
Introduction Research Conclusion Demo Questions

Secure Socket Layer Health Assessment

Mick Pouw, Eric van den Haak

February 5, 2014



Introduction Research Conclusion Demo Questions

1 Introduction
Background
Research Questions

2 Research
Implementing SSL, the right way
Common mistakes
Classifying mistakes
Implementation

3 Conclusion
Future work

4 Demo



Introduction Research Conclusion Demo Questions

Background

Background

Tilburg University

Lots of SSL/TLS services

No quick SSL service checking (Manually)

Existing tools lack possibility of integrating in existing
monitoring software or lack in rating

What about a new tool?



Introduction Research Conclusion Demo Questions

Research Questions

How can we determine SSL “health” of a server side
implementation?

How can we determine a “bad” SSL implementation?

What mistakes are commonly made by server administrators
regarding implementing SSL?

How can we classify these mistakes?

How can we develop a tool that automates checking the SSL
“health” of a server side implementation?



Introduction Research Conclusion Demo Questions

Implementing SSL, the right way

Implementing SSL, the right way

Certificates

Protocols

Server settings



Introduction Research Conclusion Demo Questions

Implementing SSL, the right way

Certificates

Subject

Validity

(Chain of) Trust

Hash algorithm

Debian weak key

Revocation



Introduction Research Conclusion Demo Questions

Implementing SSL, the right way

Protocols

SSLv2 must be disabled

SSLv3 should be disabled, backwards compatibility

TLSv1.0 should be enabled

TLSv1.1 should be enabled

TLSv1.2 should be enabled



Introduction Research Conclusion Demo Questions

Implementing SSL, the right way

Server Settings

Compression (Crime)

RC4 (Randomness)

MD5 (Collision)

Strong key size (Brute force)

Perfect forward Secrecy (Future decryption)



Introduction Research Conclusion Demo Questions

Common mistakes

Common mistakes
Test Percentage passed

Signature hash algorithm 100%
Certificate (chain) trusted 100%

Certificate is valid 100%
No Debian weak keys 100%

Subject name matches 91%
Compression disabled 100%

Cipher suites do not contain MD5 57%
Perfect forward secrecy available 46%
Cipher suites do not contain RC4 17%

Key length at least 128bits 89%
SSLv2 disabled 94%
SSLv3 disabled 3%

TLSv1.0 enabled 97%
TLSv1.1 enabled 63%
TLSv1.2 enabled 63%



Introduction Research Conclusion Demo Questions

Classifying mistakes

Determining a test

Weight (0 <= weight <= 100)

Required (Show-stopper)

Example test

Name Example

Proposition Requirement in order to pass the test

Weight 50

Required No



Introduction Research Conclusion Demo Questions

Classifying mistakes

Formulas

{requiredtests} ⊂ {passedtests} (1)

The set of all required tests has to be a subset of all passed tests.

100 ∗

N∑
i=1

pi

M∑
j=1

tj

(2)

Where p is a set of all weights of the passed tests and t is a set of
all weights of all performed tests.



Introduction Research Conclusion Demo Questions

Classifying mistakes

Classification
Description Weight Required
Signature hash algorithm 80 No
Certificate (chain) trusted 0 Yes
Certificate is valid 0 Yes
No Debian weak keys 100 No
Subject name matches 0 Yes
Compression disabled 50 No
Cipher suites do not contain MD5 50 No
Perfect forward secrecy available 50 No
Cipher suites do not contain RC4 80 No
Key length at least 128bits 80 No
SSLv2 disabled 100 No
SSLv3 disabled 30 No
TLSv1.0 enabled 75 No
TLSv1.1 enabled 100 No
TLSv1.2 enabled 100 No



Introduction Research Conclusion Demo Questions

Implementation

Proof of Concept

Python

Used software

SSLyze
OpenSSL
Curl

Modular framework

Tests
Output



Introduction Research Conclusion Demo Questions

Implementation

Running the tool!

Entire Tilburg University IPv4 space

SURFnet IDP page hosts

Score SURFconext UvT

< 40% 5 27

40-50% 8 1

50-60% 82 64

60-70% 9 6

70-80 % 13 1

> 80 % 20 32



Introduction Research Conclusion Demo Questions

Conclusions

Found a new way of determining SSL “Health”

Developed a proof of concept that assess SSL services



Introduction Research Conclusion Demo Questions

Future work

Future work

Start TLS

Server Name Indication (SNI) for HTTPS

Improve framework’s dependencies



Introduction Research Conclusion Demo Questions

Demo



Introduction Research Conclusion Demo Questions

Questions?


	Introduction
	Background
	Research Questions

	Research
	Implementing SSL, the right way
	Common mistakes
	Classifying mistakes
	Implementation

	Conclusion
	Future work

	Demo

