
UNIVERSITY OF AMSTERDAM

GRADUATE SCHOOL OF INFORMATICS
System and Network Engineering

Research Project 2: Metasploit-able
Honeypots
Wouter Katz

July 5, 2013

Supervisors
Jop van der Lelie (NCSC-NL), Bart Roos (NCSC-NL)

University of Amsterdam
Graduate School of Informatics
Science Park 904
1098XH Amsterdam

Abstract

News of computer systems being hacked has become so common that it no longer
raises eyebrows. As more and more systems around us get Internet connectivity
(TV, mobile phone, even cars) and hacking tools are freely available and easy to use,
the need to gain more insight into the activities of attackers of computer systems is
high.

One such method to gain insight into the activities and methods of hackers are so-
called honeypots. These systems are built to attract hackers, and log all their activities.
However, most honeypot software contains outdated vulnerabilities and do not provide
insight into which exploit is used by the attacker, but require manual analysis of the
saved data by an administrator.

This research focuses on automating the process of extracting exploit signatures from
network traffic, so that these signatures can be implemented in honeypots. The meth-
ods described in this research allow for signatures of new exploits to be easily ex-
tracted and automatically detecting these signatures occurring in traffic towards the
honeypot. This gives honeypots a better view on the exact exploits used by attackers
while requiring significantly less maintenance to get this information.

1

Contents

1 Introduction 4
1.1 Research Question . 4
1.2 Previous Work . 4

2 Terminology 6
2.1 Exploit . 6
2.2 Payload Encoding . 6
2.3 Honeypots . 7

3 Process 8
3.1 Capturing Exploit Traffic . 8
3.2 Detecting Exploit Traffic . 9
3.3 Extracting Signatures from Exploit Traffic 9
3.4 Matching Exploit Traffic against Signatures 9

4 Approach and Methods 10
4.1 Setting up Testing Environment . 10
4.2 Capturing Exploit Traffic . 12
4.3 Detecting Exploit Traffic . 12
4.4 Extracting Signatures from Exploit Traffic 13
4.5 Matching Exploit Traffic against Signatures 13

5 Findings 14
5.1 Extracting Patterns from Exploit Traffic 14
5.2 Matching Exploit Traffic against Signatures 15

6 Conclusions 16

7 Future Work 18

8 Acknowledgements 19

A Metasploit FTP Exploits Used 20

B Detection Rate of Exploits 22

C FTP Honeypot Script 23

D FTP Honeypot Database 25

E Longest Common Substring Script 28

2

F Signature Testing Script 29

Bibliography 30

3

1 Introduction

Many of the free honeypot software packages available are not being actively main-
tained anymore. This means that the vulnerabilities emulated within these honeypot
software packages are often outdated, and give a skewed vision on threat detection
and assessment. This research is aimed at finding an automated method to recognize
and detect exploits based on their network traffic, allowing for emulation of newer
vulnerabilities within honeypots.

1.1 Research Question
The main research question for this report was the following:

How feasible is an automated method to detect specific exploits on a honeypot by
monitoring network traffic of exploits?

This question can be split up in the following sub-questions:

• What setup is needed in order to have exploits successfully complete their ex-
ploit against a honeypot?

• What is the best method to process network traffic to/from the honeypot to ex-
tract and match a unique signature from exploit traffic?

• How successful is this method?

1.2 Previous Work
The exploitation mechanism and the most used methods of exploitation (stack over-
flow, heap overflow and format string attacks) have been described in detail [1–4]. The
use and development of shellcode are well documented [5,6], and show how shellcode
started out as a simple, static part of the exploiting process. This form of shellcode
is easy to detect by monitoring network traffic for the static patterns occurring within
the shellcode, and research on this has been done in detail [7, 8].

Attackers then evolved their methods to avoid detection, both by upgrading their ex-
ploiting techniques [9, 10], and by advances in payloads used. Static payload sig-
natures were replaced by polymorphic payloads which are encrypted or obfuscated,
making detection by signatures in network traffic a lot more difficult [11, 12]. So-
lutions for this have been found by emulating execution of the shellcode in order to
classify it as malicious or benign code [13, 14].

4

Honeypot systems have been used to attract attackers and log malicious activity against
emulated vulnerable services [15,16]. Most honeypots merely log details of activities
on the honeypot system, although some honeypot systems are advanced in a way that
they emulate execution of shellcode [17, 18], or present attackers with a fake shell on
an emulated system in order to monitor their activities [19, 20].

A method to automatically create honeypot scripts to emulate traffic has been re-
searched by [21], however this method only focuses on creating a method to reverse
engineer a protocol and automatically create a honeypot script to emulate this pro-
tocol, not to emulate specific vulnerabilities. Automatically creating signatures for
Network Intrusion Detection Systems from sources such as exploit traffic has been re-
searched [22], but this only focuses on creating signatures and not on matching these
signatures against live traffic.

5

2 Terminology

This chapter covers some of the terminology that is used throughout this report.

2.1 Exploit
According to [23], exploiting a vulnerability can be defined as taking advantage of a
flaw in a system’s security that can lead to an attacker gaining access privileges on an
unintended level.

An exploit usually consists of two parts. One part is the payload, the actual machine-
code to be executed on the target system. This payload can spawn a new process,
create a remote shell on the target system, and many other possibilities. The second
part of the exploit is a sequence of data and/or commands which triggers the vulnerable
application to execute the payload.

2.2 Payload Encoding
Payloads are a static piece of code which can be plugged into any exploit, given that
technical preconditions are met, such as the available amount of space for a payload
is not exceeded, or the payload does not contain any characters that are not correctly
interpreted by the application that is being exploited. Payloads being static makes
them a good target for signature based detection in network traffic. Many Network
Intrusion Detection Systems (NIDS) use this approach to detect commmon patterns
occurring within payloads.

To avoid this form of detection, encoding of payloads is used. Encoding of a payload
can range from simple operations such as translating all letters to uppercase to more
sophisticated operations like XOR encryption of the payload. The latter method re-
sults in a payload containing a small decoding routine stub prepended to the encrypted
shellcode, as can be seen in Figure 2.2. Upon execution the decoding stub decrypts
the payload so it can be executed in its unencrypted form. XOR-based encryption us-
ing randomly generated encryption keys is an excellent method of hiding the original
shellcode, but the decoding stub itself can still easily be recognized by signature-
based detection. Polymorphic shellcode is an even more advanced method to avoid
detection, using multiple levels of obfuscation. Besides having the original shellcode
obfuscated, other methods to avoid detection are also used, such as randomly replac-
ing individual instruction(s) that make up the decoding routine with other instructions
which provide the same result as the replaced instruction(s). This makes the decoding

6

stub a lot more difficult to detect using signature-based detection.

Figure 2.1: Encoding of a
payload

2.3 Honeypots
An option to gain more insight into the often hidden activities by attackers and their
methods, is to attract attackers and watch from the sideline how they operate. Hon-
eypots are a prime example of doing so. A good definition on what honeypots are is
given by [24]: "A honeypot is used in the area of computer and Internet security. It is a
resource which is intended to be attacked and compromised to gain more information
about the attacker and the used tools."

To attract attackers, honeypots emulate vulnerabilities which attackers believe can be
abused, while in reality the system is not vulnerable and monitors all attacker activity.
Emulated vulnerabilities can range from open mail relay systems which attackers be-
lieve they can use to send out spam, to emulating software versions which are known
to be vulnerable to remote code execution.

Since the sole purpose for honeypots is to attract attackers, one can presume that any
activity towards the honeypot is malicious.

Honeypots can be categorized as either low or high interaction. Low interaction hon-
eypots merely emulate vulnerabilities, and thus prevent the system running the honey-
pot from actually being compromised. High interaction honeypots often run the actual
vulnerable software, and require a reinstall or reimaging of the OS after a compromise
to restore the honeypot system to its original, vulnerable state.

7

3 Process

The main goal of this project is to extract signatures from the network traffic generated
by executing exploits against a honeypot. If a unique signature can be generated per
exploit, the honeypot can not only emulate the vulnerability, but also recognize which
exploit was used. The method to do this needs to be as general as possible, so that it
can work on any protocol.

This chapter will describe in general the process from firing exploits against the hon-
eypot to detecting exploits based on extracted signatures, as well as theoretical back-
ground on which each step of the process is based.

A flow diagram of the process is shown in Figure 3.1.

Figure 3.1: Flow diagram of the
process used in this research

3.1 Capturing Exploit Traffic
When deployed in a real-life scenario, all attack attempts against the honeypot system
will originate from the Internet, meaning that the traffic between the honeypot system
and the attacker’s system will contain all information needed to extract and match
for exploit signatures. For this reason, all traffic has to be saved for analysis. With
the captured traffic, all stages of exploitation can be looked into to find similarities in
exploit traffic, save payloads, and perhaps even find new exploits.

The de facto method of capturing network traffic is to use the tcpdump1 utility. This
utility allows for capturing of any traffic that comes through a network interface, and
has advanced capabilities when it comes to filtering and storing of network traffic in

1 tcpdump: http://www.tcpdump.org/

8

Packet Capture (PCAP) format. However, tcpdump is not ideal for matching exploit
traffic due to the fact that tcpdump has to be stopped to parse the output file that
tcpdump produced, which would mean that any traffic occurring while tcpdump is not
running, would not be captured. Another reason for not using tcpdump is that looking
for a specific network flow can get tedious using tcpdump or PCAP libraries, while a
custom solution might be more fitting for this.

3.2 Detecting Exploit Traffic
An exploit usually follows a fixed process of first setting the stage for the exploitation
process (e.g. by logging in first), and then proceeds to do the actual exploiting. Since
this model takes place over multiple flows, each network flow to/from the honeypot
should be available for analysis separately. To keep an overview on all separate flows,
all flows will be grouped by the connection within they occur.

These flows should be analyzed to detect anomalies within the traffic that can distin-
guish exploit traffic from normal traffic, so that flows containing exploit traffic can be
marked as suspicious for further analysis.

3.3 Extracting Signatures from Exploit Traffic
To extract signatures from the suspicious flows several approaches were considered.

The first option is to look for static patterns in the suspicious flows. This means look-
ing at multiple traffic captures for the same exploit, and finding strings in the traffic
that all traffic captures have in common. To accomplish this, the Longest Common
Substring (LCS) algorithm can be used, which locates the longest string which is
present in all input strings. The following pseudo-code explains the inner workings of
an implementation of LCS:

1 / / i n p u t _ d a t a = a r r a y o f i n p u t s t r i n g s
2 f u n c t i o n l c s (i n p u t _ d a t a) :
3 l o n g e s t _ s u b s t r i n g = " "
4 i f s i z e o f i n p u t _ d a t a > 0 and l e n g t h o f each i n p u t _ d a t a > 0 :
5 f o r (i = 0 ; i < l e n g t h o f i n p u t _ d a t a [0] ; i + +) :
6 f o r (j = 0 ; j < l e n g t h o f i n p u t _ d a t a [0] − i + 1 ; j + +) :
7 i f j > l e n g t h o f l o n g e s t _ s u b s t r i n g and ←↩
8 s u b s t r i n g (i n p u t _ d a t a [0] , i , i + j) i n a l l i n p u t _ d a t a :
9 l o n g e s t _ s u b s t r i n g = s u b s t r i n g (i n p u t _ d a t a [0] , i , i + j)

10 r e t u r n l o n g e s t _ s u b s t r i n g

The second approach is to use learning algorithms for classification of the network
traffic. By using for example Support Vector Machines (SVMs) or Bayesian statis-
tics, supervised machine learning could be trained and used to classify exploit traf-
fic.

