
Design of a Social Messaging System
Using Stateful Multicast

Gabor X Toth

University of Amsterdam
Faculty of Science

System and Network Engineering
Master thesis

Supervisor: Christian Grothoff, TU München

August 2013

ii

Abstract

This work presents the design of a social messaging service for the GNUnet
peer-to-peer framework that offers scalability, extensibility, and end-to-end
encrypted communication. The scalability property is achieved through mul-
ticast message delivery, while extensibility is made possible by using PSYC
(Protocol for SYnchronous Communication), which provides an extensible
RPC (Remote Procedure Call) syntax that can evolve over time without hav-
ing to upgrade the software on all nodes in the network. Another key feature
provided by the PSYC layer are stateful multicast channels, which are used
to store e.g. user profiles. End-to-end encrypted communication is provided
by the mesh service of GNUnet, upon which the multicast channels are built.
Pseudonymous users and social places in the system have cryptographical
identities — identified by their public key — these are mapped to human
memorable names using GNS (GNU Name System), where each pseudonym
has a zone pointing to its places.

iii

iv

Acknowledgements

I would like to thank Christian Grothoff for the advice and discussions related
to the design of the system presented here. I also thank Carlo v. Loesch for
comments about the use of PSYC in the system.

v

vi

Contents

1 Introduction 1
1.1 Public Key Infrastructure . 2
1.2 Identity management with GNS 3

2 Overview of the system 5

3 Multicast service 9
3.1 Multicast API overview . 10

3.1.1 Origin . 10
3.1.2 Member . 10
3.1.3 Group . 11

3.2 Starting the origin . 11
3.3 Stopping the origin . 12
3.4 Joining a group . 12

3.4.1 Requesting join . 12
3.4.2 Receiving the join request 14
3.4.3 Responding with a join decision 14

3.5 Parting a group . 15
3.6 Multicast messages . 15
3.7 Testing membership . 17
3.8 Replaying multicast messages 18
3.9 Unicast requests . 21

4 PSYC service 23
4.1 PSYC API overview . 24

4.1.1 Channel master . 25
4.1.2 Channel slave . 25
4.1.3 Channel . 25

4.2 Starting the channel master 26
4.3 Stopping the channel master 27
4.4 Joining a channel . 27

4.4.1 Requesting join . 27
4.4.2 Responding to a join request 28

vii

viii Contents

4.4.3 Notifying the channel about the new slave 29
4.4.4 Informing the requester about the decision 30
4.4.5 State synchronization 30

4.5 Parting a channel . 31
4.6 Messages from the master . 32

4.6.1 Sending messages . 32
4.6.2 Receiving messages . 33

4.7 Requests from slaves . 34
4.8 History and state requests by applications 35

4.8.1 Requests for historic messages 35
4.8.2 State variable requests 36

5 PSYCstore service 37
5.1 PSYCstore API overview . 37
5.2 Message store . 37

5.2.1 Storing message fragments 38
5.2.2 Retrieving messages 39

5.3 Channel state store . 40
5.3.1 Applying state modifiers 40
5.3.2 State hash updates . 41
5.3.3 Retrieving state variables 42

5.4 Membership store . 42
5.4.1 Storing membership 42
5.4.2 Testing membership 44

6 Social service 45
6.1 Social network model . 45
6.2 Messaging in places . 45
6.3 Applications . 47
6.4 Social API overview . 48

6.4.1 Home . 48
6.4.2 Place . 48

6.5 Using the social API . 49
6.6 Entering a home . 49
6.7 Advertising a home in GNS 50
6.8 Entering a place . 51

6.8.1 Guest requests entry 51
6.8.2 Host answers the door 52

6.9 Leaving a place or home . 53
6.10 Messages . 54

6.10.1 Sending messages . 54
6.10.2 Receiving messages . 55

6.11 Learn the history of a place 57
6.12 Accessing objects in the place 57

Contents ix

7 Summary 59

Bibliography 61

A Sequence diagrams 63
A.1 History and replay . 64

A.1.1 Learning the history of a place 64
A.1.2 Replaying multicast messages 64

A.2 Sending and receiving messages 66
A.2.1 Sending a message to a home 66
A.2.2 Receiving a message to a place 66

A.3 Entering a home . 68
A.4 Entering a place . 68

A.4.1 Guest requests entry 68
A.4.2 Host receives entry request 70
A.4.3 Other guests receive entry notice 72

A.5 Leaving a place . 74
A.5.1 Guest sends leave request 74
A.5.2 Host receives leave request 74
A.5.3 Other guests receive leave notice 76

x Contents

1. Introduction

Messaging and social networking services used today are in most cases
centralized and operated by large companies, which do not give adequate
privacy guarantees to users. Often, federated systems are suggested as an
alternative, but as argued in [1], federated systems are not better from
centralized ones from a privacy perspective: they still require server operators
who have access to all user data stored on their systems. Additionally, in case
of federated systems users even have to trust a larger set of server operators
with their personal data and communications. With centralized services,
trust is at least limited to a single entity.

[1] describes the high-level design of Secure Share, an alternative social
messaging system. It proposes an alternative, peer-to-peer approach, where
messages are end-to-end encrypted while they traverse the network and reach
their destination, and suggests combining GNUnet1, a modular peer-to-peer
framework, with PSYC2, a messaging protocol, to achieve this.

In this document, we present an evolution of the Secure Share design, provid-
ing more details about the protocol and implementation strategy and detailing
how these extensions will be integrated with the rest of the GNUnet frame-
work. In this revised design, the system is separated into several GNUnet
services for each layer, enabling the re-use of components by other P2P
applications. The role of the PSYC protocol has changed as well: it is now
only used as the messaging protocol between peers, but not for local client
connections. For user interfaces, the service model of GNUnet is followed
instead.

Recently, two components have been implemented in GNUnet that play a key
role in the new design. One is the mesh service, which can establish tunnels
between two peers in the network through multiple hops, and is used as a
building block for the multicast message delivery service. The other is the
GNU Name System3 [2], which is used as a public key infrastructure in the

1https://gnunet.org/
2https://about.psyc.eu/
3Formerly called the GNU Alternative Domain System (GADS)

1

https://gnunet.org/
https://about.psyc.eu/

2 1. Introduction

Secure

Global MemorableHierarchical Registration

C
ry

pt
og

ra
ph

ic
 Id

en
tif

ie
rs

Petnam
e System

s

 mnemonic
URLs

ce
rt

if
ic

a
te

s

GNS

Figure 1.1.1: Zooko’s triangle showing the relationship of cryptographically
secure, globally unique and human memorable names. Examples of systems
satisfying pairs of these properties are shown on the edges. This figure is
from [2], p. 7.

system.

1.1 Public Key Infrastructure

The GNU Name System (GNS) is a secure, decentralized name system using
memorable, but not globally unique names. According to the hypothesis of
Zooko’s Triangle [3, 4], achieving all three properties at the same time is not
possible, Figure 1.1.1 illustrates this. Tor’s .onion addresses are cryptograph-
ically secure, but not memorable. The Domain Name System (DNS) is a
centralized system, where names are globally unique and memorable, but
not secure. GNS offers an alternative to this, while maintaining backwards
compatibility with DNS. It uses zones that can have DNS resource records
(RR) in addition to RR types defined by GNS.

The GNS design uses cryptographical identifiers: each zone has an elliptic
curve (ECC) private-public key pair, and it is identified by its public key.
Resource records are signed with the private key of the zone. This allows
users to manage their own zone in the system, which is used to implement
a decentralized public key infrastructure (PKI). While GNS does not have
globally unique names, it provides transitivity instead to make the system

1.2. Identity management with GNS 3

more usable: users can delegate a subdomain to another zone.

1.2 Identity management with GNS

Each entity in the proposed system will be identified by its elliptic curve
public-private key pair, which is typically compactly represented using the
hash of its public key.

GNS is used to provide memorable names for both pseudonymous users
and social spaces for interactions, which we call places. As pseudonyms are
identified by their ECC key, each pseudonym has implicitly also a GNS zone
associated with it. A zone can contain pointers to various places operated
or used by the owner of the pseudonym. For this purpose, we define a new
record type called “PLACE” in GNS, which points to the public key of a
place, and one or more peers that can be used to join the place. A GNS zone
is published in the DHT, and its records are publicly accessible. A password
can be used to encrypt certain records — including its label, type, and data
— to ensure that knowledge about places is limited to authorized users.

The “PLACE” record of the empty label (+) has special significance: it points
to a place which has no guests and is only used for sending requests to the
pseudonym. It is used to establish an initial contact; after an entry request
to this special place, the guest is typically be redirected to a place of the
host’s choice. This way, a host can have several places for hosting different
group of guests at the same time.

Table 1.2.1 shows an example of the zone of a pseudonym. If Alice publishes
this zone, then Bob — who knows Alice — can use music.alice.gnu to
enter one of Alice’s places, while Carol — who only knows Bob, but not Alice
— would need to use music.alice.bob.gnu to enter the same place.

Readers familiar with earlier designs based on PSYC might want to note that
in contrast to earlier designs using PSYC, this use of GNS eliminates the
need for place names on the PSYC layer. As each place is purely identified
by its public key, a memorable name is assigned to it using a GNS zone entry
of a pseudonym.

Label Type Data
+ PLACE PlaceApub, H(PeerXpub)

tech PLACE PlaceBpub, H(PeerXpub), H(PeerYpub)

music PLACE PlaceCpub, H(PeerZpub)

Table 1.2.1: Example GNS zone of a pseudonym

4 1. Introduction

2. Overview of the system

UI

Identity GNS Social

Relay Admission

Namestore

DHT

PSYC

Multicast PSYCstore

Mesh

Core

Figure 2.0.1: Components used from GNUnet in the social messaging system.
House: application, box: daemon, circle: service, arrow: dependency, dashed:
component described here, to be implemented.

The social messaging system we propose to create using GNUnet, a modular
peer-to-peer framework. The framework consists of several services — each
running as a separate process for fault isolation — which use message passing
to communicate with each other. Each service provides abstractions other
components can use by linking against a shared library which implements
the respective API by communication with the service process. Components
relevant to the social messaging system are depicted in Figure 2.0.1. The

5

6 2. Overview of the system

central components in the system are:

The Multicast service: implements reliable messaging in multicast groups.
Takes care of managing group membership and message replay.

The PSYC service: parses the PSYC protocol syntax and notifies the
social service about incoming method calls, also performs decentralized
state operations.

The PSYCstore service: used by the PSYC service to store the decen-
tralized state, messages, and membership information that belong to
groups.

The Social service: models places and user identities, and allows appli-
cations to register method handlers for method calls they are interested
in. Uses GNS for identity management and PKI.

Applications: user interfaces or background processes that handle certain
PSYC method calls.

The various layers use different terms to describe related abstractions in an
appropriate language for each layer. Table 2.0.1 summarizes the mapping
between these different terms, which we will explain in more detail for each
layer in the system in the following sections.

Multicast PSYC Social

Group Channel Place
Origin Master Host
Member Slave Guest

State Environment
Message Method invocation listen

announce
talk

State operation decorate
look

Story History
join join enter
part part leave

Table 2.0.1: Relationships between the terms at the various layers. Note that
as the abstractions change, the semantics of the terms do not always match
perfectly; thus, the table describes which concepts on the lower layers are
used to realize concepts at the higher layers.

Multicast layer: members join a group operated by the origin to ex-
change messages.

7

PSYC layer: the master controls a channel where slaves can join to
learn about the channel’s state and story. The master can perform state
operations and trigger method invocations on the slaves.

Social layer: guests can enter a place, talk to the host of the place,
listen to the host’s announcements, and look at objects in the place’s
environment, which is decorated by the host.

We will now describe the main services of the messaging system: multicast,
PSYC, PSYCstore and social. Ultimately, each service will run as a sepa-
rate process and comes with a library that provides an API for accessing
functionality of the service.

8 2. Overview of the system

3. Multicast service

We call a set of peers a group. A policy is used to determine which peers
are allowed to join a group. Each group has a designated member called
the origin who is in control of the policy and the communication. Peers in
a group that are not the origin are called members. While the origin is in
charge of the policy, all members are trusted to enforce it and in particular
not to share group communications with non-members. Using the multicast
service, the origin can multicast messages to all group members, while group
members can only unicast requests to the origin. Figure 3.0.1 illustrates the
communication structure provided by a multicast group.

origin

mem_1 mem_2

mem_3

mem_5

mem_4

Figure 3.0.1: Participants and message flow in a multicast group. Solid arrow:
multicast message, dashed arrow: unicast request.

The central functions of the multicast service thus are to organize peers into
multicast groups, to enable membership management, and to provide reliable
(multicast) message delivery to the peers in these groups. In the multicast
system, group members receive message fragments from one or more members,
and can relay messages to other members. Each message fragment is signed
by the origin to enable the members to verify the integrity and authenticity
of the messages.

9

10 3. Multicast service

The multicast service relies on the mesh service for reliable and confidential
communication between peers. Mesh provides an end-to-end encrypted secure
communication channel between two peers; other peers that may be involved
in message passing are not able to access the data, as encrypted messages are
secured using ECDHE (Elliptic Curve Diffie-Hellman Ephemeral) exchange
and AES (Advanced Encryption Standard) encryption.

