
Calculating Total System Availability

Hoda Rohani, Azad Kamali Roosta

Information Services Organization
KLM-Air France

Amsterdam
Supervised by Betty Gommans, Leon Gommans

Abstract— In a mission critical application, “Availability” is the very first requirement to consider. Thus

understanding what it is, what would affect it, and how to calculate it is vital. Although many methods have

been proposed to calculate the availability of a device and/or a simple system, calculating the availability

of a Business Application within a very complex organization is not still easily achievable. In this project,

we would be proposing a method to enable the IT management team of KLM, to predict their Business

Application availability based on the configuration and the components used in their infrastructure.

System Availability, Reliability Engineering, MTBF, MTTR, Failure, Network, Application

Contents

I. Introduction ... 3

II. Problem Statement ... 3

A. Effective Parameters ... 4

III. Terms and Definitions .. 4

IV. Failure Sources ... 10

V. Single Component Calculations... 10

A. Hardware ... 10

B. Software .. 11

C. Procedure .. 11

D. Environment .. 11

E. People .. 11

VI. Simple Models.. 12

A. Serial Configuration .. 12

B. Parallel Configuration ... 12

C. Hybrid Configuration .. 13

VII. Related Works ... 14

A. Markov Modeling ... 14

B. Fault Tree Analysis ... 15

C. Failure Mode and Effect Analysis ... 15

VIII. The Approach .. 16

A. Component Selection and Layering .. 16

IX. Proof of Concept .. 18

A. Situation .. 18

B. The input data ... 20

C. Processing Files .. 21

D. Assumptions .. 22

E. Execution .. 22

1) Maximum of 1 simultaneous failure ... 23

2) Maximum of 2 simultaneous failures ... 23

3) Maximum simultaneous failures > 2 .. 24

X. Future Works ... 24

A. Optimizing the algorithm .. 24

B. More criticality options ... 24

Acknowledgment .. 24

References .. 24

XI. Appendix 1. .. 26

I. INTRODUCTION

In a mission critical application, “Availability” is the very first requirement to consider. Thus

understanding what it is, what would affect it, and how to calculate it, is vital. Proper functioning of a

system can be evaluated based on different factors. Among those, “Reliability” and “Availability” are

two close measurements in use. While these terms might have slightly different meaning in different

contexts (e.g., in information security, “integrity” and “availability” are examined separately [1]) but

we’ll be binding ourselves to the “Reliability Engineering” definition of these terms within this project.

“Reliability Engineering” is a sub-disciplinary of System engineering that emphasizes dependability in

the lifecycle management of a product [2].

Said so, “reliability” is a function of time, defined as the conditional probability that the system will

perform correctly throughout the interval [t0, t1], given that the system was performing correctly at the

time t0 [3], while “availability” is considered as a function of time, defined as the probability that system

is operating correctly and is available to perform its function at the instant of time “t” [3]. The major

difference between these two terms is in the time, which is considered as an interval in former and

instantly in the latter [4]. For example, if you consider a reservation system with 98.3% availability, we

expect that it will be operating successfully for 59 minutes in each hour (statistically speaking). But

reliability of such a system can be as bad as 10 minutes, which means that it will be considered “not

working”, 10 seconds after each 10 minutes of working. Although the system availability is rather high,

if a customer needs 15 minutes to book a ticket, she/he will never find the chance!

The likelihood of a system to fail, is often measured by its MTTF and/or MTBF parameters. MTBF

(Mean Time between Failures) is the average (expected) time between the two successive failures of a

component. It is a basic measure of a system’s reliability and availability and is usually represented as

units of hours. Similarly, MTTF is defined as the expected time for the first failure [4].

“Recovery” is yet another main concern about any service. Having a correct recovery procedure and

being prepared to recover from any failure in a defined amount of time via defined amount of energy and

resources spent, one may decide not to lower the likelihood of the system to fail, but just simply recover

it in case of a failure as soon as possible. All in all, what matters is to have the service do what is it

supposed to do at the right time. MTTR (Mean Time to Repair) is the main term when determining how

a system would behave in case of recovery. It is another major factor of determining a system

“Availability”.

While these terms are highly interdependent, they have similar building blocks. In this project, we will

be focusing on the availability. Although similar methods can be used to calculate the reliability as well.

In the term of our case and within KLM environment, a “service” is a component defined and used in

company’s business process to play a specific role. Each Service consists of different software, hardware,

people and processes in different layers. It is obvious that the total amount of availability a service has,

would be highly dependent on its components.

II. PROBLEM STATEMENT

KLM is the flag carrier airline of the Netherlands and the oldest airline in the world still operating

under its original name with its hub being at Amsterdam Airport Schiphol. Within KLM IT infrastructure

hierarchy, there exists a couple of top level applications which are supposed to meet corporate business

functions’ requirements. These applications are referred to as “Business Applications”. Electronic

Booking System (EBT) is one of those applications which we will be focusing on throughout this project.

Although the proposed model can also be applied to any other Business Application as well.

In this project, we will be creating a framework which allows the calculation of a Business Application

Availability in various environment defined by the management. Live infrastructure data will be received

from the AITIH database and Availability is calculated based on these data. It can also provide the

required data for analysis of critical points (those having the most negative effect on the availability) in

the infrastructure.

A. Effective Parameters

Each Business Application consists of other application software as its building blocks. Said so, a

Business Application is considered “available” if all its building blocks are available and can

communicate together (where required) correctly. If the Business Application is supposed to be accessed

by the end-user (namely the customer), this accessibility should also be taken into account.

Of course for each application to operate correctly, the underlying hardware are supposed to be working

correctly as well and so should the underlying software layers (like operating system). The

communication layer is yet another obvious component we need to be available for each two components

needing to pass data to each other.