Machine learning algorithms work by extracting so-called features from input data.
These features are measurable numeric properties of the input data. For each input
data, features are combined into a feature vector, which is used by the machine learn-
ing algorithm to classify the data by means of mathematical operations on the feature
vector.

Which algorithm should be chosen for this research depends on the input data (i.e. the
traffic flows).

The extracted signatures will be stored in a database, allowing for easy adding/remov-
ing/altering of signatures.

3.4 Matching Exploit Traffic against Signatures
When signatures are generated, the honeypot has to be able to match incoming traf-
fic against these signatures to detect a possible exploit based on its signature. This
should be done on-the-fly as the traffic comes in, to make detection results available
instantly, and not having to process all saved network traffic afterwards to detect ex-
ploits.

9

4 Approach and Methods

This chapter describes the various steps that are taken to set up the required software
and means to both capture and analyze the traffic. Any issues that are encountered dur-
ing this process are described, as well as possible solutions to overcome or circumvent
these problems.

4.1 Setting up Testing Environment
In order to conduct the analysis in a suitable environment, a setup is needed in which
only traffic takes place that is part of the experiment, and unwanted traffic from the In-
ternet does not reach the test setup. To accomplish this, two separate virtual machines
are set up, both running Debian GNU/Linux release 7.0 (codename Wheezy). Both
virtual machines are connected to the Internet by means of bridged networking. The
bridged network connections are firewalled, so no traffic from the Internet can reach
the virtual machines. This setup is visualized in Figure 4.1.

Figure 4.1: Setup of the testing
environment

The first virtual machine will be set up as attacker machine, and a number of exploits
will be placed to attack the honeypot virtual machine. The second virtual machine
will be set up as the honeypot machine.

Using this testing environment setup, on the attacker virtual machine Metasploit Com-

10

munity Edition version 4.6.2-11 is installed. Metasploit is a very mature penetration
testing software, containing over a thousand different exploits and several hundred
payloads. Metasploit has a modular set up regarding to its manner of exploiting, al-
lowing a user to choose an exploit, choose a payload to execute on the target system,
and choose an encoder to encode the payload with. This, combined with its ease of
use, makes Metasploit a popular tool among hackers as well. For this reason, Metas-
ploit exploits were chosen to create honeypot software around.

Given the wide variety of exploit categories within Metasploit, focus is put on only the
exploits within Metasploit that target File Transfer Protocol (FTP) servers. The FTP
server exploits are chosen because they make up for one of the largest subsets of ex-
ploits that use 7-bit ASCII for communication within Metasploit, using a protocol with
very little overhead. Starting off with a protocol that does all communication in ASCII
makes development, debugging and analyzing of traffic, methods and algorithms sub-
stantially more effective than when dealing with more sophisticated protocols due to
the ability to manually inspect traffic without having to decode it.

From all the exploits within Metasploit that target FTP servers, exploits which abuse
vulnerabilities such as directory traversal or the ability to write anywhere on the tar-
get system are not included in the research. These exploits allow users to upload/-
download files from the target system, and do not include payloads in their traffic.
Creating a vulnerable honeypot script to emulate vulnerabilities abused by these ex-
ploits would require substantial effort, such as emulating listings of popular directories
which would be used by attackers to write their files to (e.g. C:\Windows\System32),
since empty directories would raise suspicion from attackers. For this reason, only ex-
ploits that send a payload are included in the research. In total, 37 FTP server exploits
within Metasploit fit this criterion, and are used as the exploit test set for this report.
These exploits can be found in Appendix A.

On the honeypot virtual machine, Honeyd was initially chosen as honeypot soft-
ware. Honeyd provides a set of scripts emulating specific services, FTP being one
of them. The FTP emulating script within Honeyd is very limited, and merely re-
turns the correct response to a limited number of FTP commands as specified in
RFC959 [25].

When testing, it became clear that some Metasploit FTP server exploits did not send
their payload to the Honeyd FTP script. There are two reasons for this:

• Some Metasploit exploits check the FTP software name and version number
when connecting to the Honeyd FTP script. If this does not match with what
the exploit expects to see, the exploit aborts.

• Some exploits use FTP commands that were not emulated by the Honeyd FTP
script. For some of the Metasploit FTP exploits, the response from the Honeyd
FTP script is checked, and if a certain FTP command that is used by the ex-
ploit is not implemented in the Honeyd FTP script, the exploit aborts due to an
unexpected response.

To overcome these shortcomings, a custom FTP server emulator was written in Python
for this research project. This script contains a number of features to aid the re-
search:

• Additional FTP commands implemented;

• Using an external Python file to be used as database for FTP server banners;

• Being able to switch FTP server banners by providing a command-line argu-
ment, or serving random FTP server banners for each connection;

• Saving of exploit traffic;

• Flagging suspicious traffic.

To obtain a list of FTP server banners, each Metasploit FTP server exploit is examined
to see which specific FTP software name and version number the exploit targets. With

1 Metasploit - Penetration Testing Software: http://www.metasploit.com/

11

this list, the Shodan search engine2 is used to find computers running the specific soft-
ware and version. Shodan lists the banner for the software queried, and these banners
are saved in the Python database file. This method is much quicker than examining
each Metasploit exploit to see how the version checking is done and manually con-
structing banners that match these checks. Furthermore, manually constructed banners
that merely pass the Metasploit exploit’s version check can still be recognized by an
attacker who inspects the banner, possibly leading to the attacker not trying to exploit
the honeypot.

By default, the script will bind itself to a TCP port when started, and every incoming
connection will get a random FTP server banner served. This is chosen so that all
FTP server software that contains Metasploit-able vulnerabilities is emulated, which
should attract more activity than a single vulnerable FTP server software.

An other option is to have one single FTP banner, containing the names and version
numbers of all the vulnerable FTP software. This will allow Metasploit, in theory, to
always get a positive match when version checking the banner returned by the FTP
honeypot script. However, when an attacker would manually inspect of the banner, it
will most likely arouse suspicion. Another problem might be that the resulting banner
gets too long, possibly causing an overflow in a connecting client, resulting in a crash
of the client. The downsides to this approach are significant enough to choose for
random FTP banners being served to the client upon connecting.

4.2 Capturing Exploit Traffic
As stated in Section 3.1, using tcpdump to capture all traffic is not a feasible approach.
In this research, a different approach is chosen to capture the traffic. The created hon-
eypot script which emulates the FTP service saves all traffic from/to the honeypot
itself. Each separate FTP banner has a separate subdirectory in which all traffic com-
ing to/from this FTP banner is saved. Within these subdirectories, all traffic occurring
within a single session is saved in a separate subdirectory labeled with the attacker’s
IP and date/time of connecting. This gives more flexibility in categorizing traffic flows
according to time, attacker IP, and allows for each flow in traffic (every request or re-
sponse to/from the honeypot counts as one single flow) to be analyzed without having
to extract a specific flow from a PCAP file.

4.3 Detecting Exploit Traffic
Exploit traffic against FTP servers usually consists of multiple request/response flows
before the actual exploit is executed. Some of these flows are too generic to include in
a signature. An example is the FTP login procedure, which consists of the client send-
ing the command USER <username>, followed by the command PASS <password>.
Since these commands are merely part of getting the FTP connection in a state where
the exploit traffic can take place, and these commands occur in almost all FTP traffic,
these commands must be excluded from the signature.

As stated in Section 4.1, according to RFC959 all FTP commands and their parameters
should only contain 7-bit ASCII characters. When monitoring network traffic during
tests, it became clear that every exploit exceeds this character set. Based on this,
for each flow that the honeypot FTP script saves, a check is done to see if the flow
contains characters outside the 7-bit ASCII character set, and if so, this flow is saved
as a suspicious flow, indicating abnormal traffic which in this situation most likely
means exploit traffic. Testing this method is done by firing every exploit in the test
set two times against the FTP honeypot script, each time with a randomly chosen
payload. This testing shows that 100% of the flows containing payloads were flagged
as suspicious, as can be seen in Table 4.1.

Two exploits did not complete successfully, one due to the fact that Metasploit could

2 Shodan - Computer Search Engine: http://www.shodanhq.com/

12

Table 4.1: Number of detected suspicious flows
Number of exploits executed Number of suspicious flows detected
36 72

not find a payload suitable for the exploit, and the second exploit contains a faulty
version checking function, expecting a target different than the target the exploit is
aimed at. These exploits are not included in the test mentioned above.

4.4 Extracting Signatures from Exploit Traffic
Given the different methods for pattern extraction described in Section 3.3, the data
has to be analyzed to determine which method suits the input data best.

The data in the network stream consists of long strings, for which numerical features
have to be found. Given the fact that running a single exploit with different payloads
can result in flows with different lengths, the length of the data is not a good feature
to use. Another commonly used feature for string data is the so called edit distance,
or the Levenshtein distance. This metric indicates the difference between two strings:
the more two strings differ, the higher the edit distance. Since almost all payloads in
the flows are encoded using Metasploit’s polymorphic encoders resulting in payloads
that differ as much as possible from one another, edit distance is very unusable as a
feature.

Given the short time span during which this research was done, static pattern analysis
was chosen to extract signatures from exploit traffic. This method proved to be the
easiest to set up, but relies on static parts occurring in exploit traffic, which is not the
case for all exploits in the test set for this report.

The capturing of flows and flagging of suspicious flows as described in Section 4.2
provides a good method to collect input for the LCS algorithm to extract signatures
from the suspicious flows per exploit. In order to attempt to obtain a signature, one
exploit at a time is executed multiple times against the FTP honeypot script, with a
randomly chosen payload each time. Since payloads get encoded every time an exploit
runs, this provides for the maximum amount of entropy in the payload section of the
exploit traffic, resulting in signatures that should match to the static parts of the exploit
traffic only. A custom written Python script is used that locates all suspicious flows
inside a specified directory, and runs the LCS algorithm on the suspicious flows. The
resulting signature is then printed out and can be imported into the FTP honeypot
script signature database. This script can be found in Appendix E.

4.5 Matching Exploit Traffic against Signatures
With the signatures generated, the FTP honeypot script has to be adjusted to store
and detect the signatures. To do so, the Python database file containing the different
banners was adjusted to store the extracted signatures per banner. The FTP honeypot
script was adjusted so that every incoming flow is inspected to see if any of the stored
signatures occur in the flow. Given that the signatures often contain characters outside
the ASCII character set, all signatures are saved in hexadecimal format, and the hex-
adecimal representation of the incoming flow is then matched against every signature
to attempt to find a match. When a match is found, the FTP honeypot script will print
out which exploit was detected.