3.1 Multicast API overview

The multicast service exposes the following API, which is used by the PSYC
service.

3.1.1 Origin

Functions available to the group’s origin:

Start (or restart) a multicast group.

Stop a multicast group.

Transmit a message to all members.

Join decision: response to a join request.

Callbacks for the origin:

Request received from a group member.

Own messages fragmented and signed, to store them for replay.

3.1.2 Member

Functions available to group members:

Join (or rejoin) a multicast group.

Part a multicast group.

Transmit a message to the origin.

Request replay of a message from other group members.

Callbacks for group members:

Message received for the group.

3.2. Starting the origin 11

3.1.3 Group

Functions available to both the origin and members:

Membership test answer: respond to a membership test query.

Callbacks for the origin and members:

Join request received from a peer.

Membership test: the implementation needs to check whether a member
was admitted to the group when the given message fragment was sent
out. It is needed to ensure message fragments are relayed only to
members.

3.2 Starting the origin

A group is fully functional while its origin is started. The origin is stopped
when it goes offline, and can be restarted at a later point. After the origin is
started, it can start transmitting multicast messages to group members, and
it receives join requests from peers and unicast requests from members.

To start the origin, the following function of the multicast API is used:
struct GNUNET_MULTICAST_Origin *
GNUNET_MULTICAST_origin_start

(const struct GNUNET_CONFIGURATION_Handle *cfg ,
const struct GNUNET_CRYPTO_EccPrivateKey *private_key ,
uint64_t last_fragment_id ,
GNUNET_MULTICAST_JoinCallback join_cb ,
GNUNET_MULITCAST_MembershipTestCallback test_cb ,
GNUNET_MULITCAST_ReplayCallback replay_cb ,
GNUNET_MULTICAST_RequestCallback request_cb ,
GNUNET_MULTICAST_MessageCallback message_cb ,
void *cls);

Group’s private-public key pair: used to identify the group and sign
message fragments sent to group members.

Last fragment ID: when restarting a group, the fragment ID to start
numbering fragments from. As each member stores message fragments,
this is necessary to make sure a rejoining member can replay missed
message fragments.

Callbacks: functions to call for requesting replay, testing membership,
as well as notifying about joins, unicast requests, and the origin’s
own message fragments it sends out. These are explained later in this
chapter.

12 3. Multicast service

3.3 Stopping the origin

The following function of the multicast API is used to stop the origin:
void
GNUNET_MULTICAST_origin_stop

(struct GNUNET_MULTICAST_Origin *origin);

When the origin is stopped, the group might still function partially: a peer
can still join at another online member provided one is known, and the peer
is already admitted or no admission is required. Replay requests can still be
issued to other members. To shut down a group permanently, including all
of its members, an application layer message has to be sent to all members
by the origin.

Stopping an origin but leaving other members running improves asynchronous
messaging capabilities of the group: if a member was offline for a while, it
can reconnect to the group and request replay of missed messages, even if the
origin is not online at the moment, provided some of the relays the member
got during a previous session are still online.

3.4 Joining a group

3.4.1 Requesting join

To join a group as a member, the multicast API provides the following
function:
struct GNUNET_MULTICAST_Member *
GNUNET_MULTICAST_member_join
(const struct GNUNET_CONFIGURATION_Handle *cfg ,
const struct GNUNET_CRYPTO_EccPublicKey *group_key ,
const struct GNUNET_CRYPTO_EccPrivateKey *member_key ,
const struct GNUNET_PeerIdentity *origin ,
size_t relay_count ,
const struct GNUNET_PeerIdentity *relays ,
const struct GNUNET_MessageHeader *join_request ,
GNUNET_MULTICAST_JoinCallback join_cb ,
GNUNET_MULITCAST_MembershipTestCallback test_cb ,
GNUNET_MULITCAST_ReplayCallback replay_cb ,
GNUNET_MULTICAST_MessageCallback message_cb ,
void *cls);

Group’s public key: identifies the group to join, and used to verify
signatures of multicast messages.

Member’s private-public key pair: used to identify the member and
to sign unicast requests sent to the origin, including the join request.

3.4. Joining a group 13

Origin: the peer identity of the group’s origin, to send the join request
to if no relays are known or available.

Relays: peer identities of members of the group that are known to serve
as relays, and can be used to send the join request to. This list can
include relays known from a previous session, which allows rejoining a
group later to replay missed messages, even if the origin is offline.

Join request: a message from the application initiating the join process.
The PSYC layer uses this for initiating state synchronization, while
applications can supply additional information needed for joining.

Callbacks: similar callbacks as for the origin, except for the request
callback, which is only used for the origin.

When joining a group, the multicast service establishes a mesh tunnel to the
relays if any given, or to the origin otherwise. After the tunnel is established,
the connecting peer sends the join request provided by the application, with
the following message header prepended to it, which contains the group ID,
member’s public key:

struct GNUNET_MULTICAST_JoinRequest {
struct GNUNET_MessageHeader header;
struct GNUNET_CRYPTO_EccSignature signature;
struct GNUNET_CRYPTO_EccSignaturePurpose purpose;
struct GNUNET_CRYPTO_EccPublicKey group_key;
struct GNUNET_CRYPTO_EccPublicKey member_key;
struct GNUNET_PeerIdentity member_peer;

};

Header: specifies the message type as a join request, and the size of the
message.

Group’s public key: associates the mesh tunnel with this multicast
group, which is then used in both directions: for multicast messages
from the origin and unicast requests to the origin.

Member’s public key: identifies the joining member, and used to verify
the signature of this request.

Member’s peer ID: must match the peer the request is coming from
to prevent replaying this join request from another peer, as the join
request can be sent to other members as well, not just the origin.

Signature: the rest of the header fields and the message payload signed
with the member’s private key. This establishes a binding between the
peer sending the request and the application layer identity specified by
the member’s public key.

14 3. Multicast service

3.4.2 Receiving the join request

Once the contacted peer — the origin or another member of the group —
received the join request and the group policy requires admission control,
the multicast service passes the joining member’s identity and the message
payload of the join request to the join callback, which allows the decision to
be taken on higher layers of the system:

typedef void (* GNUNET_MULTICAST_JoinCallback)
(void *cls ,
const struct GNUNET_EccPublicKey *member_key ,
const struct GNUNET_MessageHeader *join_request ,
struct GNUNET_MULTICAST_JoinHandle *jh);

3.4.3 Responding with a join decision

The multicast service should be informed about the decision using the follow-
ing API function:

struct GNUNET_MULTICAST_ReplayHandle*
GNUNET_MULTICAST_join_decision

(struct GNUNET_MULTICAST_JoinHandle *jh ,
int is_admitted ,
unsigned int relay_count ,
const struct GNUNET_PeerIdentity *relays ,
const struct GNUNET_MessageHeader *join_response);

Join handle: used to match the join decision to the corresponding join
request.

Is admitted? Decision whether the member is admitted.

Relays: List of peer identities serving as relays for other members. If
it does not contain the peer’s own ID, it is treated as a redirect to
other relays. This allows distributing the load among group members
by building multilevel distribution trees for multicast messages in the
group. A member tries to establish connections to multiple relays,
which helps preventing a malicious or malfunctioning member blocking
messages from part of the group.

Join response: application layer message to be sent back with the deci-
sion. It has relevance mostly in case of a negative decision, e.g. to give
a reason for rejection, or redirect to another group.

The returned replay handle can be used to bring the joined member up to
date, if a higher layer protocol requires it. The PSYC layer uses this to
perform state synchronization after join, described later in Section 4.4.5.

3.5. Parting a group 15

3.5 Parting a group

When a member wants to part from a group, the following function is used:

void
GNUNET_MULTICAST_member_part

(struct GNUNET_MULTICAST_Member *member);

Calling this function results in shutting down mesh tunnels to all connected
group members, but the peer remains a member of the group and can
reconnect later, unless an application layer leave request is sent to the origin
before parting the group.

3.6 Multicast messages

For sending out a multicast message from the origin to the group, the multicast
service provides the following function:

struct GNUNET_MULTICAST_OriginMessageHandle *
GNUNET_MULTICAST_origin_to_all

(struct GNUNET_MULTICAST_Origin *origin ,
uint64_t message_id ,
uint64_t group_generation ,
GNUNET_MULTICAST_OriginTransmitNotify notify ,
void *notify_cls);

Message ID & group generation: used to set header fields for each
fragment of the message.

Notify callback: function called to provide the next part of the message
when buffer space is available. It is kept being called until it indicates
the end of the message is reached. To be able to send messages asyn-
chronously, a transmission might be suspended — when there’s no data
available yet — and resumed later.

The application calls this function to initiate a multicast message transmission
to the group. The notify callback is called later, possibly multiple times.
While calling this callback for more data, multicast splits the message into
fragments less than 64 KB each, which is the maximum size of GNUnet
messages1.

After fragmenting the message, a multicast message header is prepended to
each fragment with the following structure:

1The fragment payload will be slightly less than 64 KB, due to the message headers of
each layer (multicast, mesh, core).

16 3. Multicast service

struct GNUNET_MULTICAST_MessageHeader {
struct GNUNET_MessageHeader header;
uint32_t hop_counter;
struct GNUNET_CRYPTO_EccSignature signature;
struct GNUNET_CRYPTO_EccSignaturePurpose purpose;
uint64_t fragment_id;
uint64_t fragment_offset;
uint64_t message_id;
uint64_t group_generation;
enum GNUNET_MULTICAST_MessageFlags flags;

};

Header: contains the message type for multicast messages and size of
the full message fragment, including the header and payload.

Hop counter: number of hops the message fragment has taken from the
origin, updated at each hop thus not signed. It is used to determine
shortest paths for unicast requests sent from a member to the origin.

Signature: the rest of header fields and the payload signed by the origin.
Members use this to verify integrity and authenticity of the fragment.

Signature purpose: specifies the size of signed data and the purpose
for signing. Needed for verifying the signature.

Fragment ID: monotonically increasing counter for identifying and or-
dering message fragments. It is also used to detect missed fragments.
Starts at 0 with the first message fragment sent to the group, and the
uint64_t type used allows a maximum of 264 fragments in a group.

Fragment offset: byte offset of the current fragment, relative to the
beginning of the message. The uint64_t used here limits the last
fragment of a message to start at 264 − 1 bytes.

Message ID: opaque to multicast, used by applications to reassemble
fragments of the same message. Allows for a theoretical maximum of
264 messages, but the fragment ID counter would likely reach this limit
earlier, which is incremented for every fragment of a message.

Group generation: used in groups with restricted history, incremented
whenever a member leaves the group. It is used to detect changed mem-
bership, even if there are missed messages, as explained in Section 3.7.

Flags: indicate the first and last fragment of a message. By using a last
fragment flag, the size of a message do not have to be prematurely
known.

The multicast service does not wait for a full message to arrive before it starts
sending fragments to the network: the transmission function uses a notify
callback to ask for data for the next fragment, and is called until the there’s

3.7. Testing membership 17

more data for the message. Message transmission happens similarly in case
of the higher layer services as well: the body of a larger message sent by an
application is transmitted in smaller fragments between the services. This
way larger messages can be sent asynchronously to group members, even with
smaller messages in between the fragments of a larger message.

After the origin sent out a message fragment, directly connected members
receive it, and relay it further towards the rest of the group, possibly through
multiple hops.

Before a message fragment can be relayed, a membership test has to be
performed for each directly connected member, to determine whether they
are supposed to see that particular message fragment. The fragment is
then only relayed to those members for whom the membership test returns
a positive result. If a fragment was not relayed to a member due to the
membership test not being able to confirm membership because of missed
messages, this member would notice the missed fragment later and can request
it replayed from this or another member of the group.

3.7 Testing membership

The multicast service calls the membership test callback of the API when
it needs to make sure a given member has access to a particular message
fragment when relaying fragments to other members.

typedef void (* GNUNET_MULTICAST_MembershipTestCallback)
(void *cls ,
const struct GNUNET_EccPublicKey *member_key ,
uint64_t message_id ,
uint64_t group_generation ,
struct GNUNET_MULTICAST_MembershipTestHandle *mth);

The implementation of this callback then looks up locally stored membership
information in order to answer whether the member in question was admitted
when a message fragment with the given message ID and group generation was
sent to the group. The group generation header field is a counter incremented
whenever a member is removed from the group, and helps determining group
membership even in case of missed fragments: as long as the group generation
stays the same, no one has left the group, thus it is safe to relay further
fragments.

The result of the membership test is provided with the following API function:

void
GNUNET_MULTICAST_membership_test_result

(struct GNUNET_MULTICAST_MembershipTestHandle *mth ,
int result);

18 3. Multicast service

origin

mem_1

1,2,4

mem_2

1,2,3,4?3

mem_3

4

mem_5

2

1,2,3

mem_4

1,3,4

4

?2

1?3

Figure 3.8.1: Message fragment distribution and replay in a multicast group.
The number on an edge indicates the fragment ID. A solid arrow is used for
multicast messages, a dashed arrow represents replay requests.

The result is either GNUNET_YES, GNUNET_NO, or GNUNET_SYSERR if there’s not
enough information stored to be able to answer the query, or another error
occurred that prevents access to the membership store.