When one talks about a piece of hardware (or software) availability, she/he is considering that it is being

operated under the situation that the component is supposed to be working. This means that the

probability of network switch failing, does not include the probability of power outage, cooling failure,

misconfiguration by the switch administrator or even wrong port selection by the user due to lack of

proper manuals. This means that the availability of these components should also be taken into the

account separately. We would be categorizing these parameters as “people” and “processes” within our

project.

These parameters and their relation can be seen in Fig. 1.

Figure 1-Availability Dependency Model in abstract.

Each layer’s availability is affected by those in lower layers.

It is obvious that the more details we include in the model, the more precise result we will be having.

But this might end up trading the calculation time and the model complexity for some precision that we

don’t really need. So we have to select only those components we want to consider their effect carefully.

One way of determining which to select can be to rely on experienced expert’s opinion. Another good

practice can be going through the historical data of incident management system. If we’re dealing with

a system that has been in place for a rather long time and the incident records are accessible for it, the

latter might be more useful. On the other hand, if we have a new system with most of its behaviors are

yet to be known, the former is a better choice.

III. TERMS AND DEFINITIONS

Before going into more details, we want to introduce the terms we will be using along the project.

- Mean Time between Failures (MTBF)

Mean Time between Failures is the average (expected) time between two successive failures of a

component. It is a basic measure of a system’s reliability and availability and is usually represented as

units of hours.

- Mean Time to Repair (MTTR)

Mean Time to Repair (or Recover) is the average (expected) time taken to repair a failed module.

This time includes the time it takes to detect the defect, the time it takes to bring a repair man onsite, and

the time it takes to physically repair the failed module. Just like MTBF, MTTR is usually stated in units

of hours.

The following equations illustrates the relations of MTBF and MTTR with reliability and availability

[5].

��������1: ���������� = � ����
����

��������2: ������������ = ���
��� + ����

The following conclusions can be reached based on these formulas [6]:

- The higher the MTBF value is, the higher the reliability and availability of the system.

- MTTR affects availability. This means if it takes a long time to recover a system from a

failure, the system is going to have a low availability.

- High availability can be achieved if MTBF is very large compared to MTTR.

- Inherent Availability

The probability that an item will operate satisfactorily at a given point in time when used under stated

conditions in an ideal support environment. It excludes logistics time, waiting or administrative

downtime, and preventive maintenance downtime. It includes corrective maintenance downtime.

Inherent availability is generally derived from analysis of an engineering design and is calculated as the

mean time to failure (MTTF) divided by the mean time to failure plus the mean time to repair (MTTR).

It is based on quantities under control of the designer [7].

When a system occurs a failure, the point is that how quickly the system can be recovered. In that case,

the most important consideration is returning the failed processes up and running as fast as possible.

- Achieved Availability

The probability that an item will operate satisfactorily at a given point in time when used under stated

conditions in an ideal support environment (i.e., that personnel, tools, spares, etc. are instantaneously

available). It excludes logistics time and waiting or administrative downtime. It includes active

preventive and corrective maintenance downtime [7].

- Operational Availability

The probability that an item will operate satisfactorily at a given point in time when used in an actual

or realistic operating and support environment. It includes logistics time, ready time, and waiting or

administrative downtime, and both preventive and corrective maintenance downtime. This value is equal

to the mean time between failure (MTBF) divided by the sum of mean time between failure and the mean

downtime (MDT). This measure extends the definition of availability to elements controlled by the

logisticians and mission planners such as quantity and proximity of spares, tools and manpower to the

hardware item [7].

This flavor is what we refer to as availability through this project.

Also according our SLA, all delays (like logistic times) are included in MTTR, the MDT and MTTR are

used interchangeably.

- Application

The term “Application” is used as the general term within this project to present both “an application

software” and/or an application service. A website, a database management service, a web-service, an

executable file which is supposed to run on a server and be accessible throughout the network, any

network service (such as DNS), and a storage service (software on top of a storage in a SAN) are all

examples of an application.

Applications are main pieces of our puzzles as we’re actually trying to investigate their impact on each

other. In other words, although there are many other components involved, our goal is to see if:

- Applications are alive;

- They can communicate together (and to the End User).

More exact details of this evaluation is presented later.

- Host

A host, is the main hardware and any software on top of it that is required to run the “Application”.

Unless explicitly stated (like NICs) a “Host” includes the hardware, any firmware, virtualization

environment, operating system and web server on top of it.

Hosts are important as they act like a containers for their applications, and no application can survive

without having a working host.

- NIC

Network Interface Cards are the cards connecting a “host” to a “network device”. Although they can

be considered as part of Host, but due to the fact that their failure may affect the host’s availability in

separate ways, we have considered them as independent components.

If we had a homogenous environment (on which every host had identical number of NICs, and those

NICs were bridged together and/or connected to a stacked switch), then we could consider the NICs as

part of the hosts and so reduce the complexity of the model and also the execution time of simulation.

- Network Device

A network device is an equipment that provides network connectivity for hosts or other network

devices. Although they may have other roles in the network (like firewalling) but the only role that is

interesting for us in this project is their connectivity function.

For instance, assume that a firewall is connecting two hosts together, but an administrative rule inside

the firewall blocks some part of traffic. This scenario in our situation is called a failure for this network

device as it is not available for its intended service (which is connecting those two hosts). This is mostly

important when calculating the availability of network device itself. This point should be mostly reflected

as configuration errors (part of “human error”).

- Application Replica (Instance) and Application Process (Clone):

Applications can have multiple instances running on either different hosts, or even same host. These

instances are assumed to be completely similar from a user’s prospective. This means that a user (be it a

human or another service which is using this application) does not care which instance is answering its

service. These instances have the same source code, so their (component) availability amount is identical.

However, there is a slightly difference between those instances running on a machine and those running

on different machines. All those instances running on a same host are completely transparent to the user

from network prospective. So, if the user can reach the host and any of the instances on the host is alive,

the user will get its answer. But this is not the case for those instances running on different machines. A

user should be able to get to “any” of those hosts, and that host and its “own” instance should be running.