13

5 Findings

5.1 Extracting Patterns from Exploit Traffic
Each individual exploit in the test set was put through the pattern extraction method
described in Section 4.4. The accuracy of the extracted signature using the LCS algo-
rithm gets higher as more flows from different connections are available as input. This
is because the encoded payload data mutates every time the exploit is ran against the
FTP honeypot script, causing the LCS algorithm to only return the static parts of the
exploit traffic. Because the payload is random every time an exploit is executed, the
LCS algorithm already converges to a decent signature as soon as with only two input
flows. However, to have more certainty that the resulting signature is indeed good,
every exploit was fired 10 times with 10 different payloads against the FTP honeypot
script before running the LCS algorithm.

As the length of the extracted pattern gets lower when the number of connections, and
thus the number of input flows rises, the chance of false negatives goes down. This is
because some exploits contain multiple targets (e.g. the same software installed on dif-
ferent Microsoft Windows versions), which use different hardcoded return addresses
in the exploit. With a longer pattern length, one return address might still be present
in the extracted pattern, preventing other return addresses from being matched by the
extracted pattern. This problem is simply solved by running the exploit numerous
times for each target against the FTP honeypot script.

Within the exploit set used in this research project, some exploits can target different
versions of the FTP software emulated by the FTP honeypot script. Some of these
exploits fail to execute if the selected target version does not match the banner used in
the FTP honeypot script.

Not all exploits contain static patterns within the suspicious flow data, or the static
pattern is so small that the LCS algorithm returns FTP commands such as "USER"
or "PASS" as the longest static pattern within all the suspicious flows. Since these
strings are merely part of the FTP protocol, they are not suitable to act as signatures.
To attempt to find a solution for this problem, for those exploits which did not contain
a suitable signature in the suspicious flow data the LCS algorithm was run on all
flows instead of only the suspicious flows. This was done in such a manner that the
incoming flows with flow number 1 for all connections were run through the LCS
algorithm, followed by running the LCS algorithm on all incoming flows with flow
number 2, etc. For each set of flows the outcome of the LCS algorithm was printed,
and out of the 17 exploits that did not contain a suitable signature in the suspicious

14

flows, for 12 exploits a signature was extracted from their remaining flows.

5.2 Matching Exploit Traffic against Signatures
To test the extracted signatures, each exploit for which a signature was found was
run against the FTP honeypot script using every possible combination of targets and
payloads using the Python script in Appendix F. The output from the FTP honeypot
script was then analyzed to count the number of connections, and the number of de-
tected exploit attempts. Since some exploits send a payload multiple times per exploit
attempt (e.g. in order to brute-force a return address), the results for all exploits were
adjusted in such a way that a maximum of one exploit detection per connection was
counted.

Out of the 37 exploits in the test set, 3 signatures were extracted that matched more
than one exploit. To prevent multiple detection messages, the FTP honeypot script was
adjusted so that only exploits for the currently emulated FTP software are matched
against the traffic.

Another problem that was faced was that some signatures contained other signatures
as a substring. To prevent the FTP honeypot script from returning multiple signatures,
different in length, the choice was made to return only the longest matching signature
when the traffic matched against multiple signatures. The matching signature with the
highest length is also the most specific signature, and it can therefore be assumed that
this is the most likely match against the traffic.

To match the accuracy of the extracted signatures, each exploit was fired against the
FTP honeypot script, with every possible combination of targets and payloads. The
output of the FTP honeypot script was saved per exploit, and the number of connec-
tions and the number of matched signatures in the traffic were used to calculate a
detection rate. For exploits that have specific FTP software versions set as targets,
some targets would cause the exploit to abort right after connecting to the FTP honey-
pot script, because of a non-matching banner. To account for this, all exploit attempts
that aborted after the server presented its banner to the exploit were not included in
the results. The full results on detection rates per exploit can be found in Appendix B.
A graph showing the detection rates versus the number of exploits that had a signature
can be seen in Figure 5.1.

Figure 5.1: Detection rates
versus number of exploits

15

6 Conclusions

The research question posed was:

How feasible is an automated method to detect specific exploits on a honeypot by
monitoring network traffic of exploits?

The sub-questions that followed from this question were:

• What setup is needed in order to have exploits successfully complete their ex-
ploit against a honeypot?

• What is the best method to process network traffic to/from the honeypot to ex-
tract and match a unique signature from exploit traffic?

• How successful are these methods?

In this research it became clear that the first hurdle of firing exploits against a honeypot
is that exploits can be very specific when it comes to the responses they expect from the
victim system, both in FTP version banner and the honeypot’s response to certain FTP
commands. Testing each exploit to be implemented in the honeypot against either a
script emulating an FTP server or the actual vulnerable FTP software gives insight into
which commands need to be implemented. The FTP version banner can be obtained
by looking at existing FTP servers that use the targeted FTP software version.

The stored network data should be as granular as possible, in order to allow analysis
on very specific parts of the stored network data. Saving network data per flow, cate-
gorized per connection the flows took place in, proved to work well for this research.
Detecting actual exploit traffic within flows can be achieved by looking for anoma-
lies within the characters used within the flow. For the FTP protocol used within this
paper, the occurrence of non-ASCII characters proved to be a good method to detect
exploit traffic. With the stored flows, the Longest Common Substring can be used
to obtain signatures from the network flows. This algorithm will only return useful
results when static patterns occur within the exploit, which proved the case for 86%
of the tested exploits in this research. The signatures can be implemented in the hon-
eypot to match incoming traffic on-the-fly against these signatures, dropping the need
for honeypot administrators to perform manual analysis on the stored network traffic
in order to detect specific exploits.

The methods described in this paper proved to be very successful. Out of the 37
exploits in the test set used within this paper, 32 exploits yielded a signature after
putting the exploits through the signature extraction process. Testing these signatures
proved an average detection rate of 89.95%.

To summarize, the method described in this paper seems very feasible, combining high
detection rates and a large success rate of obtaining signatures for the tested exploits.

16

The described method can easily be applied to other protocols.

17

7 Future Work

Due to time constraints, some points could not be researched in this research project.

Porting the FTP honeypot script used within this paper to more protocols would be a
valuable addition.

Using other algorithms and/or methods to process the stored network traffic might
increase performance compared to the Longest Common Substring algorithm used
within this research.

18

8 Acknowledgements

Thanks go out to the people of the Dutch National Cyber Security Centre (NCSC-
NL) for allowing me to do my research there, their technical advice and making me
feel welcome. Special thanks go out to Jop van der Lelie and Bart Roos of NCSC-
NL for their very valuable feedback and much appreciated guidance during this re-
search.

19

A Metasploit FTP Exploits
Used

Exploit identifier Exploit description
3cdaemon_ftp_user 3Com 3CDaemon 2.0 FTP Username Overflow
ability_server_stor Ability Server 2.34 STOR Command Stack Buffer

Overflow
cesarftp_mkd Cesar FTP 0.99g MKD Command Buffer Overflow
comsnd_ftpd_fmtstr ComSndFTP v1.3.7 Beta USER Format String

(Write4) Vulnerability
dreamftp_format BolinTech Dream FTP Server 1.02 Format String
easyfilesharing_pass Easy File Sharing FTP Server 2.0 PASS Overflow
easyftp_cwd_fixret EasyFTP Server <= 1.7.0.11 CWD Command Stack

Buffer Overflow
easyftp_list_fixret EasyFTP Server <= 1.7.0.11 LIST Command Stack

Buffer Overflow
easyftp_mkd_fixret EasyFTP Server <= 1.7.0.11 MKD Command Stack

Buffer Overflow
filecopa_list_overflow FileCopa FTP Server pre 18 Jul Version
freefloatftp_user Free Float FTP Server USER Command Buffer Over-

flow
freeftpd_user freeFTPd 1.0 Username Overflow
globalscapeftp_input GlobalSCAPE Secure FTP Server Input Overflow
goldenftp_pass_bof GoldenFTP PASS Stack Buffer Overflow
httpdx_tolog_format HTTPDX tolog() Function Format String Vulnerabil-

ity
ms09_053_ftpd_nlst Microsoft IIS FTP Server NLST Response Overflow
netterm_netftpd_user NetTerm NetFTPD USER Buffer Overflow
oracle9i_xdb_ftp_pass Oracle 9i XDB FTP PASS Overflow (win32)
oracle9i_xdb_ftp_unlock Oracle 9i XDB FTP UNLOCK Overflow (win32)
proftpd_133c_backdoor ProFTPD-1.3.3c Backdoor Command Execution
proftp_sreplace ProFTPD 1.2 - 1.3.0 sreplace Buffer Overflow (Linux)
proftp_telnet_iac ProFTPD 1.3.2rc3 - 1.3.3b Telnet IAC Buffer Over-

flow (Linux)
ricoh_dl_bof Ricoh DC DL-10 SR10 FTP USER Command Buffer

Overflow
sami_ftpd_list Sami FTP Server LIST Command Buffer Overflow
sami_ftpd_user KarjaSoft Sami FTP Server v2.02 USER Overflow
servu_chmod Serv-U FTP Server < 4.2 Buffer Overflow
servu_mdtm Serv-U FTPD MDTM Overflow
slimftpd_list_concat SlimFTPd LIST Concatenation Overflow
turboftp_port Turbo FTP Server 1.30.823 PORT Overflow
vermillion_ftpd_port Vermillion FTP Daemon PORT Command Memory

Corruption
vsftpd_234_backdoor VSFTPD v2.3.4 Backdoor Command Execution

20

Exploit identifier Exploit description
warftpd_165_pass War-FTPD 1.65 Password Overflow
warftpd_165_user War-FTPD 1.65 Username Overflow
wftpd_size Texas Imperial Software WFTPD 3.23 SIZE Overflow
wsftp_server_503_mkd WS-FTP Server 5.03 MKD Overflow
wsftp_server_505_xmd5 Ipswitch WS_FTP Server 5.05 XMD5 Overflow
wuftpd_site_exec_format WU-FTPD SITE EXEC/INDEX Format String Vul-

nerability
xlink_server Xlink FTP Server Buffer Overflow

21

BDetection Rate of Exploits

Exploit identifier Times ex-
ecuted

Times de-
tected

Detection
rate

Signature
length

3cdaemon_ftp_user 535 518 96.8% 8 bytes
ability_server_stor 214 214 100% 4 bytes
cesarftp_mkd 28 28 100% 675 bytes
comsnd_ftpd_fmtstr 214 214 100% 221 bytes
dreamftp_format 0 0 0% 47 bytes
easyfilesharing_pass 216 216 100% 4 bytes
easyftp_cwd_fixret 980 740 75.5% 36 bytes
easyftp_list_fixret 106 89 83.9% 20 bytes
easyftp_mkd_fixret 1059 820 77.4% 18 bytes
filecopa_list_overflow 168 168 100% 7 bytes
freefloatftp_user 98 98 100% 6 bytes
freeftpd_user N/A N/A N/A N/A∗

globalscapeftp_input 98 96 97.9% 142 bytes
goldenftp_pass_bof 294 294 100% 4 bytes
httpdx_tolog_format 749 533 71.2% 136 bytes
ms09_053_ftpd_nlst 300 300 100% 32 bytes
netterm_netftpd_user 535 535 100% 6 bytes
oracle9i_xdb_ftp_pass 108 108 100% 7 bytes
oracle9i_xdb_ftp_unlock N/A N/A N/A N/A∗

proftpd_133c_backdoor N/A N/A N/A N/A∗

proftp_sreplace 63 42 66.6% 100 bytes
proftp_telnet_iac 88 84 95.4% 3789 bytes
ricoh_dl_bof 107 107 100% 4 bytes
sami_ftpd_list 107 107 100% 6 bytes
sami_ftpd_user N/A N/A N/A N/A∗

servu_chmod 216 216 100% 39 bytes
servu_mdtm 321 321 100% 81 bytes
slimftpd_list_concat 99 99 100% 4 bytes
turboftp_port 301 87 28.9% 402 bytes
vermillion_ftpd_port 317 209 65.9% 22 bytes
vsftpd_234_backdoor N/A N/A N/A N/A∗

warftpd_165_pass 84 84 100% 4 bytes
warftpd_165_user 336 336 100% 4 bytes
wftpd_size 300 300 100% 4 bytes
wsftp_server_503_mkd 99 99 100% 8 bytes
wsftp_server_505_xmd5 81 27 33.3% 4 bytes
wuftpd_site_exec_format 84 72 85.7% 888 bytes
xlink_server 24 24 100% 7 bytes

