-for-80-of-malware-infections-set-new-record/"
"http://press.pandasecurity.com/news/pandalabs-q1-report-trojans-account-for-80-of-malware-infections-set-new-record/"
"http://press.pandasecurity.com/news/pandalabs-q1-report-trojans-account-for-80-of-malware-infections-set-new-record/"
"http://press.pandasecurity.com/news/pandalabs-q1-report-trojans-account-for-80-of-malware-infections-set-new-record/"
"http://www.cs.ucr.edu/~eamonn/CE/Bayesian%20Classification%20withInsect_examples.pdf"
"http://www.cs.ucr.edu/~eamonn/CE/Bayesian%20Classification%20withInsect_examples.pdf"
"http://www.dcc.fc.up.pt/~ines/aulas/0809/MIM/aulas/bayes08.pdf"
"http://www.dcc.fc.up.pt/~ines/aulas/0809/MIM/aulas/bayes08.pdf"
"http://plato.stanford.edu/entries/bayes-theorem/"
"http://plato.stanford.edu/entries/bayes-theorem/"


bayesian and a memory-based approach. arXiv
preprint cs/0009009, 2000.

[16] David D Lewis. Naive (bayes) at forty: The in-
dependence assumption in information retrieval. In
Machine learning: ECML-98, pages 4–15. Springer,
1998.

[17] Nicolas Falliere and Eric Chien. Zeus: King of
the bots. Symantec Security Respons e (http://bit.
ly/3VyFV1), 2009.

[18] Ran Sherstobitoff. Inside the world of the citadel tro-
jan. McAfee Labs, 2013.

[19] A Jordan. On discriminative vs. generative classifiers:
A comparison of logistic regression and naive bayes.
Advances in neural information processing systems,
14:841, 2002.

[20] Ron Kohavi et al. A study of cross-validation and
bootstrap for accuracy estimation and model selec-
tion. In IJCAI, volume 14, pages 1137–1145, 1995.

[21] George Forman and Ira Cohen. Learning from lit-
tle: Comparison of classifiers given little training.
In Knowledge Discovery in Databases: PKDD 2004,
pages 161–172. Springer, 2004.

[22] Ronald R Coifman and M Victor Wickerhauser.
Entropy-based algorithms for best basis selection. In-
formation Theory, IEEE Transactions on, 38(2):713–
718, 1992.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre
Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. The Journal of Machine Learning
Research, 12:2825–2830, 2011.

A Features

A.1 Feature Overview

This section describes an overview of the features that are
selected from the HTML, Javascript and URLs found in a
web page.

A.2 Feature Distribution

B Implementation Details

This section presents an overview of the software that is
used to develop the proof of concept.

B.1 Used Software

• OS: Ubuntu Server 12.04

• Python 2.7.1;

• Python scikit-learn [23] (used to implement the Naive
Bayes classifier);

• Python NumPy6;

• Python Beatiful Soup7 (used for the feature extrac-
tion)

• Database: MySQL-server 5.5.31.

B.2 Source Code

The source code developed for the experimental
concept is published online as-is at the following
location: https://www.os3.nl/2012-2013/students/

ttimmermans/rp2. Be aware that the software is in an
experimental state and that it is provided as-is.

6http://www.numpy.org
7http://www.crummy.com/software/BeautifulSoup/

8

https://www.os3. nl/2012-2013/students/ttimmermans/rp2
https://www.os3. nl/2012-2013/students/ttimmermans/rp2
http://www.numpy.org
http://www.crummy.com/software/BeautifulSoup/


HTML
Feature Description
style percentage The ratio of inline styles on

the page
script percentage The ratio of javascript code

on the page
iframe elements Number of iframe elements
script elements Number of script elements
style elements Number of style elements
input elements Number of input elements
hidden fields Number of hidden fields

on the page. Also in-
cludes fields, hidden by
CSS (display:none and vis-
ibility:hidden).

unique elements Count of unique HTML el-
ements

input ids Count of unique IDs
unique class Count of unique class

names
inline style length Total length of all the inline

styles on a page
embed elements Number of embed elements
object elements Number of object elements
html attrib length Total length of all at-

tributes used in the html
tag

body attrib length Total length of all at-
tributes used in the body
tag

URL
tld Top Level Domain (TLD)

used in the URL.
domain Domain in the URL
subdomains Sub domains found in the

URL
num parameters Number of parameters that

are used in the URL
schema Schema in the URL
out of scope Check if the domain goes

outside the scope of the
banks web site.

length Total length of the URL
Javascript

entropy The entropy of the
Javascript code, using
Shannon Entropy [22]

whitespace percentage Percentage of whitespace
characters found in a
Javascript snippet

dw count Number of calls made
to DOM functions that
can alter the page
(document.write, docu-
ment.createElement etc.).

eval count Number of calls made to
the eval function, which
is often used in obfuscated
Javascript.

Table 2: Overview of the HTML, Javascript and URL
features.

malicious benign
style percentage
mean 2.1455126386 6.8277776401
standard deviation 0.2643708541 1.0484134275
script percentage
mean 31.9801533973 28.9844513099
standard deviation 1.8917516104 1.6493897441
iframe elements
mean 0 0
standard deviation 0 0
script elements
mean 23 29
standard deviation 1.0801234497 1.5491933385
style elements
mean 11 7
standard deviation 1.779513042 1.5
input elements
mean 38 24
standard deviation 2.0816659995 0
hidden fields
mean 20 11
standard deviation 1.7320508076 1.6431676725
unique elements
mean 31 31
standard deviation 0.4082482905 0.3872983346
unique ids
mean 52 50
standard deviation 1.6072751268 1.3416407865
unique classes
mean 65 58
standard deviation 1.8257418584 1.4832396974
inline style length
mean 522 291
standard deviation 9.9289140057 8.0187280787
embed elements
mean 0 0
standard deviation 0 0
object elements
mean 1 0
standard deviation 0.5773502692 0
html attrib length
mean 16 36
standard deviation 0 2.8460498942
body attrib length
mean 17 85
standard deviation 2.7386127875 2.3979157617
url score
mean 257 0
standard deviation 6.0277137733 0

Table 3: Distribution of features based on the dataset used
in this research.

9


	Introduction
	Research Question
	Project Scope
	Outline

	Related Work
	Method
	Overview
	Model
	Aggregation of data
	Feature extraction
	Preprocessor
	Classifier
	Dataset Evaluation

	Results
	Feature Relevance
	Performance
	Classification Accuracy

	Discussion
	Conclusion
	Further Work
	Features
	Feature Overview
	Feature Distribution

	Implementation Details
	Used Software
	Source Code