So we can assume all clones on a host ONE (new) application with a higher availability than the

application itself.

We will refer to the application instances on a single machine as “clones” and those instances on different

hosts as “replicas”. Note that a replica may contain multiple clones.

- Cluster

A clusters is a group of applications which are identical in function and the system is considered

available even if one of those in a group is still available. Replicas are an example of clusters.

- Failure

A failure happens when a component is not available. Components may fail, because they have been

randomly chosen and marked as fail to evaluate their effect, or they may fail because any other

component they were depending on, has failed.

In reliability engineering (and within this project), a Failure is said to happen when a component/system

is not doing its desired function and considered as being unavailable.

- Error

In reliability engineering, an Error is considered a malfunction which is the root cause of a Failure.

- Fault

In reliability engineering, a Fault is considered a malfunction which is the root cause of an Error. But

within this project, we may refer to a component failure as a fault that may lead to the failure of the

system. This is done where there is a risk of ambiguity between a failure which is happening in

intermediate levels (referred to as a fault) and one which is happening eventually (referred to as failure).

- Component

A component in our model is the building block of calculations. It is either a hardware or a software

which we want to consider its effect on system availability and its availability is calculated

independently.

- Dependency

We define the dependency between two component A and B and say that A depends on B when the

(un)availability of A will be completely affected by B being (un)available. In other words, if B is

unavailable, then A is unavailable.

A good example of dependency is that a web application depends on its database service. Another

example is that all components rely on the environmental availability1.

- End User

In the business era and at the end of the day, all that matters is the customer and the ultimate goal is

that the users be able to access the system. In order to ensure that, we introduce a virtual component

placed on a part of network which is supposed to access some of other components. This virtual

1 Although environmental availability will affect the whole system in general, because there might be different environment
for different components (i.e. having more than a datacenter, which is the case for KLM), we have to consider this parameter
in component level. If this was not the case, we could have simply considered this parameter at the final level at once.

component is called the “End User” and it depends on all major non-database applications. End User’s

availability is considered 1.0 (always available).

- Arbitrary Failure

Beside the different sources, a failure may be of different types, one being Arbitrary Failures. These

types of failure have undetermined result and a component/system facing such failures will be showing

unpredictable behavior. For instance, a simple calculator in presence of such failures, might give you

different results for an identical equation and parameters over the time. Such behavior, in general, will

make it hard to find if a component has failed. This specially becomes more important when there are

other replicas of a component.

As an example, assume that a user is using either of two instances of a redundant applications through a

dispatcher. The dispatcher’s role is to determine which of the instances are currently available to serve.

Normally, this job is easily done via a simple tests, hence making the dispatcher simple and relatively

reliable. But in presence of arbitrary failures in the applications, the dispatcher may mistakenly route the

user to the wrong instance. In this case, the dispatcher has failed because of a failure in the application.

Such dependent availability calculations are not permitted in our model.

In order to avoid such situation, it is important to calculate those application’s availability more

accurately. Also the dispatcher should become wiser so that it can cover such failures. Finally, the

availability of the dispatcher should be calculated independently of the applications.

In general, it is best to eliminate the sources of such failures as much as possible. In software, this type

of failures are mostly because of a fault in design and/or coding phases, and can be reduced by in-depth

reviewing and testing of software artifacts.

- Peaceful Degradation

Clusters of components might be made as a way of masking their failures, but it also might be a way

of increasing their processing power. While the former case is being referred to as High Availability, the

latter is called Load Balancing.

It is obvious that as soon as a node in a load balanced cluster fails, the availability of that cluster would

become dependent on the load on the remaining nodes. If the node becomes higher than what they’re

capable of deliver, there would be interruptions on the service (i.e. users may experience a slower

response). This situation is referred to as Peaceful Degradation. In such situation, the service might still

be considered available, but with a limited functionality.

An example of such situation is when a 4 engine aircraft flying at 30,000 feet, loses 3 of its engine. The

plane is still able to fly, but cannot keep its altitude at 30,000.

Although one may consider such degraded state as still available, but because subsequent failures of

nodes in the cluster may result to failure of the cluster (although there might still be some available nodes

in it) we will not mark the degraded state as available and will mark it as failed.

This being said, throughout this project, when we’re talking about clusters, it means that they are meant

solely for high availability and not load balancing.

- Failure rate

Failure Rate, is the frequency by which the system fails.

For the components without moving parts, assuming a constant failure rate is not far from reality and

since –except for the Hard Disk Drives- all of components engaged in our model are solely electrical, we

don’t have any moving part. Disk drives however, are devices without repair. So any kind of failure

would lead to the failed disk being replaced and there would be no consecutive failures. Hence for these

devices also the constant failure rate holds (they only fail once during their operational life) [4].

- Bathtub

Hardware failures are usually described by “bath tub curve”. The first period is called infant mortality.

During this period, the hardware failure is high. The next period is called the normal life. Failures usually

occur randomly during this time but the point is that the rate of failures is predictable and constant and

is almost low. The cause of failures may include undetectable defects, design flaws, higher random stress

than expected, human factors, and environmental failures. The last period called wear out period, is when

the units are old and begin to fail at a high rate due to degradation of component characteristics [4, 5, 8].

Figure 2-Hardware Failure Rate

- MTBF vs Useful Life

Sometimes MTBF is confused with a component’s useful life. Consider, a battery has a useful life of

four hours and MTBF of 100,000 hours. This means that in a set of 100,000 batteries, there will be about

one battery failure every one hour during their useful lives [4, 5].

The reason of sometimes these numbers are so much high is that these numbers are calculated based

on the failure rate of usefulness period of component, and it is assumed that the component will remain

in this stage for a long period of time. In the above example, wear out period mitigates the life of

component, and the usefulness period becomes much smaller than its MTBF so there is not necessarily

direct correlation between these two.

