
A visitation of sysdig
Project Report

Jan-Willem Selij, Eric van den Haak

June 1, 2014

Abstract

This research focuses on using sysdig, a tool that caotures system calls, for a
forensic purpose. First, implications regarding requiring a kernel module to
be able to run sysdig have been researched. This was performed by trying to
run sysdig on a common Linux distribution with a default and a self-compiled
non-modular kernel. Complications arise when a non-modular kernel is used
as sysdig can not run without its kernel module. Thereafter, completeness of
the output has been researched. Source code shows that sysdig drops events
when its buffer gets full. Finally, the research is focused upon the verifiability
of sysdig. Multiple experiments have been set up in which sysdig has been
actively running. Results illustrate that sysdig’s output is very alike but
never the same. The investigation of sysdig shows that sysdig can be useful
to find out what is going on on a system as it logs as many events as possible
and does not slow down the system. The ability of running sysdig without
root privileges or on a non-modular kernel proves to be almost impossible.

Contents

1 Introduction 2
1.1 Related research . 2
1.2 Research questions . 2

2 Research 3
2.1 Implications . 3
2.2 Completeness . 5
2.3 Verifiability . 5

2.3.1 Findings . 6
2.3.2 Differences . 7
2.3.3 Graphical view . 11

3 Conclusion 15

4 Future work 16

1

1 Introduction

Sysdig [2] is a system-level exploration and troubleshooting tool for Linux. It captures
system calls and other system level events using a Linux kernel facility called tracepoints.
It requires a driver to be present in the kernel space because it has to register tracepoints
for system calls. The information gets “packetized” which allows it to be saved to
trace files, similar to the way tcpdump parses network packets. These captures can
be filtered using extensions called chisels. This allows for more specific reports on the
current systems state, for example on CPU, I/O and network usage of a certain process.
While the main intended purpose is aimed at troubleshooting Linux-based systems, this
research focuses on looking at the tool from a forensics angle. Because sysdig provides
insight in system activities, it might be useful as a monitoring tool.

1.1 Related research

Sysdig was initially released on April 3, 2014. Because of its infancy, no research has
been done yet.

1.2 Research questions

Our main purpose is to determine if sysdig is suitable to be used in forensic environments.
Therefore it is necessary to research complications of getting the tool running on a Linux
environment. For forensics, the tool has to give a complete output. We thus have to
test if all, or to what extend, our system calls will be in sysdig’s output. The tool also
has to be verifiable. This might be a problem because the tool monitors runtime system
calls and can therefore (almost) never give the same output on another time on the same
system. We have to come up with a method to verify this ourselves. If it is possible to
circumvent the tool, forensic usage of it might not be ideal. If time allows us, we can
test whether we can circumvent the tool by for example a rootkit.

Is sysdig suitable for forensics?

• What are the implications of requiring a kernel driver?

• Is sysdig’s output complete?

• Is sysdig’s output verifiable?

– Is it possible to circumvent sysdig?

2

2 Research

This section describes the research done.

2.1 Implications

First, research has been done upon the implications to get sysdig running. It is given
that in current state, it is necessary to insert a kernel module into the running kernel in
order to be able to capture system calls. On normal Linux distributions this is possible
when having root access. While focusing on live forensics, the current kernel of a system
has to be used so that current system behavior can be monitored.

Non-modular kernel

In some cases, non-modular kernels are used to improve security. Since sysdig requires
compiling a kernel module and loading it into the kernel, this should not work on a non-
modular kernel. To verify this, a non-modular kernel was compiled and the sysdig module
separately. Sysdig was ran which resulted in the system failing to open the sysdig0
device. Manually trying to insert the module or any other failed as expected.

3

Figure 1: Trying to run sysdig on non-modular kernel.