To reduce the number of membership tests that query the local database,
the multicast service remembers the membership test result together with
the group generation for each connected member. Then it is enough to
compare the group generation of the to be relayed fragment with the last
known value that passed the membership test for each member. When this
simple test returns a negative result, because the group generation changed,
a membership test is performed again for each directly connected member, to
determine whether any of them left the group before relaying the fragment.

3.8 Replaying multicast messages

When a group member receives a fragment, it uses the fragment ID header
field to detect any missed fragments. When a missing fragment is noticed,
the multicast service requests replay of the fragment from another group
member. Figure 3.8.1 illustrates message distribution and replay in a group.
Refer to Section A.1.2 of the appendix for a sequence diagram of the API
function calls and messages sent between the services during replay.

Each missed fragment has to be requested individually, which is necessary to
avoid a member requesting a large number of fragments at once that could

3.8. Replaying multicast messages 19

lead to denial of service. Fragments can arrive from multiple sources and out
of order, for this reason it is also more efficient to request recently missed
fragments one by one, as an already requested fragment could have arrived
in the mean time from another source.

Replay of a fragment can be also requested through the multicast API
explicitly, using one of the following functions.

One way to request a fragment is by fragment ID:

struct GNUNET_MULTICAST_MemberReplayHandle *
GNUNET_MULTICAST_member_replay_fragment

(struct GNUNET_MULTICAST_Member *member ,
uint64_t fragment_id ,
uint64_t flags);

Another possibility is to specify a message ID and a fragment offset:

struct GNUNET_MULTICAST_MemberReplayHandle *
GNUNET_MULTICAST_member_replay_message

(struct GNUNET_MULTICAST_Member *member ,
uint64_t message_id ,
uint64_t fragment_offset ,
uint64_t flags);

As applications deal with message IDs instead of fragment IDs, this latter form
is useful when an application wants to retrieve all fragments of a particular
message.

In both cases replay flags can be specified, which are opaque to multicast
and passed to the replay callback of the multicast API that notifies about
incoming replay requests.

When receiving a replay requests, the multicast service notifies about it using
one of the following callbacks:

typedef void (* GNUNET_MULTICAST_ReplayFragmentCallback)
(void *cls ,
const struct GNUNET_CRYPTO_EccPublicKey *member_key ,
uint64_t fragment_id ,
uint64_t flags ,
struct GNUNET_MULTICAST_ReplayHandle *rh);

typedef void (* GNUNET_MULTICAST_ReplayMessageCallback)
(void *cls ,
const struct GNUNET_CRYPTO_EccPublicKey *member_key ,
uint64_t message_id ,
uint64_t fragment_offset ,
uint64_t flags ,
struct GNUNET_MULTICAST_ReplayHandle *rh);

20 3. Multicast service

This indicates the member’s public key the request is coming from, either a
fragment ID or a message ID and fragment offset that identifies the fragment,
and the flags set for the query.

The implementation of the callback then makes sure the member has access to
the requested fragment by performing a membership test, and either returns
the fragment from the message store or an error code via the following API
call:
void
GNUNET_MULTICAST_replay

(struct GNUNET_MULTICAST_ReplayHandle *rh ,
const struct GNUNET_MessageHeader *message ,
enum GNUNET_MULTICAST_ReplayErrorCode error_code);

Replay handle: used to match the response with replay request.

Message: the message fragment retrieved from the message store, where it
is stored exactly as it arrived from the network along with the signature
of the origin, thus the authenticity of a replayed fragment can still be
verified by the receiving member.

Error code: used to indicate any errors that can occur during replay.

OK: everything is fine, the provided fragment is returned to the
requester. If the result is not OK, a message with the error code
is returned instead.

Not found: the message fragment was not found in the message
store, either it was already removed because it was too old, or the
member has missed it and have never seen it.

Access denied: the member does not have access to the requested
fragment. Returned after a failed membership test.

Internal error: an error occurred replay, e.g. the database was not
available.

Another variant of the replay function is provided, which uses a notify callback
to return the message. This can be used to replay a message generated by
the responding member, which does not contain the signature of the master,
and thus it is verified by other means on higher layers.
void
GNUNET_MULTICAST_replay2

(struct GNUNET_MULTICAST_ReplayHandle *rh ,
GNUNET_MULTICAST_ReplayTransmitNotify notify ,
void *notify_cls);

A replay response can consist of multiple fragments in certain cases, for this
reason the end of the replay session is explicitly indicated using the following

3.9. Unicast requests 21

function:
void
GNUNET_MULTICAST_replay_end

(struct GNUNET_MULTICAST_ReplayHandle *rh);

3.9 Unicast requests

A member of the group can send a message with a given ID to the origin
using the following API function:
struct GNUNET_MULTICAST_MemberRequestHandle *
GNUNET_MULTICAST_member_to_origin

(struct GNUNET_MULTICAST_Member *member ,
uint64_t message_id ,
GNUNET_MULTICAST_MemberTransmitNotify notify ,
void *notify_cls);

The origin is then informed about an incoming request via the following
callback of the API:
typedef void (* GNUNET_MULTICAST_RequestCallback)

(void *cls ,
const struct GNUNET_EccPublicKey *member_key ,
const struct GNUNET_MULTICAST_RequestHeader *request ,
enum GNUNET_MULTICAST_MessageFlags flags);

An obvious way to implement such requests would be to establish a direct
mesh tunnel from the member to the origin, but this would be harder scale
to a large number of participants.

Another solution could be to use the reverse path of multicast messages for
this purpose. In this case members would relay a message fragment towards
the origin, choosing the upstream connection closest to the origin, which is
determined using distance information present in the hop counter header field
of incoming multicast messages.

A unicast request would than have a message header — similar to the multicast
message header — prepended to an application layer message payload, with
the following fields.
struct GNUNET_MULTICAST_RequestHeader
{

struct GNUNET_MessageHeader header;
struct GNUNET_CRYPTO_EccPublicKey member_key;
struct GNUNET_CRYPTO_EccSignature signature;
struct GNUNET_CRYPTO_EccSignaturePurpose purpose;
uint64_t fragment_id;
uint64_t fragment_offset;
uint64_t message_id;

22 3. Multicast service

enum GNUNET_MULTICAST_MessageFlags flags;
};

Member’s public key: identifies the member the request is coming
from.

Signature: the request signed with the member’s private key. Used by
the origin to verify the authenticity of the message, as it can be relayed
by other group members.

Fragment ID, fragment offset, message ID, and flags: refer to iden-
tically named fields of multicast messages in Section 3.6. These fields
allow unicast requests to be fragmented, similarly to multicast messages.

Such member-to-origin requests would still have to be encrypted to prevent
relaying group members having access to the message content. For this
purpose the member would encrypt each message fragment sent to the origin
using a session key agreed upon after an ECDH (Elliptic Curve Diffie-Hellman)
exchange with the origin.

Finally, an alternative to sending unicast requests from a member to the
origin is using a separate multicast group with reversed roles, and connect
the messages on the application layer by adding a reference to a previous
message of another multicast group. This allows for a more decentralized
communication model, which is suitable for e.g. (micro)blogging applications.

4. PSYC service

The PSYC service models PSYC channels, each using an underlying multicast
group. The multicast group’s origin corresponds to the channel master, while
its members are called channel slaves on the PSYC layer. The channel master
is the owner of the channel that can send messages to it, while a channel
slave is a subscriber of the channel, who can receive multicast messages from
and send unicast requests to the channel master.

Messages sent to a channel use the PSYC syntax. The PSYC service parses
messages it receives from the underlying multicast group, and renders outgoing
messages in the PSYC format before sending them out to other members of
the group. Once a message is parsed, it notifies about the method call in the
message via the PSYC API. The PSYC service does not generate messages by
itself, and does not understand the semantics of messages, only the syntax.

Each PSYC channel has a decentralized channel state associated with it: a
set of persistent key-value pairs replicated on each channel slave. The channel
master is in charge of the state: it sends out state modifier operations to the
channel. Channel slaves apply these changes to their local state database
using the PSYCstore service. As each slave receives the same operations from
the master, this results in each slave having the same channel state after
receiving all state modifiers the master sent out.

A PSYC message consists of the following parts, in this order:

Routing header: replaced by the multicast message header when PSYC
is used over GNUnet.

Length of the message: not needed when the PSYC syntax is used
inside GNUnet messages, as the multicast header already indicates the
size of each fragment and the last fragment of a message.

Entity header: contains transient variables and state modifiers set by an
application. A state modifier defines an operation on the channel state,
and consists of an operation, the name of a state variable to modify, and
the argument(s) for the operation. The two most important operators
are : (set) and = (assign). The former sets a transient variable only for

23

24 4. PSYC service

the message it appears in, the latter assigns a value to a persistent state
variable. Further operations on state variables are possible, depending
on the type of variable. The variable types and the operations on them
are going to be specified later on, as part of future work.

Method name to invoke on the recipient applications. This is the only
compulsory part of the message.

Message body: the payload for the message sent by an application.

The following is an example of a message invoking a _message_public_shout
method with a transient _volume variable, which is not saved in the channel
state:

:_volume 100
_message_public_shout
Hello ,
world!

The next message contains two state modifiers, each sets a variable for a
profile field:

=_location_planet Earth
=_location_continent Europe
_notice_profile_location

The PSYC service uses the PSYCstore service to store message fragments
sent to a channel, and to apply channel state operations found in messages.
Storing message fragments is necessary in order to facilitate history queries
from applications, and replay requests from multicast group members.

The PSYC service adds a message header to each PSYC message before it
sends it through the multicast service. This header contains additional fields
needed by the PSYC layer. One of these fields is the size of the message up
to the end of the method name, which is necessary so that parsing of the
message can start after all fragments containing modifiers arrived, but before
the message body is complete. This way applications can already be notified
of a possibly large message before its whole body arrives.

4.1 PSYC API overview

The PSYC API provides functionality for participants of a PSYC channel
depending on their role. One set of functions are available only to the channel
master, while another set only to channel slaves. There is also a third set of
functions available to both the channel master and slaves.

4.1. PSYC API overview 25

4.1.1 Channel master

Functions available to the channel master:

Start (or restart) a channel. Starts the underlying multicast group.

Stop a channel. Stops the multicast group and terminates the channel
master.

Transmit a message to a channel through the multicast service.

Join decision: respond to a join request, which is transmitted to the
requesting peer through the multicast service.

Callbacks for the channel master:

Request received from a channel slave.

4.1.2 Channel slave

Functions a channel slave has access to:

Join (or rejoin) a remote channel. Sends a join request to the master
through the multicast service.

Part a remote channel. Disconnects from a multicast group and termi-
nates the channel slave. An application layer leave request should be
sent to the master before parting.

Transmit a request to the master using the multicast service.

Callbacks used to notify a channel slave:

Message received from the channel master.

4.1.3 Channel

Functions available to both the master and slaves are:

Add/remove a slave to/from the membership database of the channel.

Get historic messages for a specified message ID range.

Get a state variable that best matches a given name.

Get all state variables that matches a given name prefix.

26 4. PSYC service

4.2 Starting the channel master

The PSYC channel master corresponds to the group origin on the multicast
layer. When starting a PSYC channel master, the underlying multicast group
origin is started as well, as described in Section 3.2. The channel can be
started and restarted using the following API function:

struct GNUNET_PSYC_Master *
GNUNET_PSYC_master_start

(const struct GNUNET_CONFIGURATION_Handle *cfg ,
const struct GNUNET_CRYPTO_EccPrivateKey *channel_key ,
enum GNUNET_PSYC_Policy policy ,
GNUNET_PSYC_Method method ,
GNUNET_PSYC_JoinCallback join_cb ,
void *cls);

Channel’s private-public key pair: used to identify the channel and
to sign multicast messages sent to the channel.

Policy: admission control and history access settings. It is a combination
of the following flags:

Admission control: join requests have to be approved by an appli-
cation running on the master.

Restricted history: a past message can be replayed to only those
slaves who were already admitted when the message was originally
sent out. To enforce this, the PSYC service maintains a group
generation counter incremented after a slave is removed from the
channel.

The combination of these flags results in the following policies:

Anonymous channel: no admission control and no restrictions on
history. A channel slave can join directly at any other known slave,
without the master having to admit the slave first. As the master
does not necessarily know about each slave in this case, joins are
not announced.

Private channel: admission control with restricted history. A slave
has to send a join request to the master first, and the master an-
nounces joins so that channel slaves know who the other currently
admitted slaves are, which is needed to ensure only authorized
slaves receive relayed and replayed messages.

Closed channel: admission control without restricted history. It
behaves like a private channel, but slaves have access to past
messages as well.

4.3. Stopping the channel master 27

Public channel: no admission control with restricted history. In
this case joining slaves are announced to be able to apply history
restrictions, for this reason a join request has to be sent to the
master first, but slaves are auto-admitted.

Method callback: to inform the social service about method calls in
requests from slaves.

Join callback: to inform the social service about join requests.

Before a channel master can be restarted, the PSYC service retrieves the
state of counters maintained by the PSYC service from the PSYCstore, so
that it can continue incrementing them from their last value. These counters
are the message ID, group generation, and state delta. They are described
later in this chapter.