Consider another example, there are 100,000 20-year-old humans in the sample. We monitored this

sample for one year. During that time, the death rate became 100/10,0000 = 0.1%/year. The MTBF is

the inverse of the failure rate or 1/0.001 = 1000. This example shows that high MTBF values is different

from the life expectancy. As people become older, more deaths occur, so the best way to compute MTBF

would be monitor the sample to reach their end of life. After that, the average of these life spans are

computed. Then we reach to the order of 75-80 which would be very realistic.

- Availability and Number of Nines

Availability is typically described in nines notation. For example 3-nines means 99.9%. Obtaining 5

nines or 99.999% availability is an ambitious goal for many vendors when producing hardware and

software modules [9].

Table 1-Downtime of availability

Availability 9s Downtime

90% One 36.5 days/year

99% Two 3.65 days/year

99.9% Three 8.76 hours/year

99.99% Four 52 minutes/year

99.999% Five 5 minutes/year

99.9999% Six 31 seconds/year

IV. FAILURE SOURCES

The system outages are put in two major categories: Unplanned outages (failure) and planned outages

(maintenance). Both of them result in downtime. Unplanned outages are most costly compared with the

planned one but it may be mitigated by using the redundant components [9].

Usually a planned outage has a tolerable impact on the availability of the system, if they are scheduled

appropriately. They are mostly occur as a result of maintenance. Some causes of planned downtime can

be periodic backup, changes in configuration, software upgrades and patches [6].

According to Sage Research Studies 44% of downtime in service providers is unscheduled. This period

of downtime can cost a lot. Average cost of network downtime is estimated $21.6 million per year or

$2169 per minute [10].

Another categorization can be:

- Internal Outage

- External Outage

Internal factors like specification and design flaws, manufacturing defects and wear out. External

factors like radiation, electromagnetic interference, operator error and natural disasters. However a

system is well designed or the components are highly reliable, the failures are inevitable, but it is possible

to reduce their impact on the system [12].

V. SINGLE COMPONENT CALCULATIONS

There are various factors that influence the total availability of the system. These factors are [11]:

- Hardware

- Software

- Environment

- Human Errors

Hardware failures like File System Full error, Kernel In-Memory Table Full error, disk full, power spike,

power failure, and LAN infrastructure problem. Software failures like problem caused by source code

and structure of software, software defects, application failure and firmware defects. Natural disaster like

fire, flood and Human errors like operator or administrator error (pilot error) [13].

A. Hardware

For calculating the availability of hardware component in network, we need to know its MTBF and

MTTR. The MTBF values are usually obtained from the vendor for off-the-shelf or hardware team for

in-house components based on the component’s configuration and design. It is the value which is

estimated by the manufacturer before a failure occurs in a hardware component.

MTTR is based on the response time of our service contract or vendor. In our model for critical

component this value is four hours. It is the time to get a service man on-site and replace the failed

module [8].

B. Software

The definitions for software availability and hardware availability is the same even though their

related failure occur for different reasons.

Obtaining high available software is much harder than the hardware ones. For example, software

availability cannot be increased by using redundant component. The errors may occur by incorrect logic,

statement or input data. Sometimes the software needs infinite time for testing/debugging which is not

reasonable when have to ship the product to the customers in a timely manner.

We have to keep the history to get the software defect density in the system. Defect density or defect rate

means the number of detected defects divided by the size of the software (this value is stated as thousands

of lines of code or KLOC) during a specified period of time. This value is depending on many factors

such as:

- Complexity of software

- Size of software

- Experience of team developer

- Percentage of the code which is used before in a stable project

- How much test/debug is done before releasing the product

MTBF for software modules can be computed by multiplying the defect rate by KLOCs executed per

second.

As most of software failures can be eliminated by rebooting the system, MTTR can be considered as

average time for reboot time [8].

Said so, obtaining MTBF of the software requires measuring the software failures for a large set of same

modules over a long period of time. For example Cisco has decided 30,000 hours MTBF for mature

software and 10,000 hours for a recent ones [11].

C. Procedure

According to Gartner, “Through 2015, 80% of outages impacting mission-critical services will be

caused by people and process issues [10], and more than 50% of those outages will be caused by

change/configuration/release integration and hand-off issues” [9].

As human intervention is not always error-free, it is a good policy to automate as many as processes as

we can. Defining proper procedures would lead to a better availability. This parameter can be evaluated

separately or can be integrated into the human factor as well. Sometimes these automation can be

achieved by writing scripts like: routine backups, and software upgrades [9].

D. Environment

These fault can be occur by power outages, fires, earthquakes, tornadoes and other events. The point

is that these events cannot be predicted and when encountering with them, the whole system becomes

down for some hours or even months depending on the damages they impose [4, 9].

E. People (Human Factor)

These error are mostly occur as result of changes like adding, upgrading and reconfiguring the

network components. When we want to execute the human factor in calculating the availability of the

component, we have to consider the human and the task itself. What kind of task is the human executing,

whether it is simple or hard, routine or non-routine, what is the stress factor (it means how much time is

available for doing the task), is there any procedural guidance for assigned task, is the human experienced

or has special training for doing the task. All these factors are weighted to compute the human factors

[9].

VI. SIMPLE MODELS

Assume we have two component, A1 and A2 and from the previous section, we know how to calculate

their availability. Now we want to calculate the availability of a system, consisting only these two

components in different configurations.

A. Serial Configuration

Serial configuration happens when two (or more) components are required to be available in order

for the system to be available (Fig. 3). In this configuration, if either of those components fail, the system

is considered to be unavailable.

Figure 3- A system with two serial components

A typical example of this configuration is a “RDBMS server” and its “storage”. It is obvious that to be

able to serve a database, both parts are meant to function properly at an instance of time. Another example

are the HDDs in a RAID0 (striping) configuration in which a failure of either of the disks will result in

losing all the data on the array.