Kernel memory

However, this might still be possible through an alternative way. The inskmem utility [4]
allows one to load kernel modules through the use of /dev/kmem. This device exposes
the kernel memory where inskmem, with the use of the mapped memory, uses kmalloc
in combination with some other system calls to load the module. This method has
not been tested and comes with a few things to think about. Most distributions have
already disabled access to the kernel memory through either grsecurity or compiling the
kernel with the CONFIG DEVKMEM set to false or CONFIG STRICT DEVMEM, as this device
was also used by rootkits. The utility is fairly old and not tested on 3.x kernels, as well
on 64-bit.

4

2.2 Completeness

Secondly, research has been done upon completeness of sysdig. Authors and sourcecode
of sysdig shows that when the event buffer fills up, sysdig will drop events[3]. While this
may result in an unwilling loss of events, sysdig won’t slow down the system itself and
thus won’t interfere with current system’s behavior as dtrace and strace might do.

Sysdig will show the total amount of events and the amount of dropped ones if ran with
the verbose flag (-v), as indicated by the source code:

if(verbose)

{

fprintf(stderr , "Driver Events :%" PRIu64 "\nDriver Drops :%" PRIu64 "\n"

,

cstats.n_evts ,

cstats.n_drops);

Listing 1: /userspace/sysdig/sysdig.cpp

It also logs are more exact result on why this is to dmesg :

pr_info("closing ring %d, evt:%llu , dr_buf :%llu , dr_pf :%llu , pr:%llu , cs

:%llu\n",

ring_no ,

ring ->info ->n_evts ,

ring ->info ->n_drops_buffer ,

ring ->info ->n_drops_pf ,

ring ->info ->n_preemptions ,

ring ->info ->n_context_switches);

Listing 2: driver/main.c

Where dr buff stands for Drops/Buffer and dr pf for Drops/Page fault.

2.3 Verifiability

It is important for forensic utilities that they yield the same output results if ran multiple
times with the same source. Sysdig should output the same results if ran multiple times
on a very same scenario. While this sounds near impossible because of the fact that
system calls behavior differ upon each system run, a few tests were conducted.

To limit the influence from outside matters a dedicated hardware setup was used. This
contained just the basics needed for running a computer; motherboard, CPU, memory
and a hard disk. A Linux distributed was installed with the default configuration (in
our case Arch Linux) and sysdig was installed as advised on the website. A script was
ran directly after booting the machine which runs sysdig for 10,000 lines and stores the

5

output. This was repeated five times. This test was also performed in single user mode,
because there was a lot of system call noise by booting the regular way.

The same test was also performed by using a virtual machine with the help of Vagrant[1].
A standard Vagrant box was downloaded and modified to always start in single user mode
followed by starting sysdig. The box was then exported as a new box. Vagrant then
takes care of starting the box from the same exported point to minimize any influences
caused by a regular reboot.

Overview of performed tests
Scenario Description

Virtual Boot a virtual machine in single user mode

Hardware Boot a hardware machine in multi user mode

Hardware Boot a hardware machine run single script

Each scenario ran 5 times and recorded 10000 system calls.

2.3.1 Findings

There are a few expected findings in the output. The system clock changed so the time
in the log differs and the process id listed in the log differs.

Comparing the five logs from either test shows that the system calls are nearly the same.
It happens often that one test shows a few more system calls which causes one to “drift”.
This means the sequence of the system calls are the same, only with an offset.

It is noticeable that sysdig drops some system calls by looking at the event id. Dropping
the logging of system calls only happens when the host system is too busy. To not slow
the system down by letting the log catch up a number are dropped. The reason for this
behavior is unknown because the system should have plenty of cycles left because it is in
single user mode. This is also reflected later in the log because the only system calls that
are made are context switches between running sysdig and other system processes.

6

2.3.2 Differences

In order to understand the differences between the captures they are laid out below each
other. Lines are truncated as this improves clarity and does not hinder the comparison.
The differences are indicated by a diff-like syntax where > highlights certain lines, +

indicates an addition, - indicates deletion and @@@ indicates a range between a the first
number above and below it. Regular diffs would not clearly show any shift in system
calls in addition that the event numbers change a lot more together with the time so no
line would actually match.

