
A closer look at SQRL

Jos van Dijk
jos.vandijk@os3.nl

University of Amsterdam
Faculty of Science, Informatics Institute

System & Network Engineering

February 9, 2014

Abstract

Secure Quick Reliable Login (SQRL) is a draft for Single Sign-On (SSO) web authenti-
cation using mobile devices. It claims to offer properties that are not provided by related
solutions. The principal design goals are to increase the privacy and security of authenticat-
ing to websites. Improved privacy is proposed by using random site-specific IDs that can’t
be cross-coupled. Improved security is obtained by replacing passwords with public-private
key cryptography as a means of proving ownership of an identity to websites.

In this report a close look at SQRL’s design details is presented and its properties are
analysed. Moreover, SQRL is compared to the related SSO solutions OpenID and TiQR.
Research findings show that SQRL offers a combination of properties that are lacking in
related solutions. However, SQRL depends heavily on user responsibility. This dependency
is a potential vulnerability that erodes its security level. In this report, vulnerabilities are
investigated and countermeasures are proposed.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Related Work . 2

2 Background of Authentication 2
2.1 Goals and Terminology . 2
2.2 Concepts and Terminology . 2
2.3 Architectures and Open Standards . 3
2.4 Implementations . 4
2.5 Identity Fraud . 4

3 SQRL 4
3.1 SQRL Design Goals . 5
3.2 SQRL Operation . 5
3.3 SQRL Concepts and Design Details . 6
3.4 SQRL Properties . 8

4 Related SSO solutions 9
4.1 TiQR . 9
4.2 OpenID . 10

5 Research Findings 12
5.1 SQRL Vulnerability Analysis . 12
5.2 Properties & Comparison . 14
5.3 Extended Deployment . 15

6 Conclusion 16

7 Future Work 16

Appendices 18

A
TiQR implementation details 18

B
OpenID specification details 21

1 Introduction

Authentication is the process of validating a person’s identity. Authentication is closely related
to authorization, the process of granting an authenticated user access rights to resources. A
straightforward implementation that meets this concept, is to force a user surfing the Internet
and visiting websites to create an account for each site. This approach results in a user possessing
and maintaining many accounts.

During authentication a user provides credentials to prove his identity. These credentials
are to be kept secret; moreover, a responsible user is assumed to create strong passwords, not to
reuse passwords and to change them at regular intervals to prevent identity fraud. This method
of working is hard for humans.[1] Figures show that identity fraud is big[2] and part of it is
caused by mismanagement of credentials.[3]

A well-known concept to avoid management of multiple accounts is federated identity. ”Fed-
erated identity is the means by which Web applications can offer users cross-domain single sign-
on (SSO), which lets them authenticate once and thereafter gain access to protected resources
and Websites elsewhere” (Eve Maler, 2008). From a user’s point of view, a single identity is
used to gain access to resources of all visited websites. A user is still assumed to protect his
credentials and choose these wisely such that they cannot be guessed or brute-forced by an
attacker. However, meeting this single requirement has proved very challenging in practice, as
studies have shown numerous times that users choose poor passwords and easily disclose these
in social engineering attacks.[4]

SQRL (Secure Quick Reliable Login) is a design for web authentication proposed by Gibson
Research Corporation1 in October 2013. Two factors triggered the need to come up with this
design. First, the discussed ongoing demand for user authentication to websites. Secondly,
the lack of a solid solution that can remedy this hardships and meets appropriate character-
istics. SQRL claims to provide SSO but having characteristics that are distinct from other
implementations.

Section 2 covers background information on authentication that is relevant to this project.
The next section contains an in-depth study of the SQRL design, followed by the section that
evaluates related solutions. In section 5 we discuss the results of our research about potential
weaknesses in SQRL. We present our findings and propose measures to mitigate these attacks.
Finally this report is concluded by answering the research questions and make recommendations
for future work.

1.1 Motivation

Authentication is unavoidable when it comes to accessing resources. Anyone who will make
use of resources finds herself dealing with this procedure. SSO is a convenient concept for
simultaneously authenticating to multiple domains. Two implementation properties show off:
security and anonymity. Security to avoid identity theft. Current figures show that identity
theft is a big and growing problem.[2] SQRL claims to offer properties that increase security
compared to related solutions. Secondly, support for anonymous login. SSO is also provided
by social media like Facebook (social login). In this SSO implementation, social media act as
an Identity Provider (IP). A website that supports social login (called Relying Party), relies on
user validation performed by this Identity Provider and trusts it (Trusted Third Party (TTP)).
Using this approach, all authentication requests are handled by this IP. However, commercial
interests might encourage IPs to track and profile users. Users should be offered an alternative

1https://www.grc.com/sqrl/sqrl.htm

1

solution that allows for anonymous authentication. SQRL claims to provide anonymity with no
cross-coupling of websites.

1.2 Research Questions

1. How does SQRL improve authentication security compared to related solutions?
From this question the next sub-questions are derived:
- What does SQRL offer to the challenging and to the authenticating party?
- What constraints must be met to guarantee this behaviour?