* No signature available

22

C FTP Honeypot Script

1 # ! / u s r / b i n / py t ho n
2
3 import a r g p a r s e
4 import copy
5 import math
6 import os
7 import random
8 import r e
9 import s o c k e t

10 import S o c k e t S e r v e r
11 import s t r i n g
12 import s y s
13 import t ime
14
15 import f t p _ d b
16
17 # c l a s s t o han d l e incoming c o n n e c t i o n s
18 c l a s s FTPHandler (S o c k e t S e r v e r . B a s e R e q u e s t H a n d l e r) :
19
20 def h a n d l e (s e l f) :
21
22 c l i e n t _ i p = s e l f . c l i e n t _ a d d r e s s [0]
23
24 # i f u s e r s u p p l i e d an argument f o r t h e FTP banner t o be used ,
25 # use t h i s banner . I f not , p i c k a random banner
26 i f a r g s [’ ba n ne r ’] and f t p _ d b . b a n n e r s [a r g s [’ b a nn e r ’]] :
27 f t p _ i n f o = f t p _ d b . b a n n e r s [a r g s [’ b an ne r ’]]
28 f t p _ b a n n e r = f t p _ i n f o [’ b an ne r ’]
29 f tp_name = a r g s [’ b an ne r ’]
30 e l s e :
31 f tp_name , f t p _ i n f o = random . c h o i c e (f t p _ d b . b a n n e r s . i t e m s ())
32 f t p _ b a n n e r = f t p _ i n f o [’ b an ne r ’]
33
34 # i f t h e d i r f o r t h i s banner does n o t e x i s t , c r e a t e i t .
35 i f not os . p a t h . i s d i r (a r g s [’ f l o w s _ d i r ’] + f tp_name) :
36 os . mkdir (a r g s [’ f l o w s _ d i r ’] + f tp_name)
37
38 # s e t up b a s i c s t u f f , c r e a t e f l o w d i r
39 p a t h = " / "
40 f l o w _ n r = 0
41 f l o w _ d i r = a r g s [’ f l o w s _ d i r ’] + f tp_name + " / " + c l i e n t _ i p + " _ " + s t r (t ime . t ime ())
42 os . mkdir (f l o w _ d i r)
43
44 # send back i n i t i a l banner t o t h e c l i e n t
45 # p r i n t " C o n n e c t i o n from " + c l i e n t _ i p + " , s e r v i n g banner f o r " + f tp_name
46 l o g f i l e . w r i t e (" C o n n e c t i o n from " + c l i e n t _ i p + " , s e r v i n g b an n e r f o r " + f tp_name + " \ n ")
47 l o g f i l e . f l u s h ()
48 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , f t p _ b a n n e r + " \ r \ n ")
49
50 f l o w _ n r += 1
51
52 whi le 1 :
53 f o u n d _ e x p l o i t = " "
54 f o u n d _ s i g n a t u r e = " "
55
56 # t r y t o grab a l l t h e da ta from t h e c l i e n t i n one go ,
57 # so t h e da ta does n o t g e t s p l i t up over m u l t i p l e f l o w s .
58 # i f t h e r e i s no data , c l i e n t a b o r t e d t h e c o n n e c t i o n .
59 s e l f . d a t a = s e l f . r e q u e s t . r e c v (9 2 1 8) . s t r i p ()
60 i f not s e l f . d a t a :
61 break
62
63 # due t o non−p r i n t a b l e c h a r a c t e r s i n e x p l o i t t r a f f i c , a l l s i g n a t u r e s
64 # are saved u s i n g h e x a d e c i m a l e n c o d i n g . we a l s o c o n v e r t c l i e n t
65 # r e q u e s t s t o h e x a d e c i m a l t o match f o r s i g n a t u r e s .
66 # o n l y r e t u r n t h e l o n g e s t ma tch ing s i g n a t u r e .
67 f o r name , s i g n a t u r e in f t p _ i n f o [’ s i g n a t u r e s ’] . i t e m s () :
68 i f s e l f . d a t a . encode (" hex ") . f i n d (s i g n a t u r e) != −1:
69 i f not f o u n d _ e x p l o i t or l e n (s i g n a t u r e) > ←↩
70 l e n (f t p _ i n f o [’ s i g n a t u r e s ’] [f o u n d _ e x p l o i t]) :
71 f o u n d _ e x p l o i t = name
72 f o u n d _ s i g n a t u r e = s i g n a t u r e
73
74
75 i f f o u n d _ e x p l o i t and f o u n d _ s i g n a t u r e :
76 # p r i n t " Found e x p l o i t " + f o u n d _ e x p l o i t + " : " + f o u n d _ s i g n a t u r e
77 l o g f i l e . w r i t e (" Found e x p l o i t " + f o u n d _ e x p l o i t + " : " + f o u n d _ s i g n a t u r e + " \ n ")
78 l o g f i l e . f l u s h ()
79
80 # A l l da ta s h o u l d o n l y c o n t a i n 7−b i t ASCII da ta . I f t h i s i s n o t
81 # t h e case , most l i k e l y e x p l o i t t r a f f i c => mark as s u s p i c i o u s .
82 i f a l l (o rd (c) < 127 and c in s t r i n g . p r i n t a b l e f o r c in s e l f . d a t a) :
83 f low = open (f l o w _ d i r + " / r eq_ " + s t r (f l o w _ n r) + " . f low " , "w")
84 e l s e :
85 f low = open (f l o w _ d i r + " / r eq_ " + s t r (f l o w _ n r) + " . f l o w _ s u s p i c i o u s " , "w")
86 f low . w r i t e (s e l f . d a t a)
87 f low . c l o s e ()
88
89 # e x t r a c t t h e FTP command i s s u e d by t h e c l i e n t , and t r y t o g i v e
90 # i t t h e r e s p o n s e i t e x p e c t s .
91 cmd = s e l f . d a t a . s p l i t (" ") [0] . uppe r ()
92
93 i f r e . match ("USER" , cmd) :
94 u s e r = s e l f . d a t a . s p l i t (" ")[−1]
95 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 331 Password r e q u i r e d f o r " + ←↩
96 u s e r + " \ r \ n ")
97 e l i f r e . match ("PASS" , cmd) :
98 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 230 User " + ←↩
99 u s e r + " lo gg ed i n \ r \ n ")

100 e l i f r e . match ("HELP" , cmd) :