30 13:47:06.437306006 0 rsyslogd (722) > gettimeofday

31 13:47:06.437310196 0 rsyslogd (722) < gettimeofday

> 32 13:47:06.437312990 0 rsyslogd (722) > gettimeofday

> 33 13:47:06.437313269 1 <NA> (0) > switch next =711(rs:main)

34 13:47:06.437316622 0 rsyslogd (722) < gettimeofday

Listing 3: Shifted sequence. Test 1

30 13:56:51.456925558 0 rsyslogd (690) > gettimeofday

31 13:56:51.456929190 0 rsyslogd (690) < gettimeofday

> 32 13:56:51.456931425 1 <NA> (0) > switch next =688(rs:main)

> 33 13:56:51.456932263 0 rsyslogd (690) > gettimeofday

34 13:56:51.456935894 0 rsyslogd (690) < gettimeofday

Listing 4: Shifted sequence. Test 2

The system calls exactly match until event number 32. The scheduler switch for test 2
is a little bit earlier. Note that no system call is actually omitted, the event enter of
gettimeofday (indicated by the greater-than mark, >) isn’t show in its usual pair on
second test, but directly after the switch.

The following comparison shows that an extra event appears after the gettimeofday

combo, called switch.

54 13:47:06.437381434 1 rs:main (711) > gettimeofday

55 13:47:06.437384787 1 rs:main (711) < gettimeofday

56 13:47:06.437388698 1 rs:main (711) > write fd=4(<f>/var/lo

57 13:47:06.437391771 1 rs:main (711) < write res =125 data=Ma

58 13:47:06.437394285 1 rs:main (711) > gettimeofday

Listing 5: Scheduler switch. Test 1

54 13:56:51.457027247 1 rs:main (688) > gettimeofday

55 13:56:51.457031717 1 rs:main (688) < gettimeofday

+ 56 13:56:51.457034231 0 <NA > (3) > switch next=0

57 13:56:51.457034790 1 rs:main (688) > write fd=1(<f>/var/lo

58 13:56:51.457038142 1 rs:main (688) < write res =125 data=Ma

Listing 6: Scheduler switch. Test 2

7

To make system calls and arguments readable, sysdig has a mapping which converts this
internally.

event table.c states the following about switch:

/* PPME_SCHEDSWITCH_E */{"switch", EC_SCHEDULER , EF_NONE , 1, {{"next",

PT_PID , PF_DEC} } },

This means it’s an extra scheduler switch to PID 0, not showing up the first test.

8

The final comparison shows that, in the first test quite a few events don’t show up (which
are dropped). They are, however, visible on the second test.

200 13:47:06.437846298 1 rs:main (711) > futex addr =20 C3194 o

201 13:47:06.437861383 1 rs:main (711) > switch next=0

202 13:47:06.445224609 0 <NA > (0) > switch next=3

203 13:47:06.445265117 0 <NA > (3) > switch next=0

204 13:47:06.457241500 0 <NA > (0) > switch next=3

205 13:47:06.457266084 0 <NA > (3) > switch next=0

206 13:47:06.461236701 0 <NA > (0) > switch next=3

207 13:47:06.461262961 0 <NA > (3) > switch next=0

208 13:47:06.461277209 0 <NA > (0) > switch next=3

209 13:47:06.461289221 0 <NA > (3) > switch next=0

210 13:47:06.467217349 0 <NA > (0) > switch next =785(sysdig)

- 211

@@@

- 217

- 9xx

978 13:47:06.516773361 0 <NA > (0) > switch next =785(sysdig)

986 13:47:06.547071368 0 <NA > (0) > switch next =785(sysdig)

994 13:47:06.577511798 0 <NA > (0) > switch next =785(sysdig)