2. What additional features are relevant to extend deployment?

3. What attacks remain feasible and what countermeasures are to be considered?

1.3 Related Work

As the SQRL draft is proposed recently, no related work in terms of papers is available. All input
for discussion and implementation considerations is presented on the SQRL website.1 However,
SQRL is not the first of its kind; various SSO implementations have been developed and are
being used. TiQR2 and OpenID3 are determined as solutions that aim for goals comparable to
SQRL.
TiQR is developed by SURFnet4. At first glance, TiQR and SQRL have many properties in
common. OpenID is a widely used Open Standards based specification. This specification relies
on Identity Providers that act on behalf of the user during authentication. Both solutions are
included in this project.

2 Background of Authentication

The purpose of authentication and properties of concepts, designs and implementations need to
be addressed before any comparison among various forms can be performed.

2.1 Goals and Terminology

Authentication is closely related to Identification. Identification is the process of determining
the identity of a user. An example of revealing a person’s identity is to provide a username.
Authentication is the process of validating the presented identification information: is the person
really the person he claims to be? An example of proving a person’s identity is to provide
credentials. A credential is a secret, known only by parties involved in an authentication process.
Authentication is a prerequisite for Authorization. Authorization is the process of granting
(limited) access to resources to an authenticated user.

2.2 Concepts and Terminology

At least two parties are involved in an authentication process: the Supplicant being the entity
that has to be validated and the Authenticator, being the party that performs the validation.
In this setup, the data needed for authentication is supplied to both parties.

Single Sign-On (SSO): a concept that, from the user’s point of view, allows for a single identity

2https://tiqr.org/
3http://openid.net/
4http://www.surf.nl/en/about-surf/subsidiaries/surfnet

2

to be used for authentication.

Trusted Third Party (TTP): a concept that introduces an additional party that acts on be-
half of the user during authentication.

Anonymous authentication: the process of validating a user’s access rights to resources without
revealing personal information.

Multiple Factor Authentication (M-FA): denotes the level of security. Providing multiple cre-
dentials of different types is considered a stronger proof of an identity because it is harder to
compromise multiple credentials. Three well-known levels are in use

1-FA, uses a single credential. Common implementations use a factor the user knows
(password, PIN, etc.)

2-FA, adds a second credential. Common implementations use a factor the user has (token,
digital certificate, etc.)

3-FA, adds a third credential. Common implementations use a factor the user is (biomet-
rics: fingerprint, retinal scan, etc.)

Hash is the result of a hash-function. ”A cryptographic hash function is a mathematical transfor-
mation that takes a message of arbitrary length (transformed into a string of bits) and computes
from it a fixed-lenght (short) number”. (Kaufman, et al. Network Security). Hashes are often
used to prove identity.

Out-Of-Band (OOB) authentication: adds an additional communication channel during au-
thentication. OOB improves the level of security as compromising multiple communication
channels at the same time interval is considered more difficult.

2.3 Architectures and Open Standards

Concepts need to be transformed into implementations. Development of open architectures and
Open Standards improve interoperability and prevent from technology and/or vendor lock in.
Below, architectures and open standards regarding authentication, relevant to this project, are
discussed briefly.

Architectures
OATH Reference Architecture, Release 2.0 is a high-level technical description of a framework
for open authentication, proposed by OATH, the Initiative for Open AuTHentication5.

OpenID Authentication 2.0 - Final is an open high-level protocol description that provides
a way to validate a user’s identity, proposed by the OpenID Foundation6.

Public Key Infrastructure (PKI) is an architecture to enable to create, manage, distribute,
use, store, and revoke digital certificates.

Open Standards
OCRA: OATH Challenge Response Algorithm (rfc6287), developed by OATH .

5http://www.openauthentication.org/files/download/oathPdf/ReferenceArchitectureVersion2.pdf
6http://openid.net/foundation/

3

HOTP : An HMAC-Based OTP Algorithm (rfc4226), developed by OATH .

X.509 certificates (rfc5280, rfc6818): an ITU-T standard for a Public Key Infrastructure
(PKI).

SSL/TLS (rfc5246): cryptographic protocols which are designed to provide authentication
using X.509 certificates.

HMAC (rfc2104), SHA256 (NIST) are hash algorithms.

2.4 Implementations

Both Open Source and commercial solutions of authentication concepts are available whether
or not implementing open standards. Most relevant open solutions, relevant to this project are
OpenID and TiQR.

OpenID is an open standard SSO solution that allows users to be authenticated by certain
co-operating sites (known as Relying Parties or RP) using a third party service. As this TTP
might be an online networking service, this type of authentication is associated with social-login.

TiQR is an open source authentication solution for web sites intended to be used with smart-
phones. TiQR is designed to benefit from smartphones by using the built-in camera. A QR-code
is used to represent the data that initiates the authentication process. On this point, TiQR and
SQRL match.

2.5 Identity Fraud

Identity Fraud is stealing and subsequently using a person’s identity. As said before, identity
fraud is big. Theft is caused by vulnerabilities of the authentication process. Attacks exploit
these vulnerabilities. There is not a single spot in this process to be indicated that causes
vulnerabilities. Common areas are

Design errors have a huge impact as it is not likely to come up with a quick work-around to
mitigate the threat. A redesign and a new implementation will be the result leaving the user
to choose for an alternative in the meantime.