23

101 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 214 Help . \ r \ n ")
102 e l i f r e . match ("QUIT" , cmd) :
103 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 221 Goodbye \ r \ n ")
104 s e l f . r e q u e s t . c l o s e ()
105 re turn
106 e l i f r e . match ("SYST" , cmd) :
107 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 215 UNIX Type : L8 \ r \ n ")
108 e l i f r e . match ("X?MKD" , cmd) :
109 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 257 " + s e l f . d a t a . s p l i t (" ") [1] + ←↩
110 " d i r e c t o r y c r e a t e d . \ r \ n ")
111 e l i f r e . match ("PWD" , cmd) :
112 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 257 \ " " + p a t h + ←↩
113 " \ " i s t h e c u r r e n t d i r e c t o r y . \ r \ n ")
114 e l i f r e . match ("CWD" , cmd) :
115 # a l l o w t h e c l i e n t t o change d i r s , b u t no e s c a p i n g t h e
116 # non−e x i s t e n t r o o t d i r .
117 cwd_di r = s e l f . d a t a . s p l i t (" ") [1]
118 i f cwd_di r == " . . " :
119 i f p a t h == " / " :
120 p a t h = " / "
121 e l s e :
122 (pa th , t a i l) = os . p a t h . s p l i t (p a t h)
123 e l s e :
124 p a t h = os . p a t h . j o i n (pa th , cwd_di r)
125 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 250 CWD command s u c c e s s f u l \ r \ n ")
126 e l i f r e . match (" SITE EXEC" , s e l f . d a t a . uppe r ()) :
127 # e m u l a t e a SITE EXEC command , s i m p l y p r i n t back
128 # e v e r y t h i n g a f t e r SITE EXEC w i t h a 200 s t a t u s code .
129 exec_cmd = " " . j o i n (s e l f . d a t a . s p l i t (" ") [2 :])
130 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 200 " + exec_cmd + " \ r \ n ")
131 e l i f r e . match ("DELE" , cmd) :
132 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 250 F i l e d e l e t e d . \ r \ n ")
133 e l i f r e . match ("RMD" , cmd) :
134 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 250 D i r e c t o r y d e l e t e d . \ r \ n ")
135 e l i f r e . match ("TYPE" , cmd) :
136 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 200 Type s e t t o " + ←↩
137 s e l f . d a t a . s p l i t (" ") [1] . uppe r () + " \ r \ n ")
138 e l s e :
139 s e l f . s e n d _ r e s p o n s e (f l o w _ d i r , f low_nr , " 502 Command n o t implemented \ r \ n ")
140
141 f l o w _ n r += 1
142
143 # send t h e r e s p o n s e back t o t h e c l i e n t ,
144 # save t h e r e s p o n s e i n t h e f l o w d i r .
145 def s e n d _ r e s p o n s e (s e l f , f l o w _ d i r , f low_nr , msg) :
146 f low = open (f l o w _ d i r + " / r e s p _ " + s t r (f l o w _ n r) + " . f low " , "w")
147 f low . w r i t e (msg)
148 f low . c l o s e ()
149
150 s e l f . r e q u e s t . s e n d a l l (msg)
151
152
153 def p a r s e A r g s (a rgv) :
154 p a r s e r = a r g p a r s e . Argumen tPa r se r (d e s c r i p t i o n = ’FTP Honeypot s c r i p t . ’)
155 p a r s e r . add_argument (’−−l o g f i l e ’ , d e f a u l t = ’ honeypo t . l o g ’ , h e l p =" Log f i l e t o w r i t e messages t o . ")
156 p a r s e r . add_argument (’−−p o r t ’ , d e f a u l t = ’ 21 ’ , h e l p ="TCP p o r t number t o b ind t o . ")
157 p a r s e r . add_argument (’−−f lows−d i r ’ , d e f a u l t = ’ f l o w s / ’ , h e l p =" D i r e c t o r y i n which t o save f l o w s . ")
158 p a r s e r . add_argument (’−−b an ne r ’ , d e f a u l t = ’ ’ , h e l p ="FTP b an n e r t o s e r v e t o c l i e n t s . I f l e f t empty , " +
159 " random ba n ne r w i l l be s e r v e d . Use−−l i s t−b a n n e r s t o s e e a l l b a n n e r s . ")
160 p a r s e r . add_argument (’−−l i s t−b a n n e r s ’ , a c t i o n = ’ s t o r e _ t r u e ’ , ←↩
161 h e l p =" L i s t a l l b a n n e r s t o use wi th t h e −−b an ne r p a r a m e t e r . ")
162 a r g s = p a r s e r . p a r s e _ a r g s (a rgv)
163 re turn [v a r s (a r g s) , p a r s e r]
164
165
166 def p r i n t B a n n e r s () :
167 p r i n t " Banner D e s c r i p t i o n "
168 p r i n t " == "
169
170 f o r banner , b a n n e r _ i n f o in s o r t e d (f t p _ d b . b a n n e r s . i t e m s ()) :
171 p r i n t " {: <25}{} " . f o r m a t (banner , b a n n e r _ i n f o [’ name ’])
172
173 p r i n t " "
174 p r i n t " Use v a l u e l i s t e d i n t h e ’ Banner ’ column as p a r a m e t e r f o r t h e −−b an ne r a rgument "
175
176
177 i f __name__ == " __main__ " :
178 g l o b a l p a r s e r , a rg s , l o g f i l e
179 a rgs , p a r s e r = p a r s e A r g s (s y s . a rgv [1 :])
180
181 i f a r g s [’ l i s t _ b a n n e r s ’] :
182 p r i n t B a n n e r s ()
183 s y s . e x i t (0)
184
185 i f a r g s [’ ba n ne r ’] and not a r g s [’ ba n ne r ’] in f t p _ d b . b a n n e r s . keys () :
186 p r i n t " E r r o r : t h i s ba nn e r does n o t e x i s t . "
187 p r i n t " S p e c i f y a c o r r e c t ba n ne r o r use t h e −−l i s t−b a n n e r s a rgument t o l i s t a l l v a l i d b a n n e r s . "
188 s y s . e x i t (−1)
189
190 l o g f i l e = open (a r g s [’ l o g f i l e ’] , "w")
191
192 # C re a t e t h e s e r v e r , b i n d i n g t o a l l i n t e r f a c e s on p o r t s p e c i f i e d by args
193 t r y :
194 s e r v e r = S o c k e t S e r v e r . TCPServer ((" " , i n t (a r g s [’ p o r t ’])) , FTPHandler)
195 e xc ep t s o c k e t . e r r o r a s msg :
196 p r i n t " E r r o r : c o u l d n o t s t a r t s e r v e r (" + msg . s t r e r r o r + ") "
197 s y s . e x i t (−1)
198
199 # A c t i v a t e t h e s e r v e r , t h i s w i l l keep r u n n i n g u n t i l C t r l−C ’ d
200 s e r v e r . s e r v e _ f o r e v e r ()

24

D FTP Honeypot Database

1 b a n n e r s = {
2 " 3cdaemon " : {
3 " name " : " 3Com 3CDaemon FTP S e r v e r 2 . 0 " ,
4 " ba nn e r " : " 220 3Com 3CDaemon FTP S e r v e r V e r s i o n 2 . 0 " ,
5 " s i g n a t u r e s " : {
6 " e x p l o i t / windows / f t p / 3 c d a e m o n _ f t p _ u s e r (Windows 2000 E n g l i s h) " : " c42a0275 " ,
7 " e x p l o i t / windows / f t p / 3 c d a e m o n _ f t p _ u s e r (Windows XP E n g l i s h SP0 / SP1) " :←↩
8 " d9eed97424f45b817313 " ,
9 " e x p l o i t / windows / f t p / 3 c d a e m o n _ f t p _ u s e r (Windows NT 4 . 0 SP4 / SP5 / SP6) " : " 99176877 " ,

10 " e x p l o i t / windows / f t p / 3 c d a e m o n _ f t p _ u s e r (Windows 2000 Pro SP4 French) " : " d0295f77 " ,
11 " e x p l o i t / windows / f t p / 3 c d a e m o n _ f t p _ u s e r (Windows XP E n g l i s h SP3) " : " fb41bd7cfb41bd7c "
12 }
13 } ,
14 " a b i l i t y " : {
15 " name " : " A b i l i t y FTP S e r v e r 2 . 3 4 " ,
16 " ba nn e r " : ←↩
17 " 220 Welcome t o Code−C r a f t e r s − A b i l i t y S e r v e r 2 . 3 4 . (A b i l i t y S e r v e r 2 . 3 4 by Code−C r a f t e r s) . " ,
18 " s i g n a t u r e s " : {
19 " e x p l o i t / windows / f t p / a b i l i t y _ s e r v e r _ s t o r (Windows XP SP2 ENG) " : " c f 2 e e 3 7 3 " ,
20 " e x p l o i t / windows / f t p / a b i l i t y _ s e r v e r _ s t o r (Windows XP SP3 ENG) " : " 5393427 e "
21 }
22 } ,
23 " c e s a r f t p " : {
24 " name " : " Cesa r FTP S e r v e r 0 . 9 9 g " ,
25 " ba nn e r " : " 220 CesarFTP 0 . 9 9 g S e r v e r Welcome ! " ,
26 " s i g n a t u r e s " : {
27 " e x p l o i t / windows / f t p / c e s a r f t p _ m k d " : " 4 d4b4420 " + " 0 a " ∗ 671
28 }
29 } ,
30 " comsnd " : {
31 " name " : "ComSnd FTP S e r v e r 1 . 3 . 7 " ,
32 " ba nn e r " : " 220 " + " 32323020 bbb6d3adb9e2c1d9465450b7fece f1c6 f7210d0a "←↩
33 . decode (" hex ") , # u g l y non ASCII c h a r s i n banner
34 " s i g n a t u r e s " : {
35 " e x p l o i t / windows / f t p / c o m s n d _ f t p d _ f m t s t r (Windows XP SP3− E n g l i s h) " :←↩
36 " 5040 ac71253432333034323278 " + " 2570 " ∗ 208 ,
37 " e x p l o i t / windows / f t p / c o m s n d _ f t p d _ f m t s t r (Windows S e r v e r 2003 − E n g l i s h) " :←↩
38 " 4440 c171253432333034323278 " + " 2570 " ∗ 208 ,
39 }
40 } ,
41 " d r e a m f t p " : {
42 " name " : " Bol inTech Dream FTP S e r v e r 1 . 0 2 " ,
43 " ba nn e r " : " 220 DreamHost FTP S e r v e r " ,
44 " s i g n a t u r e s " : {
45 " e x p l o i t / windows / f t p / d r e a m f t p _ f o r m a t " : " eb2925387825387825387825387825387825388 " + ←↩
46 " 7825378253878253339353736383064256 e256e4040404040404040 "
47 }
48 } ,
49 " e a s y f i l e s h a r i n g " : {
50 " name " : " Easy F i l e S h a r i n g FTP S e r v e r 2 . 0 " ,
51 " ba nn e r " : " 220 Welcome t o Easy F i l e S h a r i n g FTP S e r v e r ! " ,
52 " s i g n a t u r e s " : {
53 " e x p l o i t / windows / f t p / e a s y f i l e s h a r i n g _ p a s s (Windows 2000 Pro E n g l i s h ALL) " : " c42a0275 " ,
54 " e x p l o i t / windows / f t p / e a s y f i l e s h a r i n g _ p a s s (Windows XP Pro SP0 / SP1 E n g l i s h) " : " ad32aa71 "
55 }
56 } ,
57 " e a s y f t p " : {
58 " name " : " BigFoo lCa t FTP S e r v e r 1 . 0 " ,
59 " ba nn e r " : "220− Ftp S i t e Powerd by BigFoo lCa t F tp S e r v e r 1 . 0 (meishu1981@gmail . com) \ r \ n " +
60 "220− Welcome t o my f t p s e r v e r \ r \ n " +
61 " 220 " ,
62 " s i g n a t u r e s " : {
63 " e x p l o i t / windows / f t p / e a s y f t p _ c w d _ f i x r e t " : " 89 e 7 8 1 e f 1 4 f e f f f f 8 9 0 f 8 1 c 7 1 4 f f f f f f f f e 7 " ,
64 " e x p l o i t / windows / f t p / e a s y f t p _ l i s t _ f i x r e t " : " f f f f 8 1 c 4 0 4 f e f f f f f f e 7 " ,
65 " e x p l o i t / windows / f t p / e a s y f t p _ m k d _ f i x r e t " : " 81 c 7 1 4 f f f f f f f f e 7 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 "
66 }
67 } ,
68 " f i l e c o p a " : {
69 " name " : " FileCOPA FTP S e r v e r 1 . 0 1 " ,
70 " ba nn e r " : "220− I n t e r V a t i o n s FileCOPA FTP S e r v e r V e r s i o n 1 . 0 1 21 s t November 2005 " ,
71 " s i g n a t u r e s " : {
72 " e x p l o i t / windows / f t p / f i l e c o p a _ l i s t _ o v e r f l o w " : " 6681 c1a00151c3 "
73 }
74 } ,
75 " f r e e f l o a t f t p " : {
76 " name " : " F r e e F l o a t FTP S e r v e r 1 . 0 0 " ,
77 " ba nn e r " : " 220 F r e e F l o a t F tp S e r v e r (V e r s i o n 1 . 0 0) . " ,
78 " s i g n a t u r e s " : {
79 " e x p l o i t / windows / f t p / f r e e f l o a t f t p _ u s e r " : " 81 c 4 5 4 f 2 f f f f "
80 }
81 } ,
82 " g l o b a l s c a p e f t p " : {
83 " name " : " GlobalSCAPE Se c u r e FTP S e r v e r 3 . 2 " ,
84 " ba nn e r " : " 220 GlobalSCAPE S ec u r e FTP S e r v e r (v . 3 . 2) " ,
85 " s i g n a t u r e s " : {
86 " e x p l o i t / windows / f t p / g l o b a l s c a p e f t p _ i n p u t " : " e b 0 3 5 9 e b 0 5 e 8 f 8 f f f f f f 5 6 5 4 5 8 3 6 3 " + ←↩
87 " 3305754583633385658483439484848505658354141515150565835595959595035595959 " + ←↩
88 " 44354 b4b5941505454583633385444444e56444458345a344136333836313831364949494 " + ←↩
89 " 949494949494949515 a565458333056583441503041334848304130304142414142544141 " + ←↩
90 " 5132414232424230424258503841434 a4a49 "
91 }
92 } ,
93 " g o l d e n f t p " : {
94 " name " : " Golden FTP S e r v e r 4 . 7 0 " ,
95 " ba nn e r " : " 220 Golden FTP S e r v e r r e a d y v4 . 7 0 " ,
96 " s i g n a t u r e s " : {
97 " e x p l o i t / windows / f t p / g o l d e n f t p _ p a s s _ b o f " : " d97424f4 "
98 }
99 } ,