1002 13:47:06.607772090 0 <NA> (0) > switch next =785(sysdig)

1010 13:47:06.638048000 0 <NA> (0) > switch next =785(sysdig)

1018 13:47:06.668338993 0 <NA> (0) > switch next =785(sysdig)

1026 13:47:06.698588387 0 <NA> (0) > switch next =785(sysdig)

1034 13:47:06.728837449 0 <NA> (0) > switch next =785(sysdig)

1042 13:47:06.759141930 0 <NA> (0) > switch next =785(sysdig)

1050 13:47:06.789469668 0 <NA> (0) > switch next =785(sysdig)

1054 13:47:06.795728300 1 <NA> (0) > switch next =563(dhclient

1055 13:47:06.795741150 1 dhclient3 (563) < select res=0

1056 13:47:06.795744503 1 dhclient3 (563) > gettimeofday

1057 13:47:06.795748414 1 dhclient3 (563) < gettimeofday

1058 13:47:06.795760147 1 dhclient3 (563) > gettimeofday

1059 13:47:06.795763500 1 dhclient3 (563) < gettimeofday

1060 13:47:06.795766014 1 dhclient3 (563) > select

Listing 7: Dropped events. Test 1

9

200 13:56:51.457465571 1 rs:main (688) < gettimeofday

201 13:56:51.457468364 1 rs:main (688) > futex addr =213 F194 o

202 13:56:51.457483171 1 rs:main (688) > switch next=0

203 13:56:51.468859478 0 <NA > (0) > switch next=3

204 13:56:51.468922894 0 <NA > (3) > switch next=0

205 13:56:51.472832609 0 <NA > (0) > switch next=3

206 13:56:51.472844063 0 <NA > (3) > switch next=0

207 13:56:51.472870882 0 <NA > (0) > switch next=3

208 13:56:51.472881218 0 <NA > (3) > switch next=0

209 13:56:51.472894907 0 <NA > (0) > switch next=3

210 13:56:51.472901891 0 <NA > (3) > switch next=0

+ 211 13:56:51.472915301 0 <NA > (0) > switch next=3

+ 212 13:56:51.472922285 0 <NA > (3) > switch next=0

+ 213 13:56:51.472935694 0 <NA > (0) > switch next=3

+ 214 13:56:51.472942678 0 <NA > (3) > switch next=0

+ 215 13:56:51.477600254 0 <NA > (0) > switch next=3

+ 216 13:56:51.477610311 0 <NA > (3) > switch next=0

+ 217 13:56:51.487764115 0 <NA > (0) > switch next =764(sysdig)

989 13:56:51.520816637 0 <NA > (0) > switch next =764(sysdig)

997 13:56:51.557827768 0 <NA > (0) > switch next =764(sysdig)

1005 13:56:51.588148658 0 <NA> (0) > switch next =764(sysdig)

1013 13:56:51.618454469 0 <NA> (0) > switch next =764(sysdig)

1021 13:56:51.648792680 0 <NA> (0) > switch next =764(sysdig)

1029 13:56:51.679088713 0 <NA> (0) > switch next =764(sysdig)

1037 13:56:51.709355120 0 <NA> (0) > switch next =764(sysdig)

1045 13:56:51.739652284 0 <NA> (0) > switch next =764(sysdig)

1053 13:56:51.769935147 0 <NA> (0) > switch next =764(sysdig)

1061 13:56:51.778850268 1 <NA> (0) > switch next =548(dhclient

Listing 8: Dropped events. Test 2

offset of one extra system call not corrected in the comparison

There are a couple more scheduler switches between PID 0 and PID 3 (ksoftirqd/0).

Also note the difference in event numbers. The first test reports far less system calls in
the 200-range. The system calls on the on the second test might actually have happened,
but are dropped. If the scheduler switches are disregarded for a moment it is apparent
that both systems continue their path by calling dhclient3 instead of deviating from
it.