Implementation errors are caused by hardware and/or software developers that implement
the design. Poor input-data validation is a common implementation error.

Human errors play an important role in identity fraud. Users are often unaware of the
techniques used by identity thieves. Malware and social engineering are serious threats with
regard to identity fraud.7[5, 6]

3 SQRL

SQRL is a draft for SSO web authentication using mobile devices. It uses QR-codes to represent
authentication data.

7http://www.kindsight.net/en/blog/tags/identity-theft

4

3.1 SQRL Design Goals

The SQRL design goals are exemplified by Steve Gibson during a SecurityNow podcast.8 An
overview of the most relevant properties quoted, are listed below:

• there is a need for anonymous online authentication. Users should be able to decide
themselves whether they are trackable on the Internet

• no obvious connections among different websites, to avoid profiling

• it should provide 2-FA, using separate channels (out-of-band) to assure an improved level
of security

• no exchange of pre shared secrets, to avoid server security dependency

• it should provide SSO because multiple accounts are hard to handle and mandatory account
creation distract users from websites

• no keyboard interaction during authentication, to allow use of public devices

• no TTP involvement, to avoid security dependency

• it should be free, not complex, to be used side by site to alternatives, to encourage adoption
and deployment

3.2 SQRL Operation

Three modes of operation are supported as shown in figure 1. The leftmost scenario is discussed
as it uses most of SQRL’s properties. It is assumed that the user’s smartphone has a SQRL-app
installed.
The presented ‘QR scanning‘ mode allows for using an untrusted device. Reasons for this setup

Figure 1: SQRL modes of operation

might be limited bandwidth and/or battery depletion on the smartphone. The user initiates
the process by clicking the SQRL Login button presented on the visited SQRL enabled website,
using the untrusted device. The website returns a QR-code visible on the untrusted device’s
screen. This QR-code is scanned by the SQRL-app. Subsequently, the app extracts and displays
the Full Qualified Domain Name (FQDN) of the authenticating service from the QR-code. The
user confirms to authenticate using this site and enters his SQRL secret password. The user is
authenticated and granted access. The app shows a successful authentication message and the
untrusted device’s browser is unlocked and refreshed. Both remaining modes ‘QR Tapping‘ and

8http://twit.tv/show/security-now/424, starting from 37.15 minutes

5

‘QR Clicking‘ are used in more straightforward setups and then some security guarantees are
limited.

3.3 SQRL Concepts and Design Details

Concepts The SQRL design proposes a Challenge Response authentication mechanism to be
implemented. In this widely used concept, a server issues a challenge that needs to be responded
by a client (figure 2). This response is used to validate the identity of the client. A common
concept for this scheme is public key cryptography. Implementation proposals use public as well
as secret key cryptography, one-way hashing and rely on a secure communication protocol.

Figure 2: Client - Server Challenge Response concept

Design Details The composition of the building blocks used, is shown in figure 3.

Figure 3: SQRL building blocks. Taken from https://www.grc.com/sqrl/crypto.htm

A 256-Bit Master Key represents the ‘proof of possession’ authentication factor. The algorithm
used to provide this key is expected to generate a maximum-entropy key. The second (‘proof
of knowledge‘) authentication factor is represented by the Identity Password. This is the single
key applied by the user. As it is frequently used, extra attention is to be paid to management
of this key in terms of strength, lifetime and secrecy. Both factors are used to assemble the
256-bit random value called Key and represents the never changing user’s SQRL ID.

A SQRL enabled website shows a QR-code that contains the FQDN of the authenticating
service. This unique string is fed to the Msg-input of the HMAC-SHA256 building block. This
function outputs a keyed Hash Message Authentication Code (HMAC), a 256-bit value, unique
for the (Key,Msg) pair. Due to the fact that this value is site-specific, it is to be of use in public
key cryptography, representing a Private Key. The SQRL-app uses this private key to create

6

a signature (called Identity Authentication) of the entire URI. This signature is sent to the
server as part of the response.

To be able to verify the received signature, the server needs the associated public key
(Identity Public Key). The Make Public Key building block calculates the associated public
key using Elliptic Curve Cryptography (ECC). This public key is sent alongside the signature as
a response of the server’s challenge. A message sequence diagram reflecting the ‘QR Scanning‘
mode is provided in figure 4. This diagram is of use when comparing SQRL to related solutions.

Figure 4: SQRL message sequence diagram

The SCRYPT PBKDF and Password Verify building blocks implement additional security.
As said before, the Identity Password represents the user’s SQRL password (’know factor’).
Offline password attacks are one out of many attack schemes used to compromise a user’s
identity. A PBKDF (Password Based Key Derivation Function) is a function that deliberately
causes a huge computational load. The goal is to slow down password cracking processes.
SCRYPT (usually in lowercase) is an enhanced implementation of a PBKDF as it also forces
huge memory consumption9.
The fixed SQRL ID depends on a changing component, as a responsible user will change the
Identity Password at regular intervals. This is solved by adjusting (XOR’ing) the 256-bit Master
Key whenever a user changes his SQRL secret password.
Note: the presented flow for this XOR operation is not reflected in figure 3. Also note that the
SQRL secret key is not related to the key that allows access to the smartphone itself.
The Password Verify building block stores 128 bits of a hash of the SCRYPT PBKDF output.
Whenever a user enters his SQRL secret key, SCRYPT calculates the 256-bit value which will
be hashed and verified (128 bit) by Password Verify.