4.3 Stopping the channel master

The channel master can be stopped using the following API function:
void
GNUNET_PSYC_master_stop (struct GNUNET_PSYC_Master *master);

When this function is called, the PSYC service stops the underlying multicast
group origin, stops maintaining information related to the channel, and
disconnects the caller from the PSYC service.

4.4 Joining a channel

When joining or rejoining a channel as a slave, the PSYC service initiates
joining the underlying multicast group, which in turn involves sending out a
join request to the origin or one of the given relays, as described in Section 3.4.
Also refer to Section A.4 of the appendix for sequence diagrams of the join
process.

4.4.1 Requesting join

The PSYC service provides the following API function for joining a channel:
struct GNUNET_PSYC_Slave *
GNUNET_PSYC_slave_join

(const struct GNUNET_CONFIGURATION_Handle *cfg ,
const struct GNUNET_CRYPTO_EccPublicKey *channel_key ,
const struct GNUNET_CRYPTO_EccPrivateKey *slave_key ,
const struct GNUNET_PeerIdentity *origin ,

28 4. PSYC service

size_t relay_count ,
const struct GNUNET_PeerIdentity *relays ,
GNUNET_PSYC_Method method ,
GNUNET_PSYC_JoinCallback join_cb ,
void *cls ,
const char *method_name ,
const struct GNUNET_ENV_Environment *env ,
size_t data_size ,
const void *data);

Channel’s public key: identifies the channel to join.

Slave’s private-public key pair: the public key identifies the slave,
while the private key signs unicast requests sent to the master.

Origin and relays: peer identifiers to join the multicast group at, and
send requests to, as described in Section 3.4.

Method callback for handling method invocations in multicast messages
sent to the group.

Join callback for handling other slaves joining.

Method name, environment, and data: a PSYC-formatted message
is constructed from these parameters, which will serve as the join request
sent to the master.

Upon calling this function, the PSYC service joins the multicast group
using the provided information. It also adds a PSYC message header to the
join message it constructs, which indicates the last known message ID that
modified the state — this information is requested from the PSYCstore, and
needed later for the state synchronization process, which happens right after
admission.

4.4.2 Responding to a join request

After the origin or another group member received the join request, the join
callback of the multicast service notifies the PSYC service about it, which
queries the PSYCstore to determine whether the member is already admitted:
if it is, a positive join decision is sent back to the requester.

In case the requester is not a member yet, the process continues differently
depending on whether the request was sent to the master or a slave. In the
latter case a negative join decision is sent back right away, as a slave is not in
charge of the channel. In case of the master, however, the decision is taken
by an application, and thus the join request is propagated to higher layers
via the join callback of the PSYC API:

4.4. Joining a channel 29

typedef int (* GNUNET_PSYC_JoinCallback)
(void *cls ,
const struct GNUNET_EccPublicKey *slave_key ,
const char *method_name ,
size_t variable_count ,
const GNUNET_ENV_Modifier *variables ,
size_t data_size ,
const void *data ,
struct GNUNET_PSYC_JoinHandle *jh);

Public key identifying the slave requesting join.

Method name, variables, data: parts of the parsed PSYC message
sent along with the join request, which contain additional information
required for the join on the application layer.

Join handle: used to match the join request with the decision.

Once an application running in the master channel has made a decision
about the request, there are three steps remaining for the master to complete
the join process: notifying the channel about the new slave, informing the
requester about the decision, and synchronizing the channel state of the
requester.

4.4.3 Notifying the channel about the new slave

If the decision taken by the application is to admit the slave requesting
join, then the slave needs to be added to the membership database of each
participant of the channel: the master as well as all the slaves. This is
necessary in order to be able to answer membership test queries later on.

Adding a slave to the membership database of the channel can be performed
via the following function of the PSYC API:

void
GNUNET_PSYC_channel_slave_add

(struct GNUNET_PSYC_Channel *channel ,
const struct GNUNET_EccPublicKey *slave_key ,
uint64_t announced_at ,
uint64_t effective_since);

Channel: either a master or slave.

Slave’s public key: identifies the slave this membership change is about.

Announced at: ID of the message that announced the membership
change. Needed for ordering of events.

30 4. PSYC service

Effective since: message ID since the membership change is in effect.
This allows the master to give the slave access to past messages from
an earlier point in time.

After this function is used by the channel master to update its membership
database, the master still needs to transmit a message to notify the channel
about the newly joined slave. Existing channel slaves then receive this
message, the social service understands the method call notifying about the
join, and calls this function to update its own membership database of the
channel.

The membership database is updated using the PSYCstore API. The process
of storing membership change events is described in Section 5.4.1.

4.4.4 Informing the requester about the decision

Finally, the requester needs to be informed about the join decision. In order
to do this, the PSYC service is first notified about the decision using the
following API function:
void
GNUNET_PSYC_join_decision

(struct GNUNET_PSYC_JoinHandle *jh,
int is_admitted ,
unsigned int relay_count ,
const struct GNUNET_PeerIdentity *relays ,
const char *method_name ,
const struct GNUNET_ENV_Environment *env ,
size_t data_size ,
const void *data);

Join handle that identifies the request this decision is about.

Is admitted? The decision taken: GNUNET_YES or GNUNET_NO.

Relays: other multicast group members that can be used as relays. The
list of relays are distributed in application layer messages by the master.

Method name, environment with variables, data: parts of the PSYC
message to be returned with the decision.

The join decision is then forwarded to the multicast service, which informs
the requesting peer about the decision, as described in Section 3.4.

4.4.5 State synchronization

In case of a positive join decision, the PSYC service initiates a state synchro-
nization process to bring the state of the joining slave up to date. The PSYC

4.5. Parting a channel 31

service chooses between two approaches based on the latest state message ID
the joining slave sent along with join request. The first option is to send the
latest full state for which a hash is known and replay any additional state
modifying messages that were sent after that. The other option is to replay
only the individual state modifying messages that the joining slave does not
yet have. The cheaper method in terms of bandwidth can be determined
based on the size of the full state and the state modifying messages stored in
the PSYCstore.

When the full state is used for state synchronization, a message containing
all state variables are generated by the responding slave, thus not signed by
the master. In order for the joining slave to be able to verify the authenticity
of the received state, the channel master periodically generates a hash of
all state variables in lexical order, and adds it to a state hash PSYC header
field. This hash is always added to multicast messages notifying about a
join, as a new slave might not have access to earlier state messages due to
history restrictions. The state hash allows the joining slave to verify the state
it received, as each multicast message — including the one containing this
hash — is signed by the master. If the hash of the received state passes the
verification, it is stored in the PSYCstore, and further state modifiers can be
applied to it.

4.5 Parting a channel

For slaves wanting to part a channel, the PSYC API provides the following
function:

void
GNUNET_PSYC_slave_part

(struct GNUNET_PSYC_Slave *slave);

When this function is called, the PSYC service parts the multicast group
and disconnects the caller from the PSYC service. Calling this function does
not result in any message being sent out to the network that would change
the membership status of the slave. To remove a slave from the membership
database of the channel, the following function of the PSYC API is used:

void
GNUNET_PSYC_channel_slave_remove

(struct GNUNET_PSYC_Channel *channel ,
const struct GNUNET_EccPublicKey *slave_key ,
uint64_t announced_at);

This function does the opposite of GNUNET_PSYC_channel_slave_add() —
described in Section 4.4.3 — and it is used in a similar way. It removes the

32 4. PSYC service

given slave from the channel, and needs to be called by the master as well as
every slave of the channel.

The master calls this function either upon a specific request of a slave, or
after an unilateral decision to remove the slave from the channel. In either
case, the master sends out a message to the channel informing the slaves
about the membership change, so that the slaves can call this function, too,
in order to update their own membership database. The group generation is
incremented after this message has been sent to the channel, which makes
sure the leaving slave will not have access to further messages, but it still gets
to see this last message, either confirming its own leave request or informing
about being kicked.

4.6 Messages from the master

4.6.1 Sending messages

The master can transmit a message to the channel using the following API
function:
struct GNUNET_PSYC_MasterTransmitHandle *
GNUNET_PSYC_master_transmit

(struct GNUNET_PSYC_Master *master ,
const char *method_name ,
const struct GNUNET_ENV_Environment *env ,
GNUNET_PSYC_MasterReadyNotify notify ,
void *notify_cls ,
enum GNUNET_PSYC_MasterTransmitFlags flags);

Master handle for the channel to send the message to.

Method name for the message.

Environment containing state modifiers and transient variables for the
message.

Notify callback to notify the caller when it can provide the next part
of the body, called possibly multiple times while it still returns data.

Flags for the message being transmitted:

Reset state: whether this message resets the channel state, i.e.
removes all previously stored state variables. This is achieved
by setting the state delta PSYC header field to 0. This field is
described in the next section.

Add state hash: generate a hash of the full state and add it to the
PSYC header of the message in a state hash field.

4.6. Messages from the master 33

Increment group generation: whether the message contains a
notification about a slave removed from the channel, in which case
the group generation is incremented after sending this message.

Upon calling this function, the PSYC service renders a PSYC formatted
message from the method name, modifiers, and message body. Then it uses the
GNUNET_MULTICAST_origin_to_all() function — described in Section 3.6 —
to send out a possibly fragmented message to the underlying multicast group.
The method name and modifiers are sent out right away, while parts of the
body are transmitted as data for it comes in.

4.6.2 Receiving messages

Channel slaves are notified about incoming multicast message fragments via
the message callback of the multicast service. The PSYC service stores each
incoming fragment using the PSYCstore service. Next, to determine how
to proceed, it parses the first fragment of the message, which contains the
length of the modifiers section and can contain a state delta PSYC header
field.

The state delta is present in each message that contains state modifiers, and
it is set to the number of messages since the last message that modified the
state. The value 0 means a full state reset, in which case all previously stored
state variables are discarded. The state delta allows a channel slave to detect
a previously missed message that contained state modifiers, in which case
it can not apply further operations on the channel state until all missing
messages arrived, as state operations must be performed strictly in the order
they were sent out by the master to keep the state consistent across the slaves.
The missing messages are requested to be replayed via the multicast service,
which then replays explicitly requested message IDs with higher priority.

Once there are no missing state messages, the PSYC service still has to wait
until all fragments of the modifiers section of the current message arrived
before it can start applying operations to the channel state.

After all fragments necessary to apply the outstanding state operations
arrived, the PSYC service retrieves these from the PSYCstore, parses the
modifiers found in them, and sends the parsed operator–name–value triplets
back to the PSYCstore for applying them to the current channel state. This
process is described in Section 5.3.1.

At this point, when all modifiers of a message are parsed and applied to the
channel state, the PSYC service notifies about the incoming method call
through the method callback of its API:

34 4. PSYC service

typedef int (* GNUNET_PSYC_Method)
(void *cls ,
const struct GNUNET_CRYPTO_EccPublicKey *slave_key ,
uint64_t message_id ,
const char *method_name ,
size_t modifier_count ,
GNUNET_PSYC_Modifier *modifiers ,
uint64_t data_offset ,
size_t data_size ,
const void *data ,
enum GNUNET_PSYC_MessageFlags flags);

Slave’s public key: NULL for multicast messages (only used in case of
unicast requests from slaves, see Section 4.7).

Message ID: identifier of the message.

Method name: method name found in the message.

Modifiers: state modifiers and transient variables in the message.

Data offset: byte offset of the fragment of the data.

Data: fragment of the message body starting from the offset above.

Flags: indicate the first and last fragment of a message.

This function is called first with the method name, modifiers, and first part
of the message body, then called again for each further fragment of the body
as they arrive. For subsequent calls the modifiers and method name are not
present, and the end of the message is indicated with the last fragment flag
set.

In case of the master, requests from slaves are processed similarly, except
that in case of the request callback used by the master, the slave’s public key
is set, which identifies the source of the message.

4.7 Requests from slaves

Slaves can send requests to the master using the following function of the
API, which is very similar to the master’s transmit function described in
Section 4.6.1.
struct GNUNET_PSYC_SlaveTransmitHandle *
GNUNET_PSYC_slave_transmit

(struct GNUNET_PSYC_Slave *slave ,
const char *method_name ,
const struct GNUNET_ENV_Environment *env ,
GNUNET_PSYC_SlaveReadyNotify notify ,
void *notify_cls ,
enum GNUNET_PSYC_SlaveTransmitFlags flags);

4.8. History and state requests by applications 35

Slave handle for the channel whose master to send the request to.

Method name for the message.

Environment containing transient variables for the message.

Notify callback to notify the caller when it can provide the next part
of the body, called possibly multiple times while it still returns data.

Flags for the message being transmitted. None defined yet, reserved for
later use.

4.8 History and state requests by applications

An application running in the channel might need to have access to historic
messages and state variables it does not keep track of. Both of these are stored
by the PSYCstore service, and are accessible through the PSYC service.