100 " h t t p d x " : {

25

101 " name " : " Ht tpdx FTP S e r v e r 1 . 4 " ,
102 " ba n ne r " : " 220 h t t p d x / 1 . 4 (Win32) " ,
103 " s i g n a t u r e s " : {
104 " e x p l o i t / windows / f t p / h t t p d x _ t o l o g _ f o r m a t " : " e870f864 " + " 253878 " ∗ 37 + ←↩
105 " 253032353532327825686 e2530343838387825686e " ,
106 }
107 } ,
108 " ms09 " : {
109 " name " : " M i c r o s o f t I I S FTP s e r v e r 5 . 0 " ,
110 " ba n ne r " : " 220 l o c a l h o s t M i c r o s o f t FTP S e r v i c e (V e r s i o n 5 . 0) . " ,
111 " s i g n a t u r e s " : {
112 " e x p l o i t / windows / f t p / m s 0 9 _ 0 5 3 _ f t p d _ n l s t (Windows 2000 SP4 E n g l i s h / I t a l i a n (I I S 5 . 0)) " : ←↩
113 " f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f e b 2 4 3 d 7 7 f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f " ,
114 " e x p l o i t / windows / f t p / m s 0 9 _ 0 5 3 _ f t p d _ n l s t (Windows 2000 SP3 E n g l i s h (I I S 5 . 0)) " : ←↩
115 " f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f d 8 2 e e 4 7 7 f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f " ,
116 " e x p l o i t / windows / f t p / m s 0 9 _ 0 5 3 _ f t p d _ n l s t (Windows 2000 SP0−SP3 J a p a n e s e (I I S 5 . 0)) " : ←↩
117 " f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f 9 3 a 5 4 f 7 7 f d 7 f f d 7 f f d 7 f f d 7 f f d 7 f "
118 }
119 } ,
120 " n e t t e r m " : {
121 " name " : " Net te rm FTP S e r v e r " ,
122 " ba n ne r " : " 220 NetTerm FTP s e r v e r r e a d y " ,
123 " s i g n a t u r e s " : {
124 " e x p l o i t / windows / f t p / n e t t e r m _ n e t f t p d _ u s e r " : " 5553455220 c0 "
125 }
126 } ,
127 " o r a c l e 9 i " : {
128 " name " : " O r a c l e 9 i XML D a t a b a s e FTP S e r v e r 9 . 2 . 0 . 1 " ,
129 " ba n ne r " : " 220 l o c a l h o s t FTP S e r v e r (O r a c l e XML DB/ O r a c l e 9 i E n t e r p r i s e E d i t i o n " + ←↩
130 " R e l e a s e 9 .2 .0 .1 .0− P r o d u c t i o n) r e a d y " ,
131 " s i g n a t u r e s " : {
132 " e x p l o i t / windows / f t p / o r a c l e 9 i _ x d b _ f t p _ p a s s " : " 81 c 4 f f e f f f f f 4 4 "
133 }
134 } ,
135 " p r o f t p d _ 1 3 0 " : {
136 " name " : " ProFTPD FTP S e r v e r 1 . 3 . 0 " ,
137 " ba n ne r " : " 220 ProFTPD 1 . 3 . 0 S e r v e r (ProFTPD D e f a u l t I n s t a l l a t i o n) [1 2 7 . 0 . 0 . 1] " ,
138 " s i g n a t u r e s " : {
139 " e x p l o i t / l i n u x / f t p / p r o f t p _ s r e p l a c e " : " 42 " ∗ 64 + " c8a f0408f4590b08 " + " cc " ∗ 28
140 }
141 } ,
142 " p r o f t p " : {
143 " name " : " ProFTPD FTP S e r v e r 1 . 3 . 3 a " ,
144 " ba n ne r " : " 220 ProFTPD 1 . 3 . 3 a S e r v e r (ProFTPD D e f a u l t I n s t a l l a t i o n) [1 2 7 . 0 . 0 . 1] " ,
145 " s i g n a t u r e s " : {
146 " e x p l o i t / l i n u x / f t p / p r o f t p _ t e l n e t _ i a c " : " f f " ∗ 3789
147 }
148 } ,
149 " r i c o h " : {
150 " name " : "DSC FTP S e r v e r 1 . 0 " ,
151 " ba n ne r " : " 220 DSC f t p d 1 . 0 FTP S e r v e r [1 2 7 . 0 . 0 . 1] r e a d y " ,
152 " s i g n a t u r e s " : {
153 " e x p l o i t / windows / f t p / r i c o h _ d l _ b o f " : " 5954 c377 "
154 }
155 } ,
156 " sami " : {
157 " name " : " Sami FTP S e r v e r 2 . 0 . 2 " ,
158 " ba n ne r " : "220−Sami FTP S e r v e r 2 . 0 . 2 \ r \ n " +
159 " 220 F e a t u r e s p a . " ,
160 " s i g n a t u r e s " : {
161 " e x p l o i t / windows / f t p / s a m i _ f t p d _ l i s t " : " 81 c 4 5 4 f 2 f f f f "
162 }
163 } ,
164 " s e r v u " : {
165 " name " : " Serv−U FTP S e r v e r 4 . 1 . 0 . 3 " ,
166 " ba n ne r " : "220−Serv−U FTP S e r v e r 4 . 1 . 0 . 3 " ,
167 " s i g n a t u r e s " : {
168 " e x p l o i t / windows / f t p / servu_chmod " : ←↩
169 " 6681 ca f f 0 f 425 26 a0 25 8c d2 e3c 05 5a 74 e f b8 573 03 05 48 9d 7a f75 ea a f 75 e7 513 1c 93 1c 00 20 40 f 41 " ,
170 " e x p l o i t / windows / f t p / servu_mdtm (Serv−U Uber−Lee t U n i v e r s a l ServUDaemon . exe) " :←↩
171 " 4 d44544d2032303033313131313131313131312b41414141414141414141414141414141414141 " + ←↩
172 " 414183 c4 fc5 fbe333332314647393775fb464f3977fc75 fa f f e74242ebe4424277184000202f35333231 " ,
173 " e x p l o i t / windows / f t p / servu_mdtm (Serv−U 4 . 0 . 0 . 4 / 4 . 1 . 0 . 0 / 4 . 1 . 0 . 3 ServUDaemon . exe) " :←↩
174 " 4 d44544d2032303033313131313131313131312b41414141414141414141414141414141414141 " + ←↩
175 " 414183 c4 fc5 fbe333332314647393775fb464f3977fc75 fa f f e74242ebe442424d164000202f35333231 " ,
176 " e x p l o i t / windows / f t p / servu_mdtm (Serv−U 5 . 0 . 0 . 0 ServUDaemon . exe) " :←↩
177 " 4 d44544d2032303033313131313131313131312b41414141414141414141414141414141414141 " + ←↩
178 " 414183 c4 fc5 fbe333332314647393775fb464f3977fc75 fa f f e74242ebe442427e164000202f35333231 "
179 }
180 } ,
181 " s l i m f t p d " : {
182 " name " : " SlimFTPd FTP S e r v e r 3 . 1 6 " ,
183 " ba n ne r " : "220−SlimFTPd 3 . 1 6 , by W hi t S o f t Development (www. w h i t s o f t d e v . com) \ r \ n " +
184 "220−You a r e c o n n e c t i n g from 1 2 7 . 0 . 0 . 1 : 1 2 3 4 5 \ r \ n " +
185 " 220 Proceed wi th l o g i n . " ,
186 " s i g n a t u r e s " : {
187 " e x p l o i t / windows / f t p / s l i m f t p d _ l i s t _ c o n c a t " : " d97424f4 "
188 }
189 } ,
190 " t u r b o f t p " : {
191 " name " : " TurboFTP FTP S e r v e r 1 . 3 0 . 8 2 3 " ,
192 " ba n ne r " : " 220 TurboFTP S e r v e r 1 . 3 0 . 8 2 3 r e a d y . " ,
193 " s i g n a t u r e s " : {
194 " e x p l o i t / windows / f t p / t u r b o f t p _ p o r t " : " 2 c3133332c32352c36352c302c34322c31303 " + ←↩
195 " 52 c37352c302c3131362c39362c39352c302c34322c3234382c37302 " + ←↩
196 " c302c3134392c35392c36362c302c33392c35382c36362c302c31353 " + ←↩
197 " 32 c32382c39332c302c39332c3137332c37362c302c3130372c31373 " + ←↩
198 " 72 c37342c302c312c302c302c302c3234362c3234372c39342c302c3 " + ←↩
199 " 02 c31362c302c302c35372c3131332c39332c302c36342c302c302c3 " + ←↩
200 " 02 c3232342c3234312c37372c302c3133332c32352c36352c302c353 " + ←↩
201 " 72 c33382c38302c302c3134342c3134342c3134342c3134342c31353 " + ←↩
202 " 22 c3132392c37302c302c3133372c3139342c3132392c3233342c302 " + ←↩
203 " c31362c302c302c3132392c3233362c302c31362c302c302c3130322 " + ←↩
204 " c3132392c3230322c3235352c31352c36362c38322c3130362c322c3 " + ←↩
205 " 8382 c3230352c34362c36302c352c39302c3131362c3233392c31383 " + ←↩
206 " 42 c3131392c34382c34382c3131362c3133372c3231352c3137352c3 " + ←↩
207 " 131372 c3233342c3137352c3131372c3233312c38312c34392c32303 " + ←↩
208 " 12 c34392c3139322c322c342c31352c36352c31 "
209 }
210 } ,
211 " v e r m i l l i o n " : {
212 " name " : " Vf tpd FTP S e r v e r 1 . 3 1 " ,
213 " ba n ne r " : " 220 l o c a l h o s t FTP S e r v e r (v f t p d 1 . 3 1) r e a d y . " ,
214 " s i g n a t u r e s " : {
215 " e x p l o i t / windows / f t p / v e r m i l l i o n _ f t p d _ p o r t " :←↩
216 " 2 c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c3137312c3438 "
217 }
218 } ,
219 " w a r f t p d " : {