In this configuration, as the system will be considered working as far as all the components are working,

the total availability would be the multiplication of each component’s “independent” availability [14].

�������� 3: �#$%���& = ' �#(�)*�����&

As availability of each component is a number lower than 1, the total system availability would

become lower than any of its components. For example, the total availability of the system in Fig. 2

would be:

�# �+. 3& = �- × �/ = 0.990025 < 0.995

This actually makes sense as it is said that “A chain is only as strong as its weakest link”.

B. Parallel Configuration

Sometimes, system designers would put identical (or even similar) components together, in a way

that as far as one of the components are available, the system can survive. Component in this

configuration are said to be made redundant (Fig 4.).

Figure 4- A system with two parallel components

Unlike the Serial configuration, components in a parallel configuration are either identical components,

or two (or more) components with the same function. This main idea here is that the components failures

are not arbitrary and components are fail-safe. This means that the component is either operating

correctly, or it stops from working. If this is not the case, there should be a 3rd component as the output

evaluator which considers which of the components placed in parallel should be used at a time (if this is

not the case, then the “voting” mechanism is used which requires at least 3 component in parallel).

The system is this configuration fails, if all of its components fail [11, 14].

�������� 4: �#5�%����& = 1 − 7�������������#5�%����& = 1 − '81 − �#(�)*�����&9

For the system in Fig. 4, the availability would be:

�# �+. 4& = 1 − #1 − 0.005 − 0.005& = 0.999975

Since the unavailability of this system is smaller than the unavailability of each of its components, the

total availability would be even higher than the most available component.

The key for these calculations are that each component’s availability should be calculated independently.

On the other hand, the failure sources that are unique among components of a parallel configuration

should be excluded from components availability and calculated separately.

Examples of this configuration are an aircraft with 4 engines, which can also fly by 1 engine operating,

or disk mirroring which is considered in RAID 1 configuration.

It is also worth mentioning that we will not consider peaceful degradation as complete parallel

configuration.

C. Hybrid Configuration

Hybrid Configuration happens when the system consists of multiple components, from those some

are serial and the others are parallel. In order to calculate the availability of such a system, one may

calculate any consecutive serial/parallel components and replace them with blocks with new availability

in order to be able to complete the calculation.

This method is known as Reliability Block Diagram [15] modeling and works best as far as we can

see each components either as serial or parallel (and not both) in a system. Fig. 5 is an example of a

system that deriving RBD for it is not so easy.

Figure 5-A hybrid, layered system with interdependency between components

VII. RELATED WORKS

A. Markov Modeling

Markov Probability Model [5, 15] is a stochastic models that is function of system’s state and time.

A state machine is drawn to describe the behavior of model. The major property of Markov Modeling is

that changes between states i and j happens with a probability of P which only depends on the i, j and

time t. In other words, the previous states have no effect on the p.

Each of these two variables can be either discrete or continues which would result into 4 different type

of models. Markov Process is the variation of model with discrete state and continues time. The major

property of a Markov Model states that

Now if we consider a state, as an array of 0s and 1s for each of the components in the model, in which a

0 means that component has failed, and a 1 means that it has survived and find the transitions that can

happen between these states with their respecting probability, we can finally calculate the systems

availability.

The problem with this modelling is that with having too many components, the state machine would

become quite big and complex to create.

Figure 5 is a hybrid configuration in which the user wants to access

the application in green circle, while this application needs either of

Web Services to operate correctly. The Web Services are also relying

on the Database.

As we can see, the Network Switch 1 and 2 are seen as redundant from

the “Web Service 1” point of view, however, this is not the case when

user is going to access the Application.

On the other hand, the benefit of such a model is that it would also cover the probability of a system

NOT being repaired in its defined time duration. Another benefit is that this model can also consider

consecutive failures.

Figure 6 shows the Markov state machine of a Triple Modular Redundancy (TMR) in which the

probability of each component failing is considered as ;Δ� and is independent of machine’s state.

Figure 6-Markov Process of a TMR system

B. Fault Tree Analysis

Another Proposed Model for prediction of failure and calculation of reliability/availability is Fault

Tree Analysis (FTA) [16].

In this method, first the undesired event (i.e. the failure of the main module of our system) is defined,

then component failures that can cause this failure are extracted and put in the second level. The third

level consists of those that may cause the 2nd level failure and this would continue until we reach the

component level (often referred to as elementary faults).

Although this model has its usefulness like [15]:

- Forces the analyst to actively seek out failure events (success events) in a deductive manner;

- Provides a visual display of how a system can fail, and thus aid understanding of the system

by persons other than the designer;

- Points out critical aspects of systems failure (system success).

- Provides a systematic basis for quantitative analysis of reliability/availability.

But the same problem with Markov Modeling still holds. When the system becomes complex, drawing

the Fault Tree is not that easy and requires a lot of manual works. In other words, the complexity of our

system will not allow us to create a reusable Fault Tree that can be adopted for several changes in the

system.

C. Failure Mode and Effect Analysis

The FMEA method and its deviations (i.e. FMECA) are meant to specify the modes of failure and

evaluating their consequences. Unlike the FTA, in a FMEA method, we start from the component level,

and examine the different failures each component may face. Then we will check what consequences

such failure may have on the system.

This model would nicely fit to our criteria, as it allows us to evaluate different causes of failures

independently. This makes more sense when some causes are meant to be evaluated independently, but

others are not. A good example is failure of an application, which might be based on the code bug (this

way all its replica will fail) or as of an inappropriate configuration (which will affect a single replica

only).

Although the number of possible component failure modes that can realistically be considered is limited

[16], it is sufficient enough to cover our causes.

The main problem with using such a model is that determining the causes of a failure in our complex

environment is not so easy. Especially as redundancies are in place on different layers, that may prevent

some component failures to eventually cause the system to fail.