9http://www.tarsnap.com/scrypt/scrypt.pdf

7

ID Revocation is an important supported feature. Because of possible vulnerabilities, at-
tacks may succeed in stealing a person’s SQRL identity. As soon as fraud is suspected, the ID
has to be locked and subsequently unlocked and/or revoked by the authentic user. These latter
operations are not available to the thief. A brief description of this procedure is given here.
Details can be found on SQRL’s site.

A compromised identity is an emergency situation. Quick response is needed but should not
be at the expense of security. For this reason different situations have to be distinguished and
dealt with.
Resources needed to immediately lock a SQRL ID are permanently provided on the client as
well as on the server side. This operation can be performed by any user who has access to
the installed SQRL-app. However, resources to unlock and/or revoke a SQRL ID are partially
stored on a safe place by the authentic user during initialisation.

To enable these features, additional key-pairs are (re)generated. For a user of a compro-
mised ID to prove its authenticity, a pre shared key is used. A (super) secret (private) key is
involved in this pre shared key calculation. The user is urged to print this key on paper and
keep it on a safe place. If this requirement is met, an identity thief is not able to (re)generate
this pre shared key, effectively not able to unlock or revoke the SQRL ID.
Diffie-Hellman (DH) is used to generate this pre shared key. In normal DH operation both
parties, client and server, are involved in the pre shared key computation. The SQRL imple-
mentation differs in the sense that the server side is not involved. The very first time a user
issues a SQRL login request to a website, keys are generated that allow for lock, unlock and ID
revocation regarding this single website. It goes without saying that only public keys are stored
on the server side and public keys are not shared among websites to avoid cross-site coupling
of keys. This enforces anonymity. A drawback of this requirement is the need for regenerating
keys because it is unfeasible to store revocation private keys for all visited websites on the client.
It comes down to signing and verifying a signed unlock and/or change identity request using
keys that are derived from the (super) secret (private) key owned by the authentic user and
using the pre shared key.

3.4 SQRL Properties

From this analysis, properties can be given to the design.

• SSO: From a user’s point of view, SQRL offers SSO behaviour as the user provides the
same single password during arbitrary websites authentication.

• 2FA: SQRL offers 2FA: during authentication, a user has to provide a credential he knows.
The second factor is stored in the SQRL-app that the user has.

• OOB: SQRL does offer Out-Of-Band authentication as two different communication chan-
nels are supported during authentication.

• Pre shared keys exchange: SQRL does not exchange pre shared keys. Only public keys are
exchanged.

• TTP: SQRL does not introduce additional Trusted Third Parties. The only TTP involved
is part of the communication channel protocol TLS.

• Anonymity: The user’s ID is represented by a 256-bit random value (Master Key). Site-
specific keys (ID’s) are generated from this Master Key. The HMAC-SHA256 algorithm
assures that keys are not related. Cross-coupling of ID’s is not to happen. From this point
of view, anonymity is provided.
Note: SQRL resides on the Application Layer of the network communication protocol

8

stack. In network communication, many more layers are involved which might reveal
identity information.

• ID revocation: SQRL supports lock, unlock and identity change. To enable this, additional
keys are generated during initialisation and some of them are to be regenerated upon use.
To take anonymity into account, site-specific keys are generated.

• Low friction deployment: The current draft is open and based on scientific findings. These
principles ensure that there are no barriers that will hold up adoption and deployment.

4 Related SSO solutions

4.1 TiQR

TiQR is an open authentication solution for smart phones and web applications10 developed
by SURFnet11. QR-codes, scanned by the smartphone’s camera, are used to represent login
and authentication data. Additional properties of TiQR are presented now briefly. Detailed
information can be found in AppendixA.
TiQR is based on OCRA (OATH Challenge Response Algorithm), an algorithm intended for
challenge response authentication and specified in RFC6287.[7]
The underlying protocol used by OCRA is the HMAC-based One Time Password algorithm,
specified in rfc4226.[8]
The protocol name reveals its purpose: generating an OTP. A hash is computed using SHA1
as the algorithm and a shared secret key K and a synchronized counter C as input values. The
result is truncated to a convenient size a user can handle (6 - 8 digits) as shown in figure 5.
OCRA implements HOPT in a more general way. The counter C has been replaced by a set of

Figure 5: Block diagram HOTP, HMAC-based One Time Password generation

parameters, some of them being optional, including the original counter C. The protocol allows
for negotiation. One of these parameters is mandatory: a challenge Q. The value of Q and all
negotiated options are concatenated as a string and fed to the HOTP function-input C. For
2-factor authentication, a password hash is part of this string. OCRA offers no mechanism for
secure exchange of secrets.