26

220 " name " : " f reeFTPd FTP S e r v e r 1 . 0 " ,
221 " ba n ne r " : " 220−−−f reeFTPd 1.0−−−warFTPd 1.65−−−" ,
222 " s i g n a t u r e s " : {
223 " e x p l o i t / windows / f t p / w a r f t p d _ 1 6 5 _ u s e r (Windows 2000 SP0−SP4 E n g l i s h) " : " e2310275 " ,
224 " e x p l o i t / windows / f t p / w a r f t p d _ 1 6 5 _ u s e r (Windows XP SP0−SP1 E n g l i s h) " : " 541 dab71 " ,
225 " e x p l o i t / windows / f t p / w a r f t p d _ 1 6 5 _ u s e r (Windows XP SP2 E n g l i s h) " : " 7293 ab71 " ,
226 " e x p l o i t / windows / f t p / w a r f t p d _ 1 6 5 _ u s e r (Windows XP SP3 E n g l i s h) " : " 532 bab71 " ,
227 " e x p l o i t / windows / f t p / w a r f t p d _ 1 6 5 _ p a s s " : " 2 b774e5f "
228 }
229 } ,
230 " wf tpd " : {
231 " name " : "WFTPD Pro FTP S e r v e r 3 . 2 3 " ,
232 " ba n ne r " : " 220 ProFTPD 1 . 3 . 1 r c 2 S e r v e r (WFTPD Pro S e r v e r 3 . 2 3) [1 2 7 . 0 . 0 . 1] " ,
233 " s i g n a t u r e s " : {
234 " e x p l o i t / windows / f t p / w f t p d _ s i z e " : " d97424f4 "
235 }
236 } ,
237 " w s f t p " : {
238 " name " : "WS_FTP FTP S e r v e r 5 . 0 . 3 " ,
239 " ba n ne r " : " 220 l o c a l h o s t . l o c a l d o m a i n X2 WS_FTP S e r v e r 5 . 0 . 3 (4278729194) " ,
240 " s i g n a t u r e s " : {
241 " e x p l o i t / windows / f t p / ws f tp_se rve r_503_mkd " : " b85b1825b85b1825 "
242 }
243 } ,
244 " wsf tp_505 " : {
245 " name " : "WS_FTP FTP S e r v e r 5 . 0 . 3 " ,
246 " ba n ne r " : " 220 l o c a l h o s t . l o c a l d o m a i n X2 WS_FTP S e r v e r 5 . 0 . 5 (543219441) " ,
247 " s i g n a t u r e s " : {
248 " e x p l o i t / windows / f t p / ws f tp_se rve r_505_xmd5 " : " 63 c62e7c "
249 }
250 } ,
251 " wuf tpd " : {
252 " name " : " WUftpd FTP S e r v e r 2 . 6 . 0 (1) " ,
253 " ba n ne r " : ←↩
254 " 220 l o c a l h o s t . l o c a l d o m a i n FTP s e r v e r (V e r s i o n wu−2 .6 .0 (1) Mon Feb 28 1 0 : 3 0 : 3 6 EST 2000) r e a d y . " ,
255 " s i g n a t u r e s " : {
256 " e x p l o i t / m u l t i / f t p / w u f t p d _ s i t e _ e x e c _ f o r m a t " : " e7060 " + " 825387 " ∗ 276 + " 82530 "
257 }
258 } ,
259 " x l i n k " : {
260 " name " : "Omni−NFS x−l i n k FTP S e r v e r 5 . 2 " ,
261 " ba n ne r " : "220−M i c r o s o f t FTP S e r v i c e \ r \ n220 x−l i n k f t p s e r v e r " ,
262 " s i g n a t u r e s " : {
263 " e x p l o i t / windows / f t p / x l i n k _ s e r v e r " : " 81 c 4 f f e f f f f f 4 4 "
264 }
265 }
266 }

27

E Longest Common
Substring Script

1 # ! / u s r / b i n / py t ho n
2
3 import os
4 import r e
5 import s t r i n g
6 import s y s
7
8 # from h t t p : / / s t a c k o v e r f l o w . com / a /2894073 /1546714
9 def l c s (d a t a) :

10 s u b s t r = ’ ’
11 i f l e n (d a t a) > 1 and l e n (d a t a [0]) > 0 :
12 # f o r e v e r y p o s s i b l e s u b s t r i n g i n da ta [0] , check i f t h i s s u b s t r i n g
13 # a l s o o c c u r s i n a l l o t h e r i t e m s i n t h e da ta l i s t . I f so , p i c k t h e
14 # l o n g e s t s t r i n g and r e t u r n i t .
15 f o r i in r a n g e (l e n (d a t a [0])) :
16 f o r j in r a n g e (l e n (d a t a [0])− i + 1) :
17 i f j > l e n (s u b s t r) and a l l (d a t a [0] [i : i + j] in x f o r x in d a t a) :
18 s u b s t r = d a t a [0] [i : i + j]
19 re turn s u b s t r
20
21
22 i f l e n (s y s . a rgv) < 2 :
23 p r i n t " Usage : " + s y s . a rgv [0] + " < d i r e c t o r y c o n t a i n i n g f low d i r s > [number o f c o n n e c t i o n s t o p r o c e s s] "
24 s y s . e x i t (−1)
25
26
27 p a r e n t _ d i r = s y s . a rgv [1]
28 f l o w _ f i l e s = {}
29
30 # f o r each f l o w _ d i r (c o n n e c t i o n) , append t h e incoming f l o w f i l e s t o t h e l i s t
31 # o f f i l e s t o be LCS ’ d .
32 f o r f l o w _ d i r in os . l i s t d i r (p a r e n t _ d i r) :
33 f o r f l o w _ f i l e in os . l i s t d i r (p a r e n t _ d i r + " / " + f l o w _ d i r) :
34 match = r e . s e a r c h (r " r eq_ (? P< f lownr > [\ d] +) \ . f low " , f l o w _ f i l e)
35 i f match :
36 f l o w _ n r = i n t (match . group (" f l o w n r "))
37 i f not f l o w _ n r in f l o w _ f i l e s :
38 f l o w _ f i l e s [f l o w _ n r] = []
39
40 f l o w _ f i l e s [f l o w _ n r] . append (p a r e n t _ d i r + " / " + f l o w _ d i r + " / " + f l o w _ f i l e)
41
42 # f o r each f l o w i n t h e LCS todo l i s t , read t h e c o n t e n t s
43 f l o w _ c o n t e n t s = {}
44 f o r f low_nr , f l o w s in f l o w _ f i l e s . i t e m s () :
45 f l o w _ c o n t e n t s [f l o w _ n r] = []
46 f o r f in f l o w s :
47 f l o w _ d a t a = open (f , " r ")
48 # s t r i p any FTP commands from t h e b e g i n n i n g o f t h e f l o w
49 f l o w _ d a t a _ s t r i p p e d = r e . sub (" ^ [A−Z5] { 3 , 4 } \ s " , " " , f l o w _ d a t a . r e a d () . s t r i p ())
50 f l o w _ c o n t e n t s [f l o w _ n r] . append (f l o w _ d a t a _ s t r i p p e d)
51 f l o w _ d a t a . c l o s e ()
52
53 # f o r a l l t h e f l o w data , run LCS per f l o w number , p r i n t o u t t h e r e s u l t s
54 f o r f low_nr , f l o w s in f l o w _ c o n t e n t s . i t e m s () :
55 i f l e n (f l o w s) :
56 p r i n t " F i n d i n g LCS s i g n a t u r e f o r " + s t r (l e n (f l o w s)) + " f l o w s on r e q u e s t n r " + s t r (f l o w _ n r)
57 s i g n a t u r e = l c s (f l o w s)
58 i f a l l (o rd (c) < 127 and c in s t r i n g . p r i n t a b l e f o r c in s i g n a t u r e) :
59 p r i n t " Hexadec imal s i g n a t u r e : " + s i g n a t u r e . encode (" hex ") + " , ASCII : " + s i g n a t u r e
60 e l s e :
61 p r i n t " Hexadec imal s i g n a t u r e : " + s i g n a t u r e . encode (" hex ")

28

F Signature Testing Script

1 # ! / u s r / b i n / py t ho n
2
3 import f t p _ d b
4 import os
5 from random import r a n d i n t
6 import r e
7 import s i g n a l
8 import s u b p r o c e s s
9 import t ime