Aside from some extra reported scheduler switches, both follow the same path.

10

2.3.3 Graphical view

In order to make sysdig’s output easier to compare, the output has been put into graphs.
On each graph the process along with an event is shown as is the number of system calls
belonging to this combination.

Virtual machine

Figure 2: Virtual, all system calls

It is clear that two processes claim most system calls. To give a better view, these are
filtered in the next image.

11

Figure 3: Virtual, filtered.

This indicates that, except for the udevd process (hardware related), system call behavior
is very alike.

12

Hardware machine, multi user boot
On the multi user boot, the amount of system calls that occured did not allow for a clear
graph. Therefore these graphs show the number of total system calls per process.

Figure 4: Hardware, multi user boot, system calls per process

The sh (shell) process is filtered out in the next image.

Figure 5: Hardware, multi user boot, filtered

13

The output is quite alike. The one that has a totally different behavior is resolvconf.
This is expected because this process requires networking and that causes unpredictable
delays.

Hardware machine, single script

This test had a single script (called sysdigscript) running which performed a few thou-
sand disk writes and a few thousand calls to stdout using echo. This made this test the
most predictable because the behavior was known, besides executing sysdig at the same
time.

Figure 6: Hardware, single user bootup script

Output is very alike, but still differs among tests

14

3 Conclusion

This section concludes our findings.

What are the implications of requiring a kernel driver?

Having root access to a system which has a modular Linux kernel running results in no
implications at all. However, when there is no root access or the kernel does not allow
loading of modules, it is not possible to run sysdig1.

Is sysdig’s output complete?

Sysdig’s output is as complete as it can be, meaning that it only drops events when
necessary to not slow down the system. Therefore it can not be concluded that the
output is complete, as this is not always the case. Source code however does show that
given output is the raw output received via the kernel hook.

Is sysdig’s output verifiable?

After running multiple tests in the same scenarios, findings suggest that sysdig’s output
is never the same but is very alike. As shown in figure 3, most differences stem from
hardware system calls. As shown in figure 6, it can be stated that despite the fact the
number of system calls differ upon each run, the behavior is the same.

Is sysdig suitable for forensics?

Sysdig can be very helpful for forensics as it can run on the system without slowing
it down and provides a good insight in what is going on on the system. As output is
“packetized”, results can be hashed afterwards and stored in a sound way. However, it is
not recommended to fully rely on sysdig as it can omit events when the system is under
high load resulting in too many system calls.

1There is a possible /dev/kmem solution which is listed as further research.

15

4 Future work

In order to gain completeness with sysdig, the source code might be altered to optionally
disable event dropping. This can result in a complete view of the system but might slow
it down. As research time was limited this can be a topic for future research.

Another aspect what can be researched is trying to get sysdig running on a non-modular
kernel. As this research shows, there is a theoretical possibility with inskmem.

Since sysdig relies on system calls, it can be interesting to look at the effects of having
a root kit active. If it is possible to use such a kit to circumvent sysdig, it might not be
providing a good view of current system behavior.

16

References

[1] HashiCorp. Vagrant, 2013. http://www.vagrantup.com/.

[2] DRAIOS INC. sysdig, 2014. http://www.sysdig.org/.

[3] DRAIOS INC. sysdig, 2014. http://draios.com/

sysdig-vs-dtrace-vs-strace-a-technical-discussion/.

[4] Thomas Wana. inskmem, 2004. https://www.wana.at/inskmem/.

17

http://www.vagrantup.com/
http://www.sysdig.org/
http://draios.com/sysdig-vs-dtrace-vs-strace-a-technical-discussion/
http://draios.com/sysdig-vs-dtrace-vs-strace-a-technical-discussion/
https://www.wana.at/inskmem/

	Introduction
	Related research
	Research questions

	Research
	Implications
	Completeness
	Verifiability
	Findings
	Differences
	Graphical view

	Conclusion
	Future work