TiQR implementation TiQR-app’s are available for Android and iOS. For every TiQR en-
abled website, a user needs to create a TiQR account. Besides a username and email address a
4-digit secret key (PIN) is shared.[9] The current implementations don’t allow for changing this
PIN. A secure connection is required to protect the exchange of account data.

10https://tiqr.org/
11http://www.surf.nl/

9

Using TiQR is straightforward: a user visits a TiQR-enabled website and requests a TiQR
login. The website generates and displays a QR-code holding a challenge which will be read by
the TiQR-app. The user enters the secret PIN and the app calculates and returns the hash.
The authenticating service verifies the hash and authorizes the user. Upon success, the user is
logged in.
For comparison purposes, a TiQR message sequence diagram is drawn in figure 6. This imple-
mentation composes of two handlers: an enrolment handler and an authentication handler.[10]
It will be used in section 5.

Figure 6: TiQR message sequence diagram

4.2 OpenID

OpenID is an open standards specification for authentication, intended for users that want to
prove their identity to websites. A brief description of operation is presented below. Detailed
information is given in Appendix B.
Users first create and register their ID with an OpenID Provider (OP). This provider acts
as a TTP. An OpenID-enabled website contacts the OP upon a user initiated authentication
request. In this context, OpenID-enabled websites are called Relying Parties (RP). The speci-
fication supports use of multiple ID’s with multiple OP’s per user, but a single ID will do. The
latest OpenID specification is OpenID Authentication 2.0.[11]
The specification presents a high-level protocol description. For implementation details like
hash functions and secret key generation, recommendations are presented. HTTP(S) is the sin-
gle mandatory protocol. OpenID uses HTTP over TLS to protect information exchange. The
specification merely covers implementation constraints, for example data formats and commu-
nication types.

OpenID implementation The user’s view of creating an OpenID account is not different
from any other account except for the name which represents a URL. A created OpenID account
might look like os3uva.clavid.com

The method used for authentication to the OP is not part of the specification. Passwords and

10

TiQR are valid options, shown in Appendix B. To be able to compare the various solutions, an
OpenID message sequence diagram is derived from the specification and shown by figure 7.

Figure 7: OpenID message sequence diagram

11

5 Research Findings

Approach To be able to determine SQRL’s vulnerabilities, information is retrieved on causes
that affect vulnerabilities. Results from audits and research are important sources here.[12, 13,
14]
Three main categories are to be distinguished: design-, implementation- and user errors.

Design errors cause a component to fail its specifications. Weaknesses belong to this
category. Weaknesses in the MD5 hash algorithm for example, cause collisions. In case a design
error can’t be repaired, implementations become of no value.

Implementation errors are caused by hardware and/or software developers that make
wrong decisions. A TiQR implementation audit[12] shows that types of errors made are exten-
sive.

User errors reflect the user’s behaviour. Authenticating users have to be educated and
informed for all possible threats. Security audits and best-practice show[12]12 that some attacks
can be mitigated but risks remain as they depend on the user’s behaviour.

5.1 SQRL Vulnerability Analysis

The SQRL design analysis provided in section 3.3 shows that all building blocks are composed
of standards that are currently in use. At this moment no weaknesses or flaws are known that
might erode the SQRL security properties. These include:

• TLS: SQRL relies on TLS as a secure communication channel. A proper implementation
and an attentive user repel MiTM attacks and eavesdropping. The validated certificate
ensures that no malicious party is involved. The user has to confirm this validation as
phishing is widespread.

• Master Key: Creating a duplicate of a 256-bit random value is not considered feasible.

• HMAC-SHA256: Creating a duplicate of a 256-bit random value is not considered feasible.
There is no reverse operation that will reveal the Master Key.

• Public Key: Use of asymmetric key encryption is considered secure.

• scrypt PBKDF: will slow down a brute force attack considerably.

It is not obvious that SQRL’s vulnerabilities are to be found in its design.

Currently, there is no mature implementation of the SQRL draft. A vulnerability analysis
of this category can’t be done yet.

User errors play an important role in security threats too often. Security audits confirm this
observation. Common identified threats are:

• Malware: Jailbroken devices are more susceptible to downloading malicious apps. But
even healthy devices suffer from these attacks.13 Malware that is able to penetrate the
SQRL-app or eavesdrops the import and/or export of keys, compromises the user’s SQRL
ID. This is the very worse scenario as this user is out of control.

12http://wiki.openid.net/w/page/12995200/OpenID
13https://www.security.nl/posting/40820/Malware+op+Google+Play+besmet+miljoenen+Android-

toestellen

12

• Shouldersurfing: A person or camera viewing user interaction causes the loss of an authen-
tication factor. An Identity Password that is known by anyone who benefits from identity
theft, will encourage that person to attempt to steal the smartphone. However, the key
that allows access to the smartphone itself is needed as well.

• Stolen devices: are susceptible to offline brute-force attacks but may also be part of the
shoulder surfing attack.

• Phishing: might provide an opportunity for Man-In-The-Middle attacks. This attack is
feasible. An identity thief may request a SQRL challenge (valid operation). Next this QR
is shown on a page that mimics an authentic site that is frequently visited by the user.
If this login page is presented to a negligent user that accepts the challenge, provides his
Identity Password and submits, causes the thief’s browser to unlock and the thief is logged
in.