VIII. THE APPROACH

The method that we are proposing here will be using the ideas from other methods mentioned in

previous sections. In brief, we first specify the components we want to consider and then evaluate the

effect of its failure on the system.

The components we’re considering are the “Applications”, “Hosts”, “Network Interface Cards” and

“Network Devices” as the components, assuming that either independent availability function or the

MTBF and MTTR parameters of each component are in hand. We’ll also consider the network

connections between different components. We consider the dependency between different components

(mostly applications) as mandatory rules of survival (being available).

Finally, we try to simulate component(s) failure and see if our Business Application survives. The total

amount of availability would be calculated based on the failure scenarios and their probability to happen.

A. Component Selection and Layering

A component or system failure may be the result of many faults, including:

- An application may have bugs;

- An application server may run out of resources;

- An operating system may fail;

- A hard disk may fail;

- A server hardware may fail;

- A network cable may get disconnected;

- A switch may malfunction;

- An administrator may make a mistake while configuring something;

- You may have power outage;

- Your cooling system may fail.

As stated before, the more we go into the detail, the more accurate result we will be having and the more

complex and time consuming our calculations would become. In order to overcome this tradeoff, first

we decide which components should be considered and partition the components into different

categories. The typical component type that we have in our environment are pictured in Fig. 7. (Note that

there is no OS shared between hardware devices).

Figure 7-Components in a layered view

There are two major categorize available:

- Network Category, which consists of all those components providing network connectivity;

- End Point Category, containing all other components.

The End Point Category is itself subcategorized as:

- Application itself;

- Container, which includes underlying components of an application.

The main idea here is that dependency rules only applies between components inside Application

subcategory and never to the components in Container. The Network Category is also subcategorized

into Container and Interfaces.

After defining and categorizing our components, we inspect their failure on the system by simulating

each component’s failure and examining its effect on other components and the End User as the decisive

factor of our model. This is done based on the following rule:

A component is considered as failed if either of the following happens:

- There is a failure in environment;

- It is chosen by the simulator to fail;

- Its container had failed;

- What it depends on, had failed;

- There is no network connectivity between this application and what it depends on.

Note that is an application is in a cluster, the dependency rule should be examined for all nodes in the

cluster.

The simulation is done in rounds, and at each round, a total of n component are randomly chosen to be

assumed as failed, with n being from 1 to the total number of components. The chosen components are

called faulty components.

The inspection of a round will continue until the system reaches a steady state, that is no new failure is

found. In this state, if the End User component fail, we will call this a failure scenario.

It is obvious that the probably of a component being a faulty component is equal to the unavailability of

that component. This being said, the probability of such round happening would be the multiplication of

unavailability of all faulty components and availability of other components. For a failure scenario, we

call this a round unavailability for round i.

7�������������=>?@A � = ' 1 − �#B����� (�)*����C& ' �#���B����� (�)*����C&

When all the failure scenarios have been found, our desired unavailability (the availability of End User)

is the summation of round unavailabilities.

$�C�) ������������ = �#��D 7C%& = 1 − E 7�������������=>?@A �

�>FGH >I �G�H?=� JK�@G=�>L

�MN

Finally, we introduced a criticality function in order to evaluate the role of each component in the total

(un)availability of the system and find the component with the most influence on such (un)availability.

The criticality function of a component is defined as the total number of that component’s appearance

as a faulty component multiplied by component’s unavailability.

(%���O�����#O& = #1 − �#O&& × E 1
�>FGH @?�P�= >I KQGRR�G=G@K� GL G IG?HFS K>�R>@�@F

�MN

Eventually, the more the criticality of a component is, the more effect it has on the system’s

unavailability.

IX. PROOF OF CONCEPT

In order to see the proposed model in action, we prepared a program in Python which receives AITIH

data in multiple comma separated text files in order to calculate the availability of a subsidiary of EBT

business application. Wherever the real data were not available, we have made an assumption to make

the model consistent and complete. These assumption are clearly marked within the report.

Using the mentioned input data, we drew an abstract model of real world with the “Applications”,

“Hosts”, “Network Interface Cards” and “Network Devices” as the components, assuming that either

independent availability function or the MTBF and MTTR parameters of each component is in hand.

A. Situation

The chosen subsystem of EBT consists of the following Applications:

- appT

- appCSA

- appEUI

- appEBC

- appEDB

- appCS

- appkia

Each of these applications might be running on multiple hosts and might have multiple instances running

on each host. Table 2 shows this test case hosts, applications, and their clones.

Table 2-Application, Host, Clone Relations

Application Name Host No. of Clones Running

appCSA hst01 1

appCSA hst02 1

appEUI hst03 5

appEUI hst04 5

appEUI hst05 5

appEBC hst06 3

appEBC hst07 3

appEBC hst08 3

appEBC hst03 3

appEBC hst04 3

appEBC hst05 3

appCS hst06 1

appCS hst07 1

appCS hst08 1

appCS hst03 1

appCS hst04 1

appCS hst05 1

appKIA hst06 1

appKIA hst07 1

appKIA hst08 1

appKIA hst03 1

appKIA hst04 1

appKIA hst05 1

appT hst09 1

appT hst10 1

appEDB hst11 1

“appT” and “appEDB” are two database services supporting these applications. Table 3 represents these

relations (dependencies).

Table 3-Dependency Rules

Application Name Database Service Hosted on

appCS appT hst09

appkia appT hst10

appEBC appEDB hst11

A visualization of all components in relation can be found in Appendix 1.

As not all parts of input data were in hand, we made some assumptions to prepare a valid initial state:

- There is a 3rd switch called “Switch_3” which provides connectivity between “Switch_2” and

“Switch_1”;

- The “hst11”, “hst10” and “hst09” hosts have two separate NICs which are being connected to

“Switch_1” and “Switch_2” to provide redundancy;

“End User” is connected to “Switch _3” as well. It is a computer with Availability function of 1.0 (It

doesn’t fail).