4.8.1 Requests for historic messages

Historic messages of a master or slave channel can be requested using the
following PSYC API call:

The messages are retrieved from the PSYCstore if available, otherwise a
replay request is issued to another member through the multicast service.

struct GNUNET_PSYC_Story *
GNUNET_PSYC_channel_story_tell

(struct GNUNET_PSYC_Channel *channel ,
uint64_t start_message_id ,
uint64_t end_message_id ,
GNUNET_PSYC_Method method ,
GNUNET_PSYC_FinishCallback finish_cb ,
void *cls);

The PSYC service retrieves the messages between the start and end message
ID (inclusively) from the PSYCstore, and processes them similarly to new
messages coming from the multicast service: it parses the fragments of each
message, then calls the provided method callback to inform about the method
call, transient variables, state modifiers, and the body of the message. For
messages retrieved from the PSYCstore a historic flag is also set to make
them distinguishable from new messages. If the PSYCstore does not have
all the requested messages, replay requests are issued through the multicast
service for the missing ones.

36 4. PSYC service

4.8.2 State variable requests

The PSYC API provides two ways for requesting state variables of a channel:
either request all variables with a given name prefix, or request a single
variable that best matches the given name.

For the former case the following function is provided:
uint64_t
GNUNET_PSYC_channel_state_get_all

(struct GNUNET_PSYC_Channel *channel ,
const char *name_prefix ,
GNUNET_PSYC_StateCallback cb,
void *cb_cls);

This function retrieves either exactly matching or more specific state variables
with a matching name prefix from the PSYCstore and returns them through
the provided callback. For instance, a request for _a_b would return both
_a_b and _a_b_c, while an empty string as prefix would return all state
variables in the channel.

The other option is requesting a variable best matching a given name:
struct GNUNET_PSYC_StateQuery *
GNUNET_PSYC_channel_state_get

(struct GNUNET_PSYC_Channel *channel ,
const char *full_name ,
GNUNET_PSYC_StateCallback cb,
void *cb_cls);

In this case the returned variable is either exactly matching or less specific
than the requested one: e.g. when a request for _a_b_c is made, the first
variable is returned that exists in the following order: _a_b_c, _a_b, _a.

5. PSYCstore service

Persistent storage needs of the system is provided by the PSYCstore service.
It is used to store message fragments, state variables, and membership
information of channels.

5.1 PSYCstore API overview

The PSYCstore provides the following functionality, exposed through its API:

Store a fragment of a message.

Retrieve a fragment by fragment ID.

Retrieve a message with all its fragments.

Apply state modifiers of a message.

Update state hash: update signed values of state variables to be able
to serve state synchronization queries later.

Store membership: store join and part events in a channel to be able
to perform membership tests later.

Membership test: check whether a channel slave has access to a given
message.

Get counter values for a channel. Returns the latest values of the
fragment ID, message ID, and group generation, which is needed when
restarting a channel master.

5.2 Message store

Storing messages is necessary for two purposes: other members of the multicast
group can request replay of missed messages, and applications can request
message history.

37

38 5. PSYCstore service

Incoming message fragments for PSYC channels are stored in the same format
as they arrive from the network in order to facilitate message replays. Each
message fragment is signed by the channel master, slaves thus can verify
integrity of replayed fragments.

5.2.1 Storing message fragments

A message fragment is stored using the following PSYCstore API call:
struct GNUNET_PSYCSTORE_OperationHandle *
GNUNET_PSYCSTORE_fragment_store

(struct GNUNET_PSYCSTORE_Handle *h,
const struct GNUNET_CRYPTO_EccPublicKey *channel_key ,
const struct GNUNET_MULTICAST_MessageHeader *message ,
GNUNET_PSYCSTORE_ResultCallback rcb ,
void *rcb_cls);

Handle for the PSYCstore.

Channel’s public key: identifies the channel the message fragment was
sent to.

Multicast message header followed by its payload.

State modifier flag: whether the message contains state modifiers. A
state delta PSYC header field is present if the message contains state
modifiers.

Result callback: to inform the caller whether the asynchronous storage
operation succeeded: the PSYCstore library has to send the message
fragment to the PSYCstore service, which stores it in a database on
disk.

After receiving a message fragment, the PSYCstore service stores it along
with certain fields extracted from the multicast message header for quick
lookup. The following fields are stored for each fragment, shown with SQLite
syntax:
CREATE TABLE messages (

channel_id BLOB NOT NULL ,
fragment BLOB NOT NULL ,
fragment_id UNSIGNED INT NOT NULL ,
fragment_offset UNSIGNED INT NOT NULL ,
message_id UNSIGNED INT NOT NULL ,
group_generation UNSIGNED INT NOT NULL ,
multicast_flags UNSIGNED INT NOT NULL ,
psyc_flags UNSIGNED INT NOT NULL ,
PRIMARY KEY (channel_id , fragment_id),
UNIQUE (channel_id , message_id , fragment_offset)

);

5.2. Message store 39

Channel ID: hash of the public key of the channel.

Message fragment: raw data of the multicast message fragment, as it
arrived from the network.

Fragment ID from the multicast header.

Message ID from the multicast header.

Fragment offset from the multicast header.

Group generation from the multicast header. Used to determine its
last value when restarting a channel.

Multicast flags: message flags from the multicast header, which indicate
the first and last fragment.

PSYC flags: message flags from the PSYC header, necessary for channel
state processing:

State modifier flag: whether the message contains state modifiers.

State applied flag: whether state modifiers in the massage has
been applied to the stored state. Applying modifiers can be
delayed if there was a missed message that modified the state
(detected by PSYC using the state delta header field).

State hash flag: set after the channel master sends out a hash of
the channel state and after the signed variable values in the channel
state store are updated. Together with the state applied flag, it
is used to determine from which point incoming state modifiers
can be applied to the channel state after rejoining a channel later.
Also used during the state synchronization process to determine
from which point to send state modifying messages to the joining
slave.

5.2.2 Retrieving messages

Two functions are provided to retrieve message fragments from the PSYCstore.
The first one retrieves a single fragment with the given fragment ID, which is
used to serve replay requests coming from the multicast service:

struct GNUNET_PSYCSTORE_OperationHandle *
GNUNET_PSYCSTORE_fragment_get

(struct GNUNET_PSYCSTORE_Handle *h,
const struct GNUNET_CRYPTO_EccPublicKey *channel_key ,
uint64_t fragment_id ,
GNUNET_PSYCSTORE_FragmentResultCallback rcb ,
void *rcb_cls);

40 5. PSYCstore service

The second variant retrieves all fragments of a message with the given message
ID, this is used to answer requests for historic messages by applications:

struct GNUNET_PSYCSTORE_OperationHandle *
GNUNET_PSYCSTORE_message_get

(struct GNUNET_PSYCSTORE_Handle *h,
const struct GNUNET_CRYPTO_EccPublicKey *channel_key ,
uint64_t message_id ,
GNUNET_PSYCSTORE_FragmentResultCallback rcb ,
void *rcb_cls);

In both cases the fragments are requested from the PSYCstore and returned
asynchronously via the provided fragment result callback.

5.3 Channel state store

5.3.1 Applying state modifiers

The channel state store contains name-value pairs of state variables for each
PSYC channel. The following fields are stored:

CREATE TABLE state (
channel_id BLOB NOT NULL ,
name TEXT NOT NULL ,
value_current TEXT ,
value_signed TEXT ,
PRIMARY KEY (channel_id , name)

);

Channel ID: hash of the public key that identifies the channel the state
variable belongs to.

Name of the variable.

Signed value of the variable.

Current value of the variable.

The channel state is updated by the master by adding state modifiers to
messages. After the PSYC service has parsed modifiers in an incoming
message, it uses the following function of the PSYCstore API to apply them
to the stored channel state:

struct GNUNET_PSYCSTORE_OperationHandle *
GNUNET_PSYCSTORE_state_modify

(struct GNUNET_PSYCSTORE_Handle *h,
const struct GNUNET_CRYPTO_EccPublicKey *channel_key ,
uint64_t message_id ,
uint64_t state_delta ,
size_t modifier_count ,

5.3. Channel state store 41

const struct GNUNET_ENV_Modifier *modifiers ,
GNUNET_PSYCSTORE_ResultCallback rcb ,
void *rcb_cls);

Channel’s public key: identifies the channel the state of which to mod-
ify.

Message ID the state modifiers appeared in.

State delta of the message: the number of message IDs since the last
message that contained state operations. PSYCstore uses this to check
whether it has applied all previous state modifiers by checking whether
the message the state delta is referring to is present in the message store
and has the state applied flag set. If this check passes, the modifiers
are applied to the channel state store.

Modifiers: operation–name–value triplets that specify the operations to
apply on state variables.

Calling this function results in updating the current values in the state store,
the signed values remain unchanged, to be able to serve state synchronization
requests.

5.3.2 State hash updates

Signed values in the state store are updated after the channel master sends out
a hash of the full state. When a channel slave receives this hash, the PSYC
service calls the following function of the PSYCstore API, which informs the
PSYCstore that it can update the signed values in the state store for the
given channel.

struct GNUNET_PSYCSTORE_OperationHandle *
GNUNET_PSYCSTORE_state_hash_update

(struct GNUNET_PSYCSTORE_Handle *h,
const struct GNUNET_CRYPTO_EccPublicKey *channel_key ,
uint64_t message_id ,
const struct GNUNET_HashCode *hash ,
GNUNET_PSYCSTORE_ResultCallback rcb ,
void *rcb_cls);

Channel’s public key: identifies the channel the signed state of which
to update.

Message ID: specifies when the state hash was sent out. This message
is flagged in the message store with a state hash flag to indicate that
earlier messages are not necessary to apply further state modifiers.

42 5. PSYCstore service

Hash of the full state: used to verify integrity of the state. If it does not
match the hash of the locally stored state, an error is returned and
state synchronization has to be retried.

Result callback: used to return either a success or failure result of the
hash update operation.

5.3.3 Retrieving state variables

For retrieving state variables, two functions are provided that have a similar
signature to the state functions described in Section 4.8.2.

Retrieving all variables with a given name prefix happens through:
struct GNUNET_PSYCSTORE_OperationHandle *
GNUNET_PSYCSTORE_state_get_all

(struct GNUNET_PSYCSTORE_Handle *h,
const struct GNUNET_CRYPTO_EccPublicKey *channel_key ,
const char *name_prefix ,
GNUNET_PSYCSTORE_StateCallback cb,
void *cb_cls);

While the best matching variable can be retrieved with:
struct GNUNET_PSYCSTORE_OperationHandle *
GNUNET_PSYCSTORE_state_get

(struct GNUNET_PSYCSTORE_Handle *h,
const struct GNUNET_CRYPTO_EccPublicKey *channel_key ,
const char *full_name ,
GNUNET_PSYCSTORE_StateCallback cb,
void *cb_cls);

5.4 Membership store

Storing membership information — join and part events of a channel — is
necessary to enforce access control on messages being relayed or replayed,
and also needed for admission control to determine whether a join request
came from an already admitted channel slave.

5.4.1 Storing membership

Membership change events of a channel are stored using the following PSYC-
store API function:
struct GNUNET_PSYCSTORE_OperationHandle *
GNUNET_PSYCSTORE_membership_store

(struct GNUNET_PSYCSTORE_Handle *h,

5.4. Membership store 43

const struct GNUNET_CRYPTO_EccPublicKey *channel_key ,
const struct GNUNET_CRYPTO_EccPublicKey *slave_key ,
int did_join ,
uint64_t announced_at ,
uint64_t effective_since ,
uint64_t group_generation ,
GNUNET_PSYCSTORE_ResultCallback rcb ,
void *rcb_cls);

Channel’s public key: identifies the channel the event happened in.

Slave’s public key: identifies the channel slave the event is about.

Did join? whether this is a join or part event.

Announced at: ID of the message that announced this join or part event.
Used for ordering of events.

Effective since: message ID from which point the slave should be con-
sidered joined. It is less than or equal to the message ID the event was
announced at: this allows granting access to message replays starting
from the specified ID. This is used to implement different history access
policies: when slaves have only access to messages they have seen after
join, this equals to the message ID the join was announced at, while
in a channel without history restrictions this would be set to 0 for
joins to allow access to all messages sent to the channel. In addition
to implementing policies, this can also be used for fine-grained access
control on a per-slave basis. For part events, the only allowed value
for this is 0, which makes sure other group members do not allow a
previous member back in the group anymore. A removed member thus
only can only contact the origin to ask for rejoin.

Group generation: in case of a part event, the last group generation
the slave has access to. This can be used to stop the removed slave
from accessing further fragments of a not yet completed message, as
message fragments sent to the channel will have an incremented group
generation after a slave has been removed from the channel.

Result callback: informs the caller about the result of the asynchronous
storage operation.

The hash of the two public keys, the event type, and the two message IDs
are then stored in the following structure:

CREATE TABLE membership (
channel_id BLOB NOT NULL ,
slave_id BLOB NOT NULL ,
did_join INT NOT NULL ,
announced_at UNSIGNED INT NOT NULL ,
effective_since UNSIGNED INT NOT NULL ,

44 5. PSYCstore service

group_generation UNSIGNED INT NOT NULL
);
CREATE INDEX ON membership (channel_id , slave_id);

5.4.2 Testing membership

The stored membership information is used later to determine whether a
particular slave was a member of the channel when the given message ID was
sent to the channel. This is performed using the membership test API call:
struct GNUNET_PSYCSTORE_OperationHandle *
GNUNET_PSYCSTORE_membership_test

(struct GNUNET_PSYCSTORE_Handle *h,
const struct GNUNET_CRYPTO_EccPublicKey *channel_key ,
const struct GNUNET_CRYPTO_EccPublicKey *slave_key ,
uint64_t message_id ,
uint64_t group_generation ,
GNUNET_PSYCSTORE_ResultCallback rcb ,
void *rcb_cls);

Channel’s public key: identifies the channel in question.