It is obvious that user errors have serious impact on SQRL’s secure operation. All identified
threats mentioned above may cause losing secrets thus causing identity theft or impersonation.
In the next paragraph, countermeasures to mitigate these attacks are proposed.

Countermeasures The most severe threat is malware. In a worst case scenario a thief takes
over control and is able to impersonate the victim.
A solid solution would be using an additional feature of modern smartphones: nfc-capability.
These devices support Near Field Communication, a standard for short distance wireless bidi-
rectional communication. The SQRL crypto design is to be implemented in a nfc-tag which
holds a crypto processor. This setup is presented in figure 8. Using a PC instead of a smart-

Figure 8: SQRL crypto system executed by a nfc tagged crypto processor

phone, a similar setup is proposed. Here, the SQRL crypto system is transferred to a smartcard
which contains a crypto processor. This solution is presented in figure 9.

Substantial research has been conducted on graphical passwords. On the one side graphical
passwords are considered to be more memorable than strong passwords and possibly more vul-
nerable to shoulder surfing on the other.[15, 16]. PassFaces.14 is an example of a graphical
password implementation.

Brute-force attack countermeasure is part of the SQRL design. The scrypt-PBKDF thwarts
this attack by enforcing huge cpu power and memory consumption during key derivation.

14http://www.passfaces.com

13

Figure 9: SQRL crypto system executed by a smartcard crypto processor

Phishing can be mitigated by user awareness in conjunction with maintaining a clear enrol-
ment and authentication procedure. Explicitly showing the FQDN of the authenticating service
is crucial. Setting up a personalized icon on the the login screen will contribute as well. However,
this doesn’t fit to the anonymity property.

5.2 Properties & Comparison

The properties of SQRL are to be compared to be able to determine how SQRL differs from
related solutions and to denote whether these differences contribute to improved authentication
security. Properties that are relevant to this question are collected and presented in figure 10.
This overview shows that just a few conceptual OpenID properties can be measured. The
remaining characteristics are implementation dependent. However, conclusions can be drawn.

• No secret(s) exchange: TiQR relies on shared keys as shown in figure 6: a PIN, exchanged
during account creation and a user initiated session key K as part of the authentication.
SQRL has no such exchange of secrets. Both implementations rely on TLS as underlying
secure channel. A proper implementation of TLS is considered secure. The process of
secrets exchange does not degrade the security level. However, storage of secrets is an
additional aspect. A webserver that stores private authentication information introduces
a threat as it might get compromised. Depending on the user’s choice of the number
of identities (single or multiple), a compromised webserver might cause loss of a global
identity. Not sharing secrets avoids this threat.

• Anonymity: An email address is part of a TiQR account. This means is intended for
account recovery in case of user lock out. An email address adds up in the amount of
information that is known about a person. In this way it decreases anonymity. SQRL’s
ID revocation process is exercised by using keys.
Note: a user has to keep in mind that anonymity is relative. Despite the fact that SQRL
ID’s are represented by random values, identity information might be revealed. This is
caused by the network communication involvement. SQRL is just an application, part of
a protocol stack that allows for inter network communication. Data, needed to establish
communication might be linked to the user’s identity.

• No (additional) TTP: This relates to ‘No secret(s) exchange‘. A party might get compro-
mised. Figure 7 shows that an additional TTP is part of OpenID’s concept. Lack of a
TTP increases security with respect to TTP compromisation.

From this overview and analysis the research subquestions can be answered as well.
The ‘SQRL column‘ of figure 10 shows the properties offered. Figure 11 shows what SQRL

14

offers to the challenging and to the authenticating party. Some implementation details are
omitted here because a user’s perception is presented. The dependencies that SQRL relies on

Figure 10: SQRL properties compared to
TiQR and Open ID

Figure 11: SQRL properties offered to user
and website

to guarantee its behaviour are TLS, as a secure communication channel and a responsible user;
a user that is aware of techniques that exploit user vulnerabilities.

5.3 Extended Deployment

One of SQRL’s key design goals is to provide anonymity. This prevents user profiling and
tracking. To meet this property the SQRL design provides site-specific keys that exclude cross-
coupling of ID’s. This characteristic can be used to extend utilization. Anonymous login is not
always applicable. Internet shopping, membership of an organisation, participation registration
or email verification demand for additional information that deliberately reveals a persons iden-
tity. SQRL can be of use in this area as well because of its ‘site-specific-keys‘ property. Figure
12 shows this side-by-side operation.

Figure 12: SQRL extended deployment: anonymous as well as identified authentication

15

6 Conclusion

During this project, a close look has been taken at SQRL, a draft for secure web authentication
using modern devices like smartphones. The focus was on authentication security, extended
deployability and distictive properties.

