

Metasploitable Honeypots

Research questions Introduction Approach Results Conclusions

Research Project 2: Metasploit-able Honeypots

Wouter Katz wouter.katz@os3.nl

University of Amsterdam

July 4th 2013

э

Research questions

Metasploitable Honeypots

Wouter Katz

Research questions Introduction Approach Results Conclusions

How feasible is an automated method to detect specific exploits on a honeypot by monitoring network traffic of exploits?

- What setup is needed in order to have exploits successfully complete their exploit against a honeypot?
- What is the best method to process network traffic to/from the honeypot to extract and match a unique signature from exploit traffic?
- How successful are these methods?

U
*

Research questions summarized

イロン 不同と 不同と 不同と

able	9011- 9
Honey	pots
Wouter	Katz

Research questions Introduction

Results

Conclusions

References

・ロン ・回 と ・ヨン ・ヨン

Э

"A honeypot is [...] a resource which is intended to be attacked and compromised to gain more information about the attacker and the used tools." (Baumann & Plattner, 2002)

Research questions

Introduction Approach Results

Conclusions

References

An exploit is used to abuse a security vulnerability, leading to an attacker gaining unintended privileges. (Anley et al., 2011)

・ロン ・回 と ・ヨン ・ヨン

イロン イヨン イヨン イヨン

・ロン ・回 と ・ヨン ・ヨン

・ロト ・回 ト ・ヨト ・ヨト

æ

Wouter Katz Metasploit-able Honeypots

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Why is this needed?

- Metasploitable Honeypots
- Research questions
- Approach Results
- Conclusion
- References

- A lot of the honeypot software contain outdated vulnerabilities
- Analysis of what happened requires manual analysis
- Having signatures for the most-used penetration testing tool allows for valuable insight in attackers' activities

What we want is to automatically detect modern exploits and show which exploits were detected.

Exploits used within Metasploit

Metasploitable Honeypots

Research questions Introductio

Approach

Results

Conclusions

References

Within Metasploit, exploits targeting FTP server software were chosen as a test set for the research:

- Large number of exploits (37)
- FTP is plain-text protocol, makes development easier
- Simple commands/responses

Testing environment

・ロン ・回 と ・ ヨン ・ ヨン

Process

・ロン ・回 と ・ ヨン ・ ヨン

æ

Python honeypot script

Metasploitable Honeypots

- Wouter Katz
- Research questions
- Introduction
- Approach
- Results
- Conclusions
- References

- Small database with 30 vulnerable FTP banners for all 37 exploits
- Implemented responses to most used FTP commands
- Saves all traffic
- Detect "suspicious" traffic

イロト イヨト イヨト イヨト

3

Detect suspicious traffic

・ロト ・回ト ・ヨト ・ヨト

- Metasploitable Honeypots
- Wouter Katz
- Research questions
- Introduction
- Approach
- Results Conclusio
- References

- Collect multiple suspicious flows for the same exploit, different payload
- Find the longest string shared by all suspicious flows using the Longest Common Substring (LCS) algorithm
- The resulting string will be used as signature
- This method depends on static parts in the exploit, regardless of the payload

Metasploitable Honeypots

Research questions Introducti

Approach

Results

References

Flow 1: **ffeeddcc**acbefafabcdefbafcbaedfeaf

Flow 2: aabcbeaf ffeeddccafbdeaabcdefbcffea

Flow 3: feabcdefbfeacceafeabceffaecbeafabcaedd

The string "ffeeddcc" is the longest common substring in the first 2 flows, but it does not occur in the 3rd flow.

(1) マン・ション・

Metasploitable Honeypots

Research questions

Approach

Results

Conclusions

References

Flow 1: ffeeddccacbefafabcdefbafcbaedfeaf

Flow 2: aabcbeafffeeddccafbdeaabcdeffcffea

Flow 3: feabcdefafeacceafeabceffaecbeafabcaedd

The string "abcdef" is the longest common substring occurring in all flows. This will be the signature.

・ 同 ト ・ ヨ ト ・ ヨ ト

Metasploitable Honeypots

Research questions Introductio

Approach

Results Conclusio LCS found "good" signatures for 20 exploits from their suspicious traffic flows. The rest either had no signature, or a too generic signature (e.g. "USER").

Solution: for the remaining exploits, run LCS on all other flows. Resulted in 12 "good" signatures for the remaining 17 exploits.

Matching signatures against traffic

- Metasploitable Honeypots
- Research questions Introductio
- Approach
- Results
- Conclusions
- References

With the signatures, we should be able to detect exploits:

- Check each incoming flow in the honeypot for known signatures
- If a signature is found, print out the matching exploit

Matching signatures against traffic

Metasploitable Honeypots Wouter Katz

Research questions

ntroductior

Approach

Results

Conclusions

References

Problem: some exploits share the same signature, causing false positives.

Easy solution: only check for signatures of exploits belonging to the current FTP banner.

Results

Metasploitable Honeypots Wouter Kata

Research questions Introduction Approach Results

> Conclusions References

In total found signatures for 32 out of 37 exploits (86%). Test how good these signatures detect exploits by firing all exploits against the FTP honeypot script, with every possible payload.

Results

Average detection rate of 89.95%

20

100%

э

Э

Metasploitable Honeypots

Wouter Katz

Research questions Introduction Approach Results Conclusions

How feasible is an automated method to detect specific exploits on a honeypot by monitoring network traffic of exploits?

- What setup is needed in order to have exploits successfully complete their exploit against a honeypot?
- What is the best method to process network traffic to/from the honeypot to extract and match a unique signature from exploit traffic?
- How successful are these methods?

Metasploitable Honeypots Wouter Katz

questions Introduction Approach Results Conclusions What setup is needed in order to have exploits successfully complete their exploit against a honeypot?

Many of the exploits check FTP banner and correct FTP responses. In order to allow exploits to complete successfully, we need to emulate both the banner and the correct responses.

→ ∃ >

Image: A image: A

Metasploitable Honeypots

Research questions Introduction Approach Results Conclusions What is the best method to process network traffic to/from the honeypot to extract and match a unique signature from exploit traffic?

In this research, a granular method of storing and processing network traffic was used. Extract signatures using the LCS algorithm, match traffic against signatures on-the-fly proved very effective.

Metasploitable Honeypots Wouter Kata

questions Introduction Approach Results Conclusions

How successful are these methods?

Not all exploits yielded a signature, but for the exploits that did, most signatures have a high detection rate.

3 × 4 3 ×

- Metasploitable Honeypots
- Research questions Introduction Approach Results Conclusions

How feasible is an automated method to detect specific exploits on a honeypot by monitoring network traffic of exploits?

The methods presented work very well. Easily portable to other protocols/exploits. Can work standalone or as part of existing honeypot software.

Questions

Metasploit- able Honeypots
Wouter Katz
Conclusions

▲口> ▲圖> ▲注> ▲注>

æ

References

Metasploitable Honeypots

Research questions Introduction Approach Results Conclusions References Anley, Chris, Heasman, John, Lindner, Felix, & Richarte, Gerardo. 2011.
The shellcoder's handbook: discovering and exploiting security holes.
Wiley.

Baumann, Reto, & Plattner, Christian. 2002. White Paper: Honeypots.

イロト イポト イヨト イヨト

э