Slave’s public key: identifies the channel slave whose membership to
determine.

Message ID to check whether the given slave has access to.

Group generation: makes sure the membership information stored is
still valid.

Result callback: called with the result of the membership test, which
is either GNUNET_YES, GNUNET_NO, or GNUNET_SYSERR if it can not be
determined.

To answer a membership test query, the PSYCstore first determines if its
database is up-to-date enough to answer the query. If the group generation
parameter is larger than the value PSYCstore knows about, then membership
cannot be determined for sure, as there was a part event not yet known,
which might have removed the slave in question.

Next, it looks up the last announced event for the slave that has an effective
since ID less than or equal to the given message ID to test: if the resulting
event is a join, the membership of the slave is confirmed, otherwise if this is
a part or no such event is found, a negative result is returned.

This is expressed in SQL as follows.
SELECT did_join FROM membership
WHERE channel_id = ? AND slave_id = ? AND effective_since <= ?
ORDER BY announced_at DESC LIMIT 1;

6. Social service

This chapter describes the social service and its API, which implements the
social network model of the system. The social service receives incoming
messages for places from the PSYC service, processes the method calls using
the try-and-slice algorithm, and notifies applications that have matching
method handlers registered. It also acts upon certain method names itself
that are related to membership management of places.

6.1 Social network model

Basic concepts used in the social network model are pseudonymous users and
social places where pseudonyms can enter. We define the following terms to
describe these:

Ego: one of the user’s own pseudonyms. A user can have multiple
pseudonyms, or alter egos.

Nym: a pseudonym of another user in the system.

Home: one of the user’s own places, hosted by one of the user’s egos.

Place: a place hosted by a nym, where an ego or other nyms can enter.

Host: the pseudonym who is the owner of a place or home.

Guest: a pseudonym present in a place or home (other than the host).

Figure 6.1.1 shows relationships in the social network.

6.2 Messaging in places

A place is managed by a pseudonym hosting it, and uses a one-to-many
message distribution model: the host can announce messages to all guests
present, which is used in case of (micro)blogging and news announcements.
For many-to-many messaging use cases — e.g. discussion forums or chat

45

46 6. Social service

Me

Alice

Bob

Ego_1

Home_1

Ego_2

Home_2

Ego_3

Nym_1Nym_2 Nym_3

Nym_4

Place_1 Place_2 Place_3

Nym_6 Nym_5

Figure 6.1.1: Relations in the social network from a user’s perspective. Solid
line: host relationship; dashed line guest relationship. The arrows indicate
the multicast message flow.

rooms — guests publish content by asking the host to announce messages for
them.

We distinguish between private and public places: in the former case the host
controls admission to the place, and past messages are only visible to those
who were present at the time they were sent, while public places do not have
admission control and restrictions on accessing past message.

A place is modelled as PSYC channel, which in turn is implemented as a
multicast group. This enables it scale to a large number of participants.

Each place has a persistent set of objects, which is used to model e.g. user
profile fields, the list of guests present, or the topic of a chat room. The host
can modify objects in the place by sending out operations to be performed
on them to the guests. This is implemented using the decentralized state of
the PSYC layer, which defines these operations.

Each message sent to a place has a method call associated with it, and
optionally one or more transient variables or object modifying operations. The
method calls are used as Remote Procedure Calls (RPC) between applications,
each running on a different peer in the network. For this reason extensibility
plays a key role here: the system should be able to evolve over time and gain

6.3. Applications 47

new functionality, but in case of peer-to-peer systems it is not feasible to
upgrade all the nodes at once, like it is possible for centralized systems. Due
to this, backwards compatibility has to be maintained with peers running
earlier versions of the software. To achieve this, messages use the PSYC
syntax, which provides extensible method names that can be handled by
nearest-matching method handlers, this is referred to as try-and-slice method
processing.

The system uses a push model of distributing information: messages sent
to a place are stored locally by each peer, which means that the message
history and persistent objects in the place are available even when not
connected to the network. This is a key property of the system contributing
to its scalability and availability, as information modelled this way avoids
costly request-response operations, and also frees the publisher from having to
actively keep information online once it is published to the intended recipients.

This is in contrast with systems like LifeSocial [5] and MyZone [6], both of
which employ a pull model, in which case information is retrieved on-demand
from an online source: the former uses a DHT with encrypted profile entries,
while the latter relies on mirrors to store user profiles, which have to be
trusted to enforce access control on them.

6.3 Applications

Applications can be either interactive user interfaces, or bots running in the
background and handling a certain task, such as relaying messages to guests
in case of chat rooms, or automatically answering incoming entry requests.

Each application manages its own subscription list of homes and places, and
receives method calls it registered handlers for. For instance a relay bot
would only enter homes where chat messages need to be relayed, and handle
_message methods. An admission bot would be used in homes to automate
the entry process — e.g. auto-admit friends — and thus would only handle
entry requests. User interfaces would typically enter multiple homes and
places the user has subscribed to, and would implement method calls for
displaying incoming messages.

Application creators can define their own method names they want to use, and
implement various decentralized messaging applications based on the provided
one-to-many distribution model. Various homes of a user can have different
applications running in them, a few examples of what can be implemented
this way:

(Micro)blogging: an application publishes content to subscribers. It
needs a user interface for posting, and either a user interface or a bot

48 6. Social service

for managing subscription requests.

Chat room: the host as well as all guests can send and receive messages.
The host runs a relay bot that announces message requests coming
from guests.

6.4 Social API overview

The social API provides access to functionality of the social service for
applications. It defines operations on homes and places.

6.4.1 Home

Functions available for homes:

Enter home: an ego enters the home and starts hosting it.

Advertise home: publish a PLACE record in the GNS zone of the ego
hosting the home.

Eject a guest out of the home.

Announce a message to all guests present.

Leave home.

Callbacks used in a home to notify about events:

Answer door: a guest wants to enter, decide either to admit or reject
entry.

Farewell: notification about a guest leaving.

Message received from a guest, for registered method names.

6.4.2 Place

Functions provided for places are the following:

Enter place: an ego requests entry to a place.

Talk to the host.

Learn history: request historic messages of the place to be replayed,
which are likely already available in the local PSYCstore.

Look at objects: examine the current value of an object.

6.5. Using the social API 49

Watch objects for change.

Leave place.

Callbacks used to notify about events in a place:

Method calls for methods with registered handlers.

Object changed in the place, when an object is watched.

Functionality related to history and objects can also be used by homes after
converting a home handle to a place handle.

6.5 Using the social API

When an application starts up, it needs to load the private keys of the egos
it is going to use in homes and places. Egos are managed by the identity
service of GNUnet, which offers an API to create an ego (generate and store
its private key), then later enumerate egos and retrieve their private keys.

Once the egos are loaded, an application enters the homes it wants to host
and the places it wants to visit.

6.6 Entering a home

An application needs to enter a home before it can start sending and receiving
method calls for it. The social API provides the following function to do so:

struct GNUNET_SOCIAL_Home *
GNUNET_SOCIAL_home_enter

(const struct GNUNET_CONFIGURATION_Handle *cfg ,
const char *home_keyfile ,
enum GNUNET_PSYC_Policy policy ,
struct GNUNET_IDENTITY_Ego *ego ,
struct GNUNET_SOCIAL_Slicer *slicer ,
GNUNET_SOCIAL_AnswerDoorCallback listener_cb ,
GNUNET_SOCIAL_FarewellCallback farewell_cb ,
void *cls);

Home’s private-public key pair: the public key identifies the place,
while the private key is used to sign messages on the multicast layer. It
is loaded from the provided key file.

Ego hosting the home. It is used to sign the ego’s own messages sent to
the home and to associate the home with the GNS zone of the ego.

50 6. Social service

Slicer for handling incoming messages from guests, it contains registered
method handlers for try-and-slice processing, which is described in
Section 6.10.2.

Policy: admission control and history access restrictions for the underly-
ing PSYC channel. The available policies are discussed in Section 4.2.

Answer door callback: called when a guest requests entry to the home,
and can be answered either by admitting the guest or rejecting entry.

Farewell callback: called to inform about a leaving guest.

Multiple applications can enter the same home simultaneously. When the first
application enters the home, a PSYC channel, and subsequently a multicast
group is created for it. These remain active until the home is left permanently.
Section A.3 of the appendix shows the function calls and messages passed
between components when a home is first entered. When a second application
enters the same home, the social service can use the already started PSYC
channel, and only needs to register the connecting application.

6.7 Advertising a home in GNS

Once an application has entered the home, it can publish a PLACE record
in GNS using the following API call:

void
GNUNET_SOCIAL_home_advertise

(struct GNUNET_SOCIAL_Home *home ,
const char *name ,
size_t peer_count ,
const struct GNUNET_PeerIdentity *peers ,
GNUNET_TIME_Relative expiration_time ,
const char *password);

Home: the PLACE record is published in the GNS zone of the ego hosting
this home.

Name: the label used for the PLACE record.

Expiration time of the published record. A zero value can be used to
remove an existing record.

Password: if provided, the published record is encrypted with this pass-
word — including its label, type, and data — providing a form of access
control for private homes.

6.8. Entering a place 51

6.8 Entering a place

The place entry process consists of three phases: first a guest requests entry
from the host of the place, then the host either decides to admit or reject
entry, finally the host sends out a notification about the new guest to other
guests present in the place. Refer to Section A.4 of the appendix for sequence
diagrams of the entry process showing the full process across the layers.

6.8.1 Guest requests entry

Guests can request entry to a place by either providing its GNS address, or
its public key and a list of peers used to join the underlying multicast group.
The two variants of the place enter API function are the following:
struct GNUNET_SOCIAL_Place *
GNUNET_SOCIAL_place_enter

(const struct GNUNET_CONFIGURATION_Handle *cfg ,
struct GNUNET_IDENTITY_Ego *ego ,
char *address ,
const char *method_name ,
const struct GNUNET_ENV_Environment *env ,
size_t data_size ,
const void *data ,
struct GNUNET_SOCIAL_Slicer *slicer);

struct GNUNET_SOCIAL_Place *
GNUNET_SOCIAL_place_enter2

(const struct GNUNET_CONFIGURATION_Handle *cfg ,
struct GNUNET_IDENTITY_Ego *ego ,
struct GNUNET_CRYPTO_EccPublicKey *crypto_address ,
struct GNUNET_PeerIdentity *origin ,
size_t relay_count ,
struct GNUNET_PeerIdentity *relays ,
const char *method_name ,
struct GNUNET_SOCIAL_Slicer *slicer ,
const struct GNUNET_ENV_Environment *env ,
size_t data_size ,
const void *data);

Common function arguments:

Ego: pseudonym to use in the place. It is used by the multicast service
to sign requests sent to the origin of the underlying multicast group
— the host of the place on the social layer — thereby establishing a
binding between the peer identity used on the multicast layer and the
pseudonym used on the social layer.

Method name for the message sent along with the entry request.

Environment containing variables for the message.

52 6. Social service

Message body for the message.

Slicer with method name handlers the application wants to be notified
of. Described in Section 6.10.2.

In the second variant, place_enter2(), the following arguments are used to
specify the place to join:

Public key of the place to join.

Peer IDs of the origin and relays of the multicast group. Used by the
multicast layer to send the join request to, as covered in Section 3.4.

In the first variant, place_enter(), the following argument is used instead:

GNS address of the place to join, which is looked up using the GNS
service to retrieve the same information as given manually in the in
place_enter2(). The GNS address can be specified in either the
place.nym.gads form, if a human memorable name for the place is
known, or in the NYMPUBKEY.zkey form, which is used to initiate
contact with a nym in case only its public key is known.

After one of these functions are called, the social service sends a join request
to the underlying PSYC channel, passing it the address details of the place,
the public key of the ego, and the join message given by the application. The
join process of the PSYC layer is described in Section 4.4.1.

6.8.2 Host answers the door

After the guest requested entry to the place, the host gets notified about it,
unless the request was already approved by the PSYC layer below, which is
the case when an already admitted guest reenters, or there is no admission
control required by the underlying PSYC channel’s policy.

The social API uses the following callback to notify connected applications
about the guest requesting entry:

typedef void
(* GNUNET_SOCIAL_AnswerDoorCallback)

(void *cls ,
struct GNUNET_SOCIAL_Nym *nym ,
const char *method_name ,
size_t variable_count ,
GNUNET_PSYC_Modifier *variables ,
size_t data_size ,
const void *data);

Nym: the identity of the guest requesting entry.

6.9. Leaving a place or home 53

Method name, variables, data: parts of the join message sent by the
guest.

One of the applications receiving the request — either a user interface or
automated admission bot — would then answer the door either by admitting
the guest, or rejecting entry.

To admit the guest, an application would call:
void
GNUNET_SOCIAL_home_admit

(struct GNUNET_SOCIAL_Home *home ,
struct GNUNET_SOCIAL_Nym *nym);

Upon calling this function, the social service sends out a message to the place
with a _notice_place_enter method call, informing about the public key of
the nym, which is also the identifier of the channel slave on the PSYC layer.
This message is used to update the local membership database of all slaves
of the PSYC channel, in order to be able to enforce admission and history
access restrictions — this is described in Section 4.4 in more detail.