Analysis shows that the main vulnerability is caused by user errors. A SQRL user has to
keep two fixed secret keys on a safe place that should not be connected to a network. A third
key, being the user’s PIN, is frequently used and also to be kept private. Besides storage, use of
these secret keys by import and/or export operations may cause identity theft due to devices
that are infected by malware. Negligent users are susceptible to phishing and shoulder surfing.
Countermeasures that relieve users from burdensome key management and cuts off malware are
implementations using an additional secure environment. Implementing the SQRL crypto sys-
tem in a smartcard or nfc-tag that contains a crypto processor, will improve security regarding
key management.
Secondly, promoting user awareness will contribute to a higher level of user responsibility. Users
that have a clear picture of identity fraud are less susceptible.
Vulnerabilities caused by implementation errors are not part of this project. Due to the rela-
tive recent introduction of the SQRL draft (October 2013), no mature implementations exist yet.

SQRL aims for anonymity. Due to this design goal, the draft is suited to authentication that
deliberately discloses a person’s identity. The design allows for side by side operation of both
authentication modes.

A comparison of SQRL to related solutions TiQR and OpenID shows that SQRL is distinct.
It’s not the individual properties that make the difference but the combination. Both TiQR and
OpenID support some SQRL properties but not all of them. The most distinct combination of
properties provided by SQRL is: no secret key exchange, no TTP, anonymity.
Users should be aware of the limitations of anonymity on the Internet. Many more components
are involved in network communication and many of them may contribute to disclosure of user
identity information.

7 Future Work

Currently, no mature implementations of SQRL are provided. Due to this, the impact of imple-
mentation errors can’t be determined. However, history shows that many vulnerabilities come
from this area. Security audits are to be performed on both app and server implementations.

Devices infected by malware being used for authentication allow for identity theft. Practice
shows that malware is persistent. This justifies the need for a secure environment. The pro-
posed solutions need a follow up.

SQRL supports ID revocation in case of a compromised identity. The current draft has no
automated procedure on ‘lock‘ and ‘change identity‘ operations to be performed on all visited
websites.

16

References

[1] Kirsi Marjaana Helkala and Tone Hoddø Bak̊as. National password security survey: Re-
sults. 2013.

[2] Javelin Strategy. Research.(2012, february 22). 2012 identity fraud report: Social media
and mobile forming the new fraud frontier.

[3] SM Haque, Matthew Wright, and Shannon Scielzo. A study of user password strategy for
multiple accounts. In Proceedings of the third ACM conference on Data and application
security and privacy, pages 173–176. ACM, 2013.

[4] Dinei Florencio and Cormac Herley. A large-scale study of web password habits. In
Proceedings of the 16th international conference on World Wide Web, pages 657–666. ACM,
2007.

[5] Android malware growth and possible botnet. Network Security, 2012(7):1 – 2, 2012.

[6] Android malware goes undetected. Computer Fraud Security, 2012(3):3 –, 2012.

[7] D MRaihi, J Rydell, D Naccache, S Machani, and S Bajaj. Ocra: Oath challenge-response
algorithms. Technical report, IETF RFC, 2011.

[8] D MRaihi, M Bellare, F Hoornaert, D Naccache, and O Ranen. Hotp: An hmac-based
one-time password algorithm. The Internet Society, Network Working Group. RFC4226,
2005.

[9] Jan Michielsen. tiqr user manual. Technical report, 2011.

[10] Roland M Van Rijswijk and Joost Van Dijk. tiqr: a novel take on two–factor authenti-
cation. In Proceedings of the 25th international conference on Large Installation System
Administration, pages 7–7. USENIX Association, 2011.

[11] specs@openid.net. Openid authentication 2.0 - final. Technical report, 2007.

[12] Roland van Rijswijk and Joost van Dijk. Tiqr-security-audit-report-v1.1.pdf. 2011.

[13] Manuel Uruena and Christian Busquiel. Analysis of a privacy vulnerability in the openid
authentication protocol. IEEE Multimedia Communications, Services and Security, 2010.

[14] Pavol Sovis, Florian Kohlar, and Jörg Schwenk. Security analysis of openid. In Sicherheit,
pages 329–340, 2010.

[15] Haichang Gao, Wei Jia, Fei Ye, and Licheng Ma. A survey on the use of graphical passwords
in security. Journal of Software (1796217X), 8(7), 2013.

[16] Furkan Tari, Ant Ozok, and Stephen H Holden. A comparison of perceived and real
shoulder-surfing risks between alphanumeric and graphical passwords. In Proceedings of
the second symposium on Usable privacy and security, pages 56–66. ACM, 2006.

17

Appendices

A
TiQR implementation details

TiQR is an open authentication solution for smart phones and web applications15 developed by
SURFnet16.

Open Standards TiQR is based on OCRA (OATH Challenge Response Algorithm), an algo-
rithm intended for challenge response authentication and specified in RFC6287. At an abstract
level, OCRA can be denoted by

OCRA = CryptoFunction(K,DataInput)

K = shared secret Key

DataInput = concatenation of various input data values

CryptoFunction = the function performing the OCRA computation

For the CryptoFunction the HOTP (HMAC-based One Time Password) algorithm is used.
HOTP is specified in RFC4226. At an abstract level, HOTP can be denoted by

HOTP (K,C) = Truncate(HMAC − SHA− 1(K,C))

K = shared secret Key

C = (incrementing) counter

Truncate = algorithm reducing the HMAC-SHA-1 result to 6 (up to 8) digits

HMAC = keyed Hash Message Authentication Code. A hash function is used to calculate
a value based on C and K. The hash function used is SHA-1 (RFC3174)

Combining both formulas present a more clear view of the OCRA output.