In this experiment, a “Business Application failure” is said to happen when the user (End User) cannot

access either of the following applications: “appT", “appCSA”, “appEUI” “appEBC”, “appEDB”,

“appCS”, “appkia”.

B. The input data

The input data (which are supposed to be exported from AITIH database and show our current

situation) are fed into the calculation engine via five simple csv files. These files are explained in Table

4.

Table 4Input File Structures

File Name Record Format A Sample Record Description

apps.csv Host Name, Application Name, Clone Counts hst01,appCSA,1 Contains Host’s, Application

and clone counts

netnods.csv Network Node, Direct Neighbor1, Direct

Neighbor2, … ,Direct Neighbor n

Switch_1,Switch_3 list of network devices and

their direct neighbors

Clusters.csv Cluster’s node 1, Cluster’s Node 2, Cluster’s

Node 3, …. , Cluster’s Node n

N/A Explicit Clusters

hostnicsw.csv Host Name, Ethernet Card, Switch Name hst08,eth2,Switch_1 Network connectivity of

components

dep.csv Application A, Application B appEBC,appEDB Showing that A depends on

B

availability.csv Component name, MTBF, MTTR, Availability hst08->eth2,,,0.999944 *

*) The availability file contains component’s availability parameters. It is assumed that each single

component availability is calculated before and presented in this file. However, as many of the

component we’re dealing with, have the MTBF and MTTR in hand, if the availability is not provided

directly for a component, the program will calculate it on the fly, based on the known � = ����
����T���U

formula. If these parameters are not presented either, the availability of the component is assumed 1.0.

Fig. 8 shows component availability flowchart.

For each

component

Are the MTBF and MTTR

provided?

Is the availability of this

component provided?

No

Finish: exe.py

Start: makeit.py

No

A = 1.0

A = MTBF/(MTBF+MTTR)

Yes

Yes

Yes

Figure 8-Compoennt Availability FLowchart

Availability is entered as a number between 0 and 1 and each of these parameters can be left empty

(except for the component name). Note that if the application is being served by a 3rd party whom we

have a contract (and probably SLA) with (like Amadeus), the availability mentioned in the contract can

be a good choice as that application’s availability [17].

It is also worth mentioning that as these availability values are “Independent” of each other, availability

of application replicas would be the same.

For this experiment, we generated 54 random numbers between (0.9999 and 1.0) as availability

parameters, with 0.9999 being the smallest, 0.999997 being the largest number and an average of

0.99995.

C. Processing Files

The program was organized into three different executable files, among those one calculates

component’s availability (acalculator.py), one prepares the input files (makeit.py) and eventually the

other (run.py) runs the main program over the data structures. There are some other auxiliary files that

facilitate the execution. We can see all these files and their relation in Fig. 9.

Total Availability Calculation Process

In
p

u
t

In
te

rm
e

d
ia

te

P
ro

ce
ss

O
u

tp
u

t
C

al
cu

la
ti

o
n

Le
ge

n
d

Phase

ProcessInput Data

Dependency

List

(dep.csv)

Host – NIC –

Switch Relation

(hostnicsw.csv)

App – Replica -

Host Relation

(hostapp.csv)

Fixed Input

Main Code

(exe.py)

Code Maker

(makeit.py)

Code Template

(template.py)

Redundancy List

(clusters.csv)

Component

Availability

Parameters

(acalculator.py)

Component

Availability

Parameters

(availability.csv)

Network Nodes

(netnods.csv)

Failure Log

(failed.log.exe.py)

Execution Log

(log.exe.py)

Output Data

Application

Replica

Finder

(replicator.py)

App – Host

Relation

(apps.csv)

Availability

Runs...

Configuration

Figure 9-The Availability Calculation Process

D. Assumptions

Apart from the general assumptions for our model, we have made the following assumptions

regarding this experiment:

- Each single node’s independent Availability is either pre-calculated, or its MTBF and MTTR

parameters are present. If none were present, a random number between 0.9999 and 0.999997

were assigned as the availability.

- Whenever there is a physical network path between two network nodes, it illustrates a

network connection between them. In other words, no network segmentation exists in upper

layers.

- Physical connectors (like cables) are considered as always available.

- Network devices are seen as a single component even if they are modular.

- There is no virtualization involved.

- There is only one web server on each OS.

- Hosts include: Web Server, Operating System and Host hardware (except for the NIC).

- All network cards of a server are able to take-over other cards.

- In the network layer, Redundancy is made by using separate paths. There is no Stacked

Switch.

- Environmental and Human Related Factors are rolled out for simplicity

E. Execution

We ran the program 6 times, starting from a maximum of 1 failure at a time, up to a maximum of 6

simultaneous failures. The result was as follow:

1) Maximum of 1 simultaneous failure

In this case, 5 different failure scenarios occurred, which were caused by the failure of:

- hst11

- appEDB

- Switch_3

- Switch_1

- End User

Note that, as “End User’s” availability is 1.0, it will not affect the total amount of availability, but as it

is considered a component, it is shown in the result (This is true for all components with availability

of 1.0).

And total availability of “End-User” were calculated to be: 99.9781477%

2) Maximum of 2 simultaneous failures

When considering up to more 2 concurrent failures, it is obvious that the result contains single

failures, as well as all component failures that include one of the single failures components.