An application can also decide to reject the entry request by calling the
following function:
void
GNUNET_SOCIAL_home_reject_entry

(struct GNUNET_SOCIAL_Home *home ,
struct GNUNET_SOCIAL_Nym *nym ,
const char *method_name ,
const struct GNUNET_ENV_Environment *env ,
size_t data_size ,
const void *data);

This function allows for returning a rejection message, which could e.g. specify
the reason for rejection, or could redirect to another place.

6.9 Leaving a place or home

To leave a place or home, an application uses one of the following API
functions:
void
GNUNET_SOCIAL_home_leave

(struct GNUNET_SOCIAL_Home *home ,
int keep_active);

void
GNUNET_SOCIAL_place_leave

(struct GNUNET_SOCIAL_Place *place ,
int keep_active);

54 6. Social service

In both cases the application gets disconnected from the social service, and
other applications would still be able to use the place or home. The keep
active flag has significance when the last application using the place or home
leaves. If it is GNUNET_YES, the social service keeps the home or place active,
still allowing the place to receive messages and store them in the PSYCstore,
whereas if set to GNUNET_NO, it parts the underlying PSYC channel slave, or
stops the channel master.

Later an application can enter the same home again, and continue announcing
messages. When already admitted guests reconnect, they can enter without
an application having to admit them again, as membership information is
stored permanently in the PSYCstore.

A guest can ask the host to be removed from the membership database of
the place entirely by sending a message with a method call requesting leave.

Section A.5 of the appendix shows sequence diagrams of the full place leave
process across the layers.

6.10 Messages

This section discusses sending and receiving messages to homes and places.
Refer to Section A.2 of the appendix for sequence diagrams of these operations.

6.10.1 Sending messages

The host of the home can announce messages to the guests present, while
guests of places can only talk to the host directly. The functions provided by
the API for these two message transmission operations are quite similar.

The host uses the following function to announce a message to guests present:

struct GNUNET_SOCIAL_Announcement *
GNUNET_SOCIAL_home_announce

(struct GNUNET_SOCIAL_Home *home ,
const char *method_name ,
const struct GNUNET_ENV_Environment *env ,
GNUNET_SOCIAL_HomeTransmitNotify notify ,
void *notify_cls ,
GNUNET_SOCIAL_AnnouncementFlags flags);

While a guest can talk to the host using the following API call:

struct GNUNET_SOCIAL_TalkRequest *
GNUNET_SOCIAL_place_talk

(struct GNUNET_SOCIAL_Place *place ,
const char *method_name ,

6.10. Messages 55

const struct GNUNET_ENV_Environment *env ,
GNUNET_SOCIAL_PlaceTransmitNotify notify ,
void *notify_cls ,
GNUNET_SOCIAL_TalkFlags flags);

In both cases the applications specify a method name, and an environment,
which contains variables for the message. In case of a home, the environment
can also contain operations on objects in the home.

When an application sends a message to a home, it adds a variable indicating
the pseudonym the message is coming from. This is the ego for a host’s own
messages, and a nym for messages relayed from other guests.

After a period of inactivity without any applications sending a message to a
home, the social service sends out a keep-alive message. This is necessary as
a missing fragment can only be detected by a gap in the received fragment
IDs on the multicast layer — the last fragment sent to the multicast group
can not be noticed if missing.

6.10.2 Receiving messages

A slicer is used to register handlers for specific method names for the try-and-
slice processing of incoming messages. It is used when a message is received
for a home or place, or historic messages are replayed.

An application passes in a slicer when entering a home or a place, and can
add and remove method handlers any time until the slicer is destroyed after
leaving the home or place. The following two API functions are provided for
adding and removing method handlers, respectively:
void
GNUNET_SOCIAL_slicer_add

(struct GNUNET_SOCIAL_Slicer *slicer ,
const char *method_name ,
GNUNET_SOCIAL_Method method ,
void *method_cls);

void
GNUNET_SOCIAL_slicer_remove

(struct GNUNET_SOCIAL_Slicer *slicer ,
const char *method_name ,
GNUNET_SOCIAL_Method method);

Upon an incoming method call, the try-and-slice processing of the method
name is performed the following way: first the full method name is looked
up in the list of registered method handlers in the slicer. If there’s no
match, the last keyword of the method name is removed and the shorter
method name looked up. This is repeated until a matching method handler is

56 6. Social service

found. A method handler with an empty method name matches everything.
This allows handling more specific method names — that an earlier version
of an application might not yet know about — with less specific method
handlers registered in the slicer, which provides extensibility and backwards
compatibility for method invocations.

Method handlers with a matching name registered in the slicer are then
invoked, to notify the application about the incoming method call. A method
handler is defined as follows:

typedef int
(* GNUNET_SOCIAL_Method)

(void *cls ,
struct GNUNET_SOCIAL_Nym *nym ,
const char *full_method_name ,
uint64_t message_id ,
GNUNET_ENV_Environment *environment ,
uint64_t data_offset ,
size_t data_size ,
const void *data ,
enum GNUNET_PSYC_MessageFlags flags);

Nym: used only when the host of a home receives a method call from one
of the guests. In this case it is the identity of the guest who sent the
message. The fragments of this message were signed — and verified by
the receiver — on the multicast layer with the key that belongs to this
nym. For multicast messages it is not set, because those are signed by
the host. For messages from a guest that are relayed by the host, the
identity and signature of the sender can be added on the application
layer in variables transmitted with the message.

Full method name: the full method name as specified in the message,
which might be more specific than the method name this handler is
registered for.

Message ID: uniquely identifies the message in the place.

Environment: contains transient variables and operations on persistent
objects of the place. The values of transient variables can be used right
away, while the result of an operation on an object is provided using a
separate API described in Section 6.12.

Data offset: byte offset of the fragment of the data.

Data: fragment of the message body starting from the offset above.

Flags: indicate the first and last fragment of a message.

In case of a fragmented message, this method is called multiple times with
further fragments of the data. As the data fragments do not contain the

6.11. Learn the history of a place 57

method name anymore, the message ID in each fragment is used to identify
the method handler that this message has matched.

6.11 Learn the history of a place

When an application needs to access past messages of a place or home, it can
request them through the following API call:

struct GNUNET_SOCIAL_HistoryLesson *
GNUNET_SOCIAL_place_get_history

(struct GNUNET_SOCIAL_Place *place ,
uint64_t start_message_id ,
uint64_t end_message_id ,
const struct GNUNET_SOCIAL_Slicer *slicer ,
GNUNET_SOCIAL_FinishCallback finish_cb ,
void *finish_cb_cls);

This requests messages between the start and end message ID (inclusively)
using the PSYC API — described in Section 4.8.1 — which retrieves the
requested messages either from the PSYCstore, or requests replay of messages
not in the message store from the multicast service. The retrieved messages
are passed through the slicer of the place, with a historic flag set for messages
retrieved from the PSYCstore.

This function can also be used to request history of a home after converting
the home to a place handle. Section A.1.1 of the appendix shows a sequence
diagram of the process.

6.12 Accessing objects in the place

An application can request certain objects in the place to be watched:

struct GNUNET_SOCIAL_WatchHandle *
GNUNET_SOCIAL_place_watch

(struct GNUNET_SOCIAL_Place *place ,
const char *name_prefix ,
GNUNET_PSYC_StateCallback state_cb ,
void *state_cb_cls);

After calling this function, the values of objects with a matching name prefix
are kept track of inside the library used by the application to access the
social service. Whenever a method call that modifies a watched object is
encountered, the modifier is applied to the in-memory value of the object,
and the provided state callback is called to inform the application about the
new value of the object.

58 6. Social service

To reduce memory usage, only the value of watched objects are kept track
of. To retrieve the value of other objects in the place, the following two
functions can be used, which retrieve the requested objects via the PSYC
API described in Section 4.8.2.

To retrieve the values of all objects with a matching name prefix, an applica-
tion would use the following function:
struct GNUNET_SOCIAL_LookHandle *
GNUNET_SOCIAL_place_look

(struct GNUNET_SOCIAL_Place *place ,
const char *name_prefix ,
GNUNET_PSYC_StateCallback state_cb ,
void *state_cb_cls);

For retrieving the best matching (less specific) object, the following function
call can be used
const void *
GNUNET_SOCIAL_place_look_at

(struct GNUNET_SOCIAL_Place *place ,
const char *object_name ,
size_t *value_size);

7. Summary

The peer-to-peer messaging system presented here serves as the basis for
building applications using the provided stateful multicast message distribu-
tion mechanism. Multicast message distribution allows the system to scale
to a large number of participants, while the push model of disseminating
information in combination with local storage increases the availability and
reduces the network usage of the system compared to pull model. The lo-
cal storage is used to store past messages and the decentralized state of a
multicast group, a persistent set of key-value pairs, which can be used to
implement e.g. user profiles.

Extensibility and backwards compatibility of the system is enabled by using
the PSYC syntax for messages. An extensible RPC mechanism is provided
using the PSYC syntax, where method calls are processed with the try-and-
slice algorithm, which makes it possible to handle method names not yet
known with more general method handlers.

The system offers end-to-end encrypted and authenticated communication
between its participants. Members of a multicast group use an ECDHE
exchange to establish ephemeral session keys and AES encryption to secure
their connection to other group members. The system uses ECC keys to
identify pseudonymous users and social places, and also to authenticate
messages.

For mapping the cryptographical identifiers to human memorable names GNS
is used, a decentralized name system. It allows users to manage their own
zones, and offers a decentralized PKI that uses transitivity to make up for
the lack of globally unique names.

59

60 7. Summary

Bibliography

[1] Gabor X Toth. Secure Share. A framework for secure social interaction.
2012. url: http://tg-x.net/pub/secushare.pdf.

[2] Martin Schanzenbach. “Design and Implementation of a Censorship
Resistant and Fully Decentralized Name System”. Master’s. Garching
bei München: TU Munich, 2012, p. 116.

[3] Zooko’s Triangle. url: https://en.wikipedia.org/wiki/Zooko’s_
triangle.

[4] Marc Stiegler. “An introduction to petname systems”. In: Advances in
Financial Cryptography 2 (2005).

[5] K. Graffi et al. “LifeSocial.KOM: A secure and P2P-based solution for
online social networks”. In: Consumer Communications and Networking
Conference (CCNC), 2011 IEEE. IEEE. 2011, pp. 554–558.

[6] Alireza Mahdian et al. Myzone: A next-generation online social network.
Tech. rep. Department of Computer Science, University of Colorado at
Boulder, 2011.

61

http://tg-x.net/pub/secushare.pdf
https://en.wikipedia.org/wiki/Zooko's_triangle
https://en.wikipedia.org/wiki/Zooko's_triangle

62 Bibliography

Appendix A

Sequence diagrams

This appendix contains sequence diagrams that show API function() calls,
and IPC MESSAGEs sent between the components.

Due to lack of space, the GNUNET_SERVICENAME_ prefix is removed from the
function names, where the SERVICENAME is determined by the library the
arrow points to, or in case of callbacks from where the arrow originates from.

IPC messages are sent between a service and its library — which provides the
API used to access the service — in this case the GNUNET_MESSAGE_TYPE_SERVICENAME_
prefix is removed.

63

64 A. Sequence diagrams

A.1 History and replay

A.1.1 Learning the history of a place

Figure A.1.1 shows the process of an application requesting historic messages
for a place.

1. The application requests historic messages with a specific message ID
range from the social service.

2. The social service relays this request to the PSYC service.

3. PSYC requests the messages from PSYCstore.

4. PSYCstore returns fragments found for the requested message IDs.

5. The fragments are parsed by PSYC and returned to the application,
just like messages coming from the network, with an extra historic flag
set.

6. If a requested message is not found in the PSYCstore, a replay request
is issued for those message IDs.

A.1.2 Replaying multicast messages

Figure A.1.2 shows how a replay request from a multicast group member is
handled.

1. The multicast service receives a replay request from another member.

2. The multicast API asks notifies the PSYC service about the replay
request.

3. The PSYC service performs a membership test using the PSYCstore
service, to determine if the member has access to the requested fragment.

4. If the membership test passes, the PSYC service retrieves the fragment
from the PSYCstore, and passes it to the multicast service.

5. The multicast service responds to the replay request either with the
requested fragment, or an error code.

A.1. History and replay 65

message()
replay_

STORY_TELL
CHANNEL_

METHOD

message_get()

Method()

Method()

RESULT
FRAGMENT_

GET
MESSAGE_

story_tell()
channel_

HISTORY_GET
PLACE_

METHOD

Method()

history()
place_get_

libMulticast PSYC libPSYC libPSYCstore PSYCstore Social libSocial ui:App

History request

Possibly multiple fragments are returned from the PSYCstore

Figure A.1.1: An application requests historic messages of a place

MESSAGE

REQUEST
REPLAY_

REPLAY

REQUEST
REPLAY_

replay()

Callback()
ReplayFragment

fragment_get()

ResultCallback()

membership_test()

Callback()
FragmentResult

FRAGMENT_GET

RESULT
FRAGMENT_

MEMBERSHIP_TEST

TEST_RESULT
MEMBERSHIP_

Multicast libMulticast PSYC libPSYCstore PSYCstore

Figure A.1.2: Answering a multicast message replay request

66 A. Sequence diagrams

A.2 Sending and receiving messages

A.2.1 Sending a message to a home

An application sends a message to a home the following way, as illustrated
on Figure A.2.1.