OCRA = Truncate(HMAC − SHA− 1(K,DataInput)

The result of this computation would be an OTP consisting of 6-8 digits. The expected output
size is recorded in the OCRAsuite. This set of possible outputs include all supported hash
functions as well.

Besides that, the formula shows that OCRA’s use of HOTP is more general. The DataInput
parameter consists of several options that are to be negotiated. This allows for wide use like
applying a challenge. Available options are

C = counter that is equivalent to the HOTP parameter. This feature is optional

Q = challenge needed for the authentication. This feature is mandatory

P = a hash value of PIN/password that is known to all parties. This feature is optional

S = a UTF-8 encoded string that contains information about the current session

T = a timestamp. This feature is optional

OCRAsuite = a textstring holding the OCRA mode of operation and options that are
included in the computation

15https://tiqr.org/
16http://www.surf.nl/

18

An OCRAsuite specification that provides 2-FA might look like:"HOTP-SHA1-0:PSHA1" which
represents

HOTP-SHA1 = hash function used to compute the hash value

0 = no truncation (full sized hash value)

PSHA1 = secret password hashed by SHA1 function

Figure 13 shows a simple message diagram of a one-way authentication using OCRA.

Figure 13: OCRA-message-diagram

OCRA offers no mechanism for secure exchange of K and P.

TiQR implementation TiQR-app’s are available for Android and iOS.

Account creation For every TiQR enabled website, a user needs to create a TiQR ac-
count. Using his computer, a user visits the website and enters a user ID in the TiQR account
creation area. The webserver will generate and show a QR-code on the computer’s display,
representing this account. The user is expected to read this QR-code using the TiQR-app on
his smartphone and to confirm the account activation. Next the user has to enter a 4-digit
secret PIN. Now the TiQR account is activated and ready for use. In cases a user decides to
create multiple TiQR ID’s, it is recommended to share the secret PIN among ID’s to avoid
confusing. In the current implementation it is not possible to change this PIN.
A HTTP over TLS connection is required for this account creation process to protect the ex-

change of secrets. After account creation, the user ID as well as the PIN (= P) is known by the
server.

Using TiQR is straightforward

• a user visits a TiQR-enabled website

• website generates and displays a QR-code holding a challenge

• user uses TiQR-app to read the QR-code

• user enters secret PIN

• TiQR-app computes hash according to the OCRAsuite, K, challenge Q and the hashed P
and returns this response

• (authenticating part of the) website verifies the response and authorizes the user if positive.

19

• the user is logged in

The message diagram for this TiQR implementation is given in figure 14. This implementation
composes of two handlers: an enrolment handler and an authentication handler

Figure 14: TiQR message sequence diagram

20

B
OpenID specification details

OpenID is an open standards specification for authentication, intended for users that want to
prove their identity to websites. Users first create and register their ID with an OpenID Provider
(OP). This provider acts as a TTP. An OpenID-enabled website contacts the OP upon a user
initiated authentication request. In this context, OpenID-enabled websites are called Relying
Parties (RP). The specification supports use of multiple ID’s with multiple OP’s per user, but
a single ID will do. The latest OpenID specification is OpenID Authentication 2.0.

Open Standards HTTP(S) is the single mandatory protocol. OpenID uses HTTP over TLS
to protect information exchange. For implementation details like hash functions and secret key
generation, recommendations are presented. The specification merely covers implementation
constraints, for example data formats and communication types.

OpenID specification The terminology that is needed to understand the message diagram
is given here.
User-Supplied Identifier: ID presented by the user to the Relying Party.
OP-Endpoint URL: URL which accepts OpenID Authentication protocol messages.

Figure 15: OpenID-message-diagram

The manner in which the user authenticates to the OP is not part of the specification.

Account creation can be done at any, free to choose, OpenID Provider. One of them is
Clavid AG, a Swiss identity provider17. An OpenID is a unique URL that captures the user ID
as well as the authenticating OP. Depending on the implementation, a user has to provide at
least a user ID as mandatory information.
A created and registered OpenID with Clavid AG might look like os3uva.clavid.com As shown
in figures 16 and 17 for this OP a first name, last name and email address are mandatory extra
fields.

17http://www.clavid.com

21

Figure 16: Clavid mandatory fields Figure 17: Clavid mandatory fields

Multiple authentication types for a single ID are supported, among them password and TiQR.

Figure 18 shows an example

Figure 18: Clavid authentication types

Using OpenID is straightforward. An OpenID-enabled website shows the OpenID logo
and a user will initiate the login. An example using LiveJournal18 is provided.

Figure 19: www.livejournal.com supports OpenID

18http://www.livejournal.com

22

Figure 20: OpenID login using a pass-
word

Figure 21: OpenID login using TiQR

Figure 22: Successful LiveJournal login using OpenID

23