There are 55 components: 5 for each single failure alone, 50 for each couple containing a single failure

and VW
/X for combinations of those 5, which will make: 5+5*50+10=265

Hence, we expect this case to be at least 265. The final amount is: 280 failure scenarios. Those 15

scenarios are caused by failure of the components shown in Table 5:

Table 5- Failure Scenarios in presence of maximum 2 Failure

Component A Component B Description

1 'hst09' 'appT.REP2' appT.REP2 on hst10

2 'hst09' 'hst10'

3 'appT.REP2' 'appT.REP1' appT.REP1 on hst09

4 'appT.REP1' 'hst10'

5 'hst02' 'hst01->eth2'

6 'hst02' 'appCSA.REP1' .REP1 on hst01

7 'hst02' 'hst01'

8 'hst01->eth2' 'appCSA.REP2' .REP2 on hst02

9 'hst01->eth2' 'hst02->eth2'

10 'appCSA.REP2' 'appCSA.REP1'

11 'appCSA.REP2' 'hst01'

12 'appCSA.REP1' 'hst02->eth2'

13 'hst02->eth2' 'hst01'

14 'Switch_2' hst11->eth1

15 'hst11->eth1' 'hst11->eth2'

Note that “A.REPx” shows the xth replica of the application “A”.

3) Maximum simultaneous failures > 2

We continued the simulations up to maximum number of 7 which ended up quite similar to the

previous results.

Table 6-Test Case Result

Maximum Concurrent

Failures

Total Failure Scenarios Total Availability Time required to

calculate

1 5 99.9781476669 % < 1 min

2 280 99.9780993579 % < 1 min

3 8,192 99.9780993065 % < 1 min

4 136,153 99.9780993064 % 5 min

5 1,769,375 99.9780993064 % 46 min

6 17,919,053 99.9780993064 % > 11 hours

It is worth mentioning that although the concurrent failures came into account, the more precise

availability would be calculated, but there is point where the precision we gain is far from what we really

need. On the other hand (considering the high availability function of single components used in

enterprise networks) the probability of multiple failure happening together is negligible.

So we can say that the current test case has got an availability of “99.97809%” with even maximum

concurrent failure equal to sum of components.

According to our result, the most critical component were turned out to be “Switch_1” switch.

X. FUTURE WORKS

The method we proposed here can be improved in (specially) two aspects.

A. Optimizing the algorithm

The program were written as a proof of concept, with around 600 line programming in Python.

Neither the choice of the programming tool, nor the method of programing is prepared is so efficient.

On the other hand, it is best if the algorithm could become smarter in detection of failure scenarios in

case of examining the redundancies and also the merge of some components and summarizing their

availability.

Passing the data via text files are not a really good idea in production. It would be good if the program

could read its data directly from AITIH database.

B. More criticality options

The criticality function defined here is not the only way we can find the weakest link of our chain.

One can define some other functions (even more accurate ones) to highlight the effect of some special

components on the whole system.

There can also functions being defined to find any over qualified components (if any), those that though

having a high availability, are not affecting the whole system as expected. This function can be used in

decision making process to save some costs.

ACKNOWLEDGMENT

We would like to take the chance to thank all KLM AITIH department and especially Betty and Leon

Gommans, Peter Huisman, Maarten Hogendoorn and David van Leerdam, who helped a lot during

different parts of this project, either by their supportive behavior or cooperative actions.

REFERENCES

1. ISO/IEC, Information technology - Security techniques - Management of information and communications technology

security, in Part 1: Concepts and models for information and communications technology security management.
2004.

2. Wikipedia. Reliability engineering. [cited 2014 January]; Available from:
http://en.wikipedia.org/wiki/Reliability_engineering.

3. Fault-tolerant computer system design. ed. K.P. Dhiraj. 1996, Prentice-Hall, Inc. 550.
4. Vargas, E. and S. BluePrints, High availability fundamentals. Sun Blueprints series, 2000.
5. Torell, W. and V. Avelar, Mean time between failure: Explanation and standards. White Paper, 2004. 78.
6. Cisco. [cited 2014 January]; DESIGNING AND MANAGING HIGH AVAILABILITY IP NETWORKS]. Available

from:
https://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6550/prod_presentation0900aecd8031069b.pdf.

7. Wikipedia. Availability. [cited 2014 January]; Available from: http://en.wikipedia.org/wiki/Availability.
8. eventhelix. [cited 2014 January]; Available from:

http://www.eventhelix.com/realtimemantra/faulthandling/reliability_availability_basics.htm#.UvfKjJA1iM9.
9. Weygant, P.S., Clusters for High Availability: A Primer of HP Solutions. 2001: Prentice Hall Professional.
10 Colville, R.J. and G. Spafford, Configuration Management for Virtual and Cloud Infrastructures. Gartner, http://www.

rbiassets. com/getfile. ashx/42112626510, 2010.
11. Oggerino, C., High Availability Network Fundamentals: A Practical Guide to Predicting Network Availability. 2001:

Cisco Press. 256.
12. Vallath, M., Oracle real application clusters. 2004: Access Online via Elsevier.
13. Weygant, P.S., Primer on Clusters for High Availability. Technical Paper at Hewlett-Packard Labs, CA, 2000.
14. Xin, J., et al., Network Service Reliability Analysis Model. CHEMICAL ENGINEERING, 2013. 33.
15. Shooman, M.L., Reliability of Computer Systems and Networks: Fault Tolerance, Analysis, and Design. 2003: Wiley.
16. Vesely, W.E., U.S.N.R.C.D.o. Systems, and R. Research, Fault tree handbook. 1981: Systems and Reliability Research,

Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission.
17. Fishman, D.M., Application Availability: An Approach to Measurement. Sun Microsystems. Recuperado el, 2000. 8.

XI. APPENDIX 1.

The diagram in this attachment is showing all components in our proof of concept experiment, and

their relation.

There are four different categories of nodes, including: Applications, Host Hardware, Network

Interface Cards and Networking Devices (Switches). The lines between nodes represent a “relation”

which is interpreted based on type of components in the relation, as shown in Table 3.

Table 7- Relation Definition

Line between Shows

Application <-> Application (dotted line) Dependency Rule

Application <-> Host The “Application” running on this “Host”

Host <-> NIC The “NIC” belongs to this “Host”

NIC <-> Network Devices A network connection between two

Network Device <-> Network Device A network connection between two