1. The application announces the message to the home, by specifying its
method name and optionally an environment that can set transient
variables or modify objects of the home.

2. The application is notified when it can transmit the next part of the
body, until the whole body is transferred. The first part of the message
is sent to guests right away, with the rest of the body streamed to the
network as pieces come in.

3. The message reaches the PSYC service through the social service.

4. The PSYC service constructs a PSYC-formatted message from the
method name, modifiers, and first part of the body. It transmits
this message using multicast, together with the message header fields
determined by the PSYC service (message ID, group generation, state
delta).

5. The PSYC service is notified when it can transmit the next part of the
message.

6. Next, the message fragment containing the multicast message header is
sent back to PSYC.

7. PSYC stores each fragment in the PSYCstore.

8. PSYC sends state modifiers to the PSYCstore to apply them to the
current state.

9. The social service is notified about the method call, which then notifies
applications with matching method handlers registered.

A.2.2 Receiving a message to a place

Messages sent to a place are distributed to all guests present, Figure A.2.2
shows the process of receiving a message.

1. Notify the PSYC service about an incoming message.

2. Store fragments and apply state modifiers using the PSYCstore.

3. Inform applications about the method call in the message.

A.2. Sending and receiving messages 67

MESSAGE

MESSAGE
ORIGIN_

Callback()
Message

to_all()
origin_

Notify()
OriginTransmit

MESSAGE
MASTER_

METHOD

store()
fragment_

modify()
state_

Method()

Notify()
MasterTransmit

transmit()
master_

METHOD

MESSAGE
HOME_

Method()

Notify()
HomeTransmit

announce()
home_

Multicast libMulticast PSYC libPSYC libPSYCstore Social libSocial ui:App

Application announces a message to the home

Message fragments are sent back for storage and for other applications

Figure A.2.1: Sending a message to a home

MESSAGE

MESSAGE

Callback()
Message

store()
fragment_

modify()
state_

METHOD

Callback()
Result

Callback()
Result

Method()

STORE_RES
FRAGMENT_

MODIFY_RES
STATE_

STORE
FRAGMENT_

MODIFY
STATE_

METHOD

Method()

Multicast libmulticast PSYC libPSYC libPSYCstore PSYCstore Social libsocial ui:App

Figure A.2.2: Receiving a message to a place

68 A. Sequence diagrams

A.3 Entering a home

Figure A.3.1 shows the process when the first application enters a home: the
underlying PSYC channel and multicast group is started. When entering
an already existing home, only the social service is contacted to register the
application.

1. The first application enters the home.

2. The PSYC channel master is started.

3. PSYC requests the latest values of counters for this home, to continue
numbering messages from in case of reentering an already existing
home.

4. The multicast group’s origin is started.

5. Finally, the application can advertise the home in GNS, if desired.

A.4 Entering a place

The place entry process consists of three phases: first a pseudonym requests
entry from the host of the place, then the host either decides to admit or
deny entry, finally the host sends out a notification about the new guest.

A.4.1 Guest requests entry

Sending a place entry request is illustrated on Figure A.4.1, and performed
according to the following steps:

1. The application sends an entry request to the social service, which
contains the address of the place, and any additional variables required
for entry.

2. If a GNS address was provided, the social service looks it up using the
GNS service.

3. Social requests the PSYC service to join the channel. A join message is
passed along with this request with a _request_place_enter method
call.

4. PSYC requests the counter values for this place from the PSYCstore,
to determine the max. known state message ID for the channel.

5. PSYC requests the multicast service to join the multicast group.

A.4. Entering a place 69

START
ORIGIN_

start()
origin_

START
MASTER_

get_counters()

start()
master_

store()
records_

ADVERTISE
HOME_

ENTER
HOME_

advertise()
home_

enter()
home_

Multicast libMulticast PSYC libPSYC libPSYCstore libNamestore Social libSocial ui:App

Figure A.3.1: Host enters a home and publishes it in GNS.

tunnel_create()

DECISION
JOIN_

tunnel_create()

REQUEST
JOIN_

MEMBER_JOIN

member_join()

counters_get()

SLAVE_JOIN

Result()
Counters

RESULT
COUNTERS_

GET
COUNTERS_

slave_join()

lookup()

Processor()
LookupResult

PLACE_ENTER

place_enter()

Multicast libMulticast PSYC libPSYC libPSYCstore PSYCstore libGNS Social libSocial ui:App

Figure A.4.1: Guest requests entry to a place.

70 A. Sequence diagrams

6. Multicast tries to establish connection to the relays first, falling back to
the origin if that fails, then sends the join request once the connection
is established.

7. A join decision is returned in response, either admitting the peer or
rejecting entry.

8. If the join decision contains other group members to connect to, a mesh
connection is established to them, and the newly connected member
starts receiving messages for the place.

A.4.2 Host receives entry request

Figure A.4.2 shows how an entry request is handled.

1. The origin of the multicast group receives an inbound mesh connection.

2. The first request is always a join request, and it reaches the application
through join callbacks of the services in-between.

3. The application decides whether or not to admit the requesting nym.

4. If the nym is admitted, the social service sends out a message to the
other guests with a _notice_place_enter method call, notifying them
about the new guest. This message is stored in PSYCstore as well for
later replay.

5. Next, the social service updates the membership information of the
PSYC channel, which is saved in PSYCstore by marking the notification
message sent in the previous step with a join flag. This information is
used later for membership tests.

6. A join decision is sent back to the requesting peer, which might contain
additional peer IDs of members to connect to.

7. The state of the joining member is brought up to date by sending the
full state and/or state modifying messages the member does not yet
have.

8. If the entry is rejected instead, a negative join decision is sent back to
the requesting peer.

A.4. Entering a place 71

DECISION
JOIN_

MESSAGE

REQUEST

Tunnel()
Inbound

DECISION
JOIN_

MESSAGE

DECISION
JOIN_

MESSAGE

JOIN_REQUEST

DECISION
JOIN_

REPLAY

Callback()
Message

to_all()
origin_

replay2()

Notify()
OriginTransmit

JoinCallback()

join_decision()

join_decision()

state_get_signed()

DECISION
JOIN_

REQUEST
JOIN_

store()
fragment_

store()
membership_

ADD
CH_MEMBER_

test()
membership_

TRANSMIT
MASTER_

Notify()
MasterTransmit

JoinCallback()

STATE_SIGNED

Callback()
Result

transmit()
master_

join_decision()

add()
ch_member_

ENTRY
REQUEST_

HOME_ADMIT

home_admit()

Callback()
AnswerDoor

Multicast libMulticast PSYC libPSYC libPSYCstore Social libSocial ui:App

Entry request

If membership is confirmed, return join decision

Otherwise pass request to social

Decision by app: admit

Notify PSYC channel about new member

Store membership information

Respond with a join decision

Synchronize state

Figure A.4.2: Host receives an entry request to a home, then answers it.

72 A. Sequence diagrams

A.4.3 Other guests receive entry notice

The message notifying about the new member is distributed to all members
of the multicast group. Figure A.4.3 illustrates what happens when a member
receives this message.

1. After the message arrived, it is stored using the PSYCstore, and the
social service is notified about the _notice_place_enter method call.

2. The social service reacts to this method call by updating membership
information of the PSYC channel, just like the host of the place did
before. This way any member can answer membership test queries
needed for joining and replaying messages.

MESSAGE

MESSAGE

Callback()
Message

METHOD

store()
membership_

store()
fragment_

ADD
CH_MEMBER_

Callback()
Continuation

Method()

STORE
FRAGMENT_

STORE_RESLT
MEMBERSHIP_

STORE
MEMBERSHIP_

add()
ch_member_

METHOD

Method()

Multicast libMulticast PSYC libPSYC libPSYCstore PSYCstore Social libSocial ui:App

Entry notification

Store membership information

Figure A.4.3: Host announces the new guest.

A.4. Entering a place 73

74 A. Sequence diagrams

A.5 Leaving a place

Leaving a place permanently entails the following: the guest intending to
leave sends a leave request to the host of the place. When the host receives
the request, it notifies all guests present about the leave event.

A.5.1 Guest sends leave request

Figure A.5.1 illustrates the process of a guest sending a leave request.

1. The application requests leave and disconnects.

2. The social service generates a _request_place_leave request and
passes it to the PSYC service for sending it to the channel master

3. The request is transmitted through the multicast service to the origin
of the multicast group.

4. Next, the social service parts the PSYC channel, the PSYC service
parts the multicast group, and finally the multicast service destroys
the mesh tunnel. If only this step is performed without sending the
leave request, the guest can reconnect later without the host having
to approve entry again, as channel membership doe not change in this
case.

A.5.2 Host receives leave request

On Figure A.5.2 the process of a host receiving a leave request is shown.

1. The host of the place receives the part request. The social service
recognizes the _request_place_leave method call, and also notifies
the application about the leaving nym, in addition to the regular method
callbacks.

2. The social service sends out a notification about the leaving nym to the
PSYC channel. The message contains a _notice_place_leave method
call, and the leaving nym in a variable.

3. Social tells the PSYC service about the leaving member.

4. PSYC saves the membership change with PSYCstore.

A.5. Leaving a place 75

tunnel_destroy()

REQUEST

REQUEST
MEMBER_

MEMBER_PART

Notify()
OriginTransmit

to_all()
origin_

member_part()

TRANSMIT
SLAVE_

SLAVE_PART

transmit()
slave_

slave_part()

Notify()
SlaveTransmit

PLACE_LEAVE

place_leave()

Multicast libMulticast PSYC libPSYC Social libSocial ui:App

Send leave request to host

Disconnect

Figure A.5.1: Guest sends a leave request and parts.

MESSAGE

REQUEST

REQUEST

MESSAGE

Callback()
Message

to_all()
origin_

Notify()
OriginTransmit

Callback()
Request

store()
fragment_

store()
membership_

TRANSMIT
MASTER_

REMOVE
CH_MEMBER_

METHOD

Method()

Notify()
MasterTransmit

transmit()
master_

remove()
ch_member_

METHOD

Callback()
Farewell

Method()

Multicast libMulticast PSYC libPSYC libPSYCstore Social libSocial ui:App

Part request by peer

Notify PSYC channel about parted member

Update membership store and tell multicast about the parted member

Figure A.5.2: Host receives a leave request and notifies guests present.

76 A. Sequence diagrams

A.5.3 Other guests receive leave notice

Other guests present in the place receive the leave notice, as shown on Figure
A.5.3.

1. A guest receives the multicast message containing the leave notice, and
the social service is notified about the method call.

2. The social service reacts to the _notice_place_leave method call
itself, and also notifies applications with registered method handlers.

3. Guests handle this method call similarly to the host: social tells the
PSYC service about the leaving member, then PSYC updates the
membership information in the PSYCstore.

MESSAGE

MESSAGE

Callback()
Message

REMOVE
CH_MEMBER_

store()
fragment_

store()
membership_

METHOD

Method()

remove()
ch_member_

METHOD

Method()

Multicast libMulticast PSYC libPSYC libPSYCstore Social libSocial ui:App

Figure A.5.3: Other guests receive a notice about the leaving guest.

	Introduction
	Public Key Infrastructure
	Identity management with GNS

	Overview of the system
	Multicast service
	Multicast API overview
	Origin
	Member
	Group

	Starting the origin
	Stopping the origin
	Joining a group
	Requesting join
	Receiving the join request
	Responding with a join decision

	Parting a group
	Multicast messages
	Testing membership
	Replaying multicast messages
	Unicast requests

	PSYC service
	PSYC API overview
	Channel master
	Channel slave
	Channel

	Starting the channel master
	Stopping the channel master
	Joining a channel
	Requesting join
	Responding to a join request
	Notifying the channel about the new slave
	Informing the requester about the decision
	State synchronization

	Parting a channel
	Messages from the master
	Sending messages
	Receiving messages

	Requests from slaves
	History and state requests by applications
	Requests for historic messages
	State variable requests

	PSYCstore service
	PSYCstore API overview
	Message store
	Storing message fragments
	Retrieving messages

	Channel state store
	Applying state modifiers
	State hash updates
	Retrieving state variables

	Membership store
	Storing membership
	Testing membership

	Social service
	Social network model
	Messaging in places
	Applications
	Social API overview
	Home
	Place

	Using the social API
	Entering a home
	Advertising a home in GNS
	Entering a place
	Guest requests entry
	Host answers the door

	Leaving a place or home
	Messages
	Sending messages
	Receiving messages

	Learn the history of a place
	Accessing objects in the place

	Summary
	Bibliography
	Sequence diagrams
	History and replay
	Learning the history of a place
	Replaying multicast messages

	Sending and receiving messages
	Sending a message to a home
	Receiving a message to a place

	Entering a home
	Entering a place
	Guest requests entry
	Host receives entry request
	Other guests receive entry notice

	Leaving a place
	Guest sends leave request
	Host receives leave request
	Other guests receive leave notice