10
11 # g e t a l l p a y l o a d s from m s f c l i t h a t can be used w i t h t h i s e x p l o i t
12 def g e t _ p a y l o a d s (e x p l o i t) :
13 o u t p u t = s u b p r o c e s s . c h e c k _ o u t p u t (" m s f c l i " + e x p l o i t + " P | g r ep −E ’ windows | l i n u x ’ " + ←↩
14 " | awk ’{ p r i n t $1 } ’ " , s h e l l =True)
15 re turn [s . s t r i p () f o r s in o u t p u t . s p l i t l i n e s ()]
16
17 # g e t a l l t a r g e t s from m s f c l i t h a t can be used w i t h t h i s e x p l o i t
18 def g e t _ t a r g e t s (e x p l o i t) :
19 t a r g e t s = []
20 o u t p u t = s u b p r o c e s s . c h e c k _ o u t p u t (" m s f c l i " + e x p l o i t + " T 2>&1 | g rep −E ’[0−9] ’ " , s h e l l =True)
21 f o r s in o u t p u t . s p l i t l i n e s () :
22 t a r g e t _ m a t c h = r e . match (r " ([\ s \ t] +) ([0−9]) (.∗) " , s)
23 i f t a r g e t _ m a t c h :
24 t a r g e t s . append (t a r g e t _ m a t c h . group (2))
25 re turn t a r g e t s
26
27 # spawn t h e FTP h o n e y p o t s c r i p t
28 def s t a r t _ h o n e y p o t (banner , f l o w _ d i r) :
29 g l o b a l h o n e y p o t _ p r o c
30 c u r _ p a t h = os . p a t h . d i rname (os . p a t h . a b s p a t h (_ _ f i l e _ _)) + " / "
31 # ugly , b u t we NEED i t t o spawn i n t h e background
32 h o n e y p o t _ p r o c = os . sys tem (c u r _ p a t h + " f t p . py−−b an ne r " + b an ne r + "−−f lows−d i r " + f l o w _ d i r + " &")
33 p r i n t h o n e y p o t _ p r o c
34
35 # u g l y hack t o f i n d t h e p i d o f t h e FTP h o n e y p o t s c r i p t , and t h e n k i l l i t .
36 def s t o p _ h o n e y p o t () :
37 p = s u b p r o c e s s . Popen ([’ ps ’ , ’−A’] , s t d o u t = s u b p r o c e s s . PIPE)
38 out , e r r = p . communicate ()
39
40 f o r l i n e in o u t . s p l i t l i n e s () :
41 i f ’ f t p . py ’ in l i n e :
42 p i d = i n t (l i n e . s p l i t (None , 1) [0])
43 os . k i l l (p id , s i g n a l . SIGKILL)
44 p r i n t " K i l l e d honeypo t wi th PID " + s t r (p i d)
45 break
46
47 # w r i t e t h e b a t c h f i l e s f o r m e t a s p l o i t used t o b u l k t e s t
48 def w r i t e _ m e t a s p l o i t _ r c (e x p l o i t) :
49 e x p l o i t _ s h o r t n a m e = e x p l o i t . s p l i t (" / ")[−1]
50 e x p l o i t _ r c _ f i l e s = []
51 p a y l o a d s = g e t _ p a y l o a d s (e x p l o i t)
52 t a r g e t s = g e t _ t a r g e t s (e x p l o i t)
53 # one rc f i l e per t a r g e t , i n case we need t o e x t r a c t s i g n a t u r e s f o r each t a r g e t
54 f o r t a r g e t in t a r g e t s :
55 o u t p u t _ f i l e = open (e x p l o i t _ s h o r t n a m e + t a r g e t + " . r c " , "w")
56 o u t p u t _ f i l e . w r i t e (" use " + e x p l o i t + " \ n ")
57 # f i l l i n a l l p o s s i b l e o p t i o n s f o r a pay load
58 f o r p a y l o a d in p a y l o a d s :
59 r a n d _ p o r t = r a n d i n t (10000 , 30000)
60 o u t p u t _ f i l e . w r i t e (" s e t p a y l o a d " + p a y l o a d + " \ n ")
61 o u t p u t _ f i l e . w r i t e (" s e t pexec / o p t / m e t a s p l o i t / apps / p ro / msf3 / d a t a / m e t e r p r e t e r / metsvc . exe \ n ")
62 o u t p u t _ f i l e . w r i t e (" s e t cmd cmd \ n ")
63 o u t p u t _ f i l e . w r i t e (" s e t dnszone go og l e . com \ n ")
64 o u t p u t _ f i l e . w r i t e (" s e t dns go og l e . com \ n ")
65 o u t p u t _ f i l e . w r i t e (" s e t d l l / o p t / m e t a s p l o i t / apps / p ro / msf3 / d a t a / m e t e r p r e t e r / m e t s rv . d l l \ n ")
66 o u t p u t _ f i l e . w r i t e (" s e t r c 4 p a s s w o r d t e s t t e s t \ n ")
67 o u t p u t _ f i l e . w r i t e (" s e t l h o s t l o c a l h o s t \ n ")
68 o u t p u t _ f i l e . w r i t e (" s e t r h o s t l o c a l h o s t \ n ")
69 o u t p u t _ f i l e . w r i t e (" s e t r p o r t 2 1 \ n ")
70 o u t p u t _ f i l e . w r i t e (" s e t l p o r t " + s t r (r a n d _ p o r t) + " \ n ")
71 o u t p u t _ f i l e . w r i t e (" s e t t a r g e t " + s t r (t a r g e t) + " \ n ")
72 o u t p u t _ f i l e . w r i t e (" run \ n ")
73 o u t p u t _ f i l e . w r i t e (" q u i t \ n ")
74 o u t p u t _ f i l e . c l o s e ()
75 e x p l o i t _ r c _ f i l e s . append (e x p l o i t _ s h o r t n a m e + t a r g e t + " . r c ")
76 re turn e x p l o i t _ r c _ f i l e s
77
78 # aaaaaand l e t s f i r e t h e b a t c h f i l e up w i t h m s f c o n s o l e
79 def r u n _ m e t a s p l o i t _ r c (r c _ f i l e) :
80 p = s u b p r o c e s s . c a l l ([’ m s f c o n s o l e ’ , ’−r ’ , r c _ f i l e])
81
82 # s t a r t o f f w i t h an empty e x p l o i t l i s t
83 e x p l o i t s = []
84
85 # f o r each banner t h a t we have e x p l o i t s f o r , grab a l l t h e e x p l o i t s
86 f o r banner , f t p _ i n f o in f t p _ d b . b a n n e r s . i t e m s () :
87 # f o r each e x p l o i t , c r e a t e a l l r c f i l e s and run them a g a i n s t t h e h o n e y p o t
88 f o r e x p l o i t in f t p _ i n f o [’ s i g n a t u r e s ’] . keys () :
89 i f " " in e x p l o i t :
90 e x p l o i t = e x p l o i t . s p l i t (" ") [0]
91 i f not e x p l o i t in e x p l o i t s :
92 s t a r t _ h o n e y p o t (banner , " t e s t i n g _ f l o w s / ")
93 e x p l o i t s . append (e x p l o i t)
94 r c _ f i l e s = w r i t e _ m e t a s p l o i t _ r c (e x p l o i t)
95 f o r r c _ f i l e in r c _ f i l e s :
96 r u n _ m e t a s p l o i t _ r c (r c _ f i l e)
97 s t o p _ h o n e y p o t ()
98 # save t h e g e n e r a t e d l o g f i l e as <e x p l o i t n a m e >. l o g
99 e x p l o i t _ s h o r t n a m e = e x p l o i t . s p l i t (" / ")[−1]

100 os . rename (os . getcwd () + " / honeypo t . l o g " , os . getcwd () + " / " + e x p l o i t _ s h o r t n a m e + " . l o g ")

29

Bibliography

[1] A. One, “Smashing the stack for fun and profit,” Phrack magazine, vol. 7, no. 49,
p. 365, 1996.

[2] G. Richarte, “Riq,” Advances in format string exploitation. Phrack Magazine,
vol. 59, no. 7, 2002.

[3] J. Pincus and B. Baker, “Beyond stack smashing: Recent advances in exploiting
buffer overruns,” Security & Privacy, IEEE, vol. 2, no. 4, pp. 20–27, 2004.

[4] C. Anley, J. Heasman, F. Lindner, and G. Richarte, The shellcoder’s handbook:
discovering and exploiting security holes. Wiley, 2011.

[5] S. Chong, “History and advances in windows shellcode,” Phrack.[Online],
vol. 22, 2004.

[6] I. Arce, “The shellcode generation,” Security & Privacy, IEEE, vol. 2, no. 5,
pp. 72–76, 2004.

[7] M. Roesch et al., “Snort-lightweight intrusion detection for networks,” in Pro-
ceedings of the 13th USENIX conference on System administration, pp. 229–238,
Seattle, Washington, 1999.

[8] S. Andersson, A. Clark, and G. Mohay, “Network based buffer overflow detec-
tion by exploit code analysis,” 2004.

[9] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On the
effectiveness of address-space randomization,” in Proceedings of the 11th ACM
conference on Computer and communications security, pp. 298–307, ACM,
2004.

[10] M. Prandini and M. Ramilli, “Return-oriented programming,” Security & Pri-
vacy, IEEE, vol. 10, no. 6, pp. 84–87, 2012.

[11] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk, “Polymorphic shell-
code engine using spectrum analysis,” 2003.

[12] M. Van Gundy, D. Balzarotti, and G. Vigna, “Catch me, if you can: Evading
network signatures with web-based polymorphic worms,” in Proceedings of the
First USENIX Workshop on Offensive Technologies (WOOT), 2007.

[13] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos, “Network–level
polymorphic shellcode detection using emulation,” in Detection of Intrusions
and Malware & Vulnerability Assessment, pp. 54–73, Springer, 2006.

[14] A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. Li, J. Kuo, and K.-P. Fan, “But-
tercup: On network-based detection of polymorphic buffer overflow vulnerabil-
ities,” in Network Operations and Management Symposium, 2004. NOMS 2004.

30

IEEE/IFIP, vol. 1, pp. 235–248, IEEE, 2004.

[15] L. Spitzner, Honeypots: tracking hackers. Addison-Wesley Longman Publishing
Co., Inc., 2002.

[16] N. Provos, “Honeyd-a virtual honeypot daemon,” in 10th DFN-CERT Workshop,
Hamburg, Germany, vol. 2, 2003.

[17] SURFcert, “Surfcert ids.” http://ids.surfnet.nl/. Accessed June
2013.

[18] Dionaea, “Dionaea, catches bugs.” http://dionaea.carnivore.it/.
Accessed June 2013.

[19] Kippo, “Ssh honeypot.” https://code.google.com/p/kippo/. Ac-
cessed June 2013.

[20] J. van der Lelie and R. Breuk, “Visualizing attacks on honeypots,” 2012.

[21] C. Leita, K. Mermoud, and M. Dacier, “Scriptgen: an automated script gen-
eration tool for honeyd,” in Computer Security Applications Conference, 21st
Annual, pp. 12–pp, IEEE, 2005.

[22] C. Kreibich and J. Crowcroft, “Honeycomb: creating intrusion detection sig-
natures using honeypots,” ACM SIGCOMM Computer Communication Review,
vol. 34, no. 1, pp. 51–56, 2004.

[23] C. Anley, J. Heasman, F. Lindner, and G. Richarte, The shellcoder’s handbook:
discovering and exploiting security holes. Wiley, 2011.

[24] R. Baumann and C. Plattner, “White paper: Honeypots,” 2002.

[25] J. Postel and J. Reynolds, “File transfer protocol,” 1985.

[26] L. Rist, S. Vetsch, M. Kossin, and M. Mauer, “Know your tools: Glastopf-a dy-
namic, low-interaction web application honeypot,” The Honeynet Project, 2010.

[27] M. Andreolini, A. Bulgarelli, M. Colajanni, and F. Mazzoni, “Honeyspam: Hon-
eypots fighting spam at the source,” in Proceedings of the Steps to Reducing
Unwanted Traffic on the Internet on Steps to Reducing Unwanted Traffic on the
Internet Workshop, pp. 11–11, USENIX Association, 2005.

[28] E. Ramirez-Silva and M. Dacier, “Empirical study of the impact of metasploit-
related attacks in 4 years of attack traces,” in Advances in Computer Science–
ASIAN 2007. Computer and Network Security, pp. 198–211, Springer, 2007.

[29] A. K. S. Jethoe, “Snorting metasploit update,” 2011.

[30] D. Groenewegen, M. Kuczynski, and J. van Beek, “Offensive technologies,”
2011.

[31] C. Jordan, J. ROYES, and J. WHYTE, “Writing detection signatures,” USENIX;
login, vol. 30, no. 6, pp. 55–61, 2005.

[32] G. Vigna, W. Robertson, and D. Balzarotti, “Testing network-based intrusion
detection signatures using mutant exploits,” in Proceedings of the 11th ACM
conference on Computer and communications security, pp. 21–30, ACM, 2004.

[33] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generating sig-
natures for polymorphic worms,” in Security and Privacy, 2005 IEEE Sympo-
sium on, pp. 226–241, IEEE, 2005.

[34] M. A. Beddoe, “Network protocol analysis using bioinformatics algorithms,”
2005.

31

http://ids.surfnet.nl/
http://dionaea.carnivore.it/
https://code.google.com/p/kippo/

	 Introduction
	 Research Question
	 Previous Work

	 Terminology
	 Exploit
	 Payload Encoding
	 Honeypots

	 Process
	 Capturing Exploit Traffic
	 Detecting Exploit Traffic
	 Extracting Signatures from Exploit Traffic
	 Matching Exploit Traffic against Signatures

	 Approach and Methods
	 Setting up Testing Environment
	 Capturing Exploit Traffic
	 Detecting Exploit Traffic
	 Extracting Signatures from Exploit Traffic
	 Matching Exploit Traffic against Signatures

	 Findings
	 Extracting Patterns from Exploit Traffic
	 Matching Exploit Traffic against Signatures

	 Conclusions
	 Future Work
	 Acknowledgements
	 Metasploit FTP Exploits Used
	 Detection Rate of Exploits
	 FTP Honeypot Script
	 FTP Honeypot Database
	 Longest Common Substring Script
	 Signature Testing Script
	Bibliography

