
Secure Sockets Layer Health Assessment

Mick Pouw, Eric van den Haak

March 14, 2014

Abstract

Tilburg University needs a tool which can assess their SSL services automatically.
The research conducted in this paper is performed to determine a health value for
an SSL service, which can be implemented in an SSL assessment tool. To determine
this value various research has been done.

First, it has been determined what a “good” SSL implementation should look like.
A good implementation has for example a valid certificate and has implemented the
full chain of trust, but also prohibits the use of SSLv2. After determining what a
good SSL service requires, the findings have been compared to common services.
Amongst common services are online banking environments, social networks, etc.
As it turns out, lots of common services do not implement SSL as it should be.

The findings of this research have been used to develop a series of SSL “tests”. Each
of these tests is given a weight based upon the research or it is called required. A
required test should never fail. If a weighed test fails, the eventual SSL “health” will
simply become less. Combining these tests with a proof of concept implementation,
based upon existing software, makes it possible to assess an SSL service in a way
that covers the demands of Tilburg University. This is giving a single grade to a
service which relates to the health status of the service.

1

Contents

1 Introduction 4

2 Approach 6

3 Research 7
3.1 Implementing SSL, the right way . 7

3.1.1 Certificates . 7
3.1.2 Protocol . 9
3.1.3 Cipher suites . 11
3.1.4 Popular known vulnerabilities . 12

3.2 Common mistakes . 13
3.2.1 Scope . 13
3.2.2 Results . 15

3.3 Classifying mistakes . 16
3.3.1 Classification . 17
3.3.2 Implementation . 18

3.4 Implement findings . 23
3.4.1 The running application . 23
3.4.2 Testing Tilburg University IP space 24
3.4.3 Testing IMAPS vs HTTPS . 25
3.4.4 Testing SURFconext Identity Providers 26

4 Conclusion 28

5 Future work 29
5.1 Starttls . 29
5.2 HTTPS protocol . 29
5.3 Proof of Concept . 29

A SSL Ciphers 33
A.1 SSLv3 . 33
A.2 TLSv1.0/TLSv1.1 . 34
A.3 TLSv1.2 . 35

B Examined Hosts 36

C Testresults IMAPS 37

D Testresults Tilburg University IP Space 38

E Testresults SURFconext IdP’s 41

2

F SSLlabs Comparison 44

3

1 Introduction

Secure Socket Layer (SSL), also known as Transport Layer Security (TLS) is a trans-
port layer security protocol1. The protocol is based upon the X.509 Public Key In-
frastructure Certificate Standard2, and therefore relies on a chain of trust. Public-
key cryptography is used to set up a connection, whereafter a symmetric key is
negotiated. Further communication is then encrypted with a symmetric key algo-
rithm. SSL is integrated within most web services and is therefore one of the most
important security protocols used today.

Tilburg University also has a lot of SSL services. Maintaining all of these is a lot
of work. Therefore, they have requested research for an automated SSL “health”
assessment tool, so they can easily check their services. Tools already exist that
grade a server’s SSL service implementation, but these either cannot be automated
or take a long time[21].

This research will be conducted to determine the best SSL practices for a server
side environment. Herefore, research will be done to SSL server settings, not to the
SSL protocol itself.

Background

The assignment for this research is given by Tilburg University. This research is
conducted by Mick Pouw and Eric van den Haak as a part of the curriculum of the
System and Network Engineering master program3 at the University of Amsterdam.
The research is supervised by Thijs Kinkhorst, Unix System Administrator, and Teun
Nijssen, Security Officer, at Tilburg University.

1rfc246 - The Transport Layer Security (TLS) Protocol Version 1.2
2rfc6818 - Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List

(CRL) Profile
3http://www.os3.nl/

4

Research questions

The main goal of the research is to create a proof of concept for a tool which is able
to test the “health” of an SSL server. In order to make this tool, research has to be
done. The following research questions have been posed;

• Main Question: How can we determine SSL "health" of a server side imple-
mentation?

• Sub Question: How can we determine a "bad" SSL implementation?

• Sub Question: What mistakes are commonly made by server administrators
regarding implementing SSL?

• Sub Question: How can we classify these mistakes?

• Sub Question: How can we develop a tool that automates checking the SSL
"health" of a server side implementation?

Related work

Due to the common usage of SSL it is very important that it is as secure as it can be.
There are a lot of tools available which can be used to test an SSL service. One of
these is SSLlabs[21] which provides a very comprehensive report. These tools form
a very good base to test your SSL public service. Another related tool is SSLyze[11].
This is an off-line SSL service scanner which provides an XML document regarding
information of the service. This tool does not rate the service but does give a lot of
information out of the box which can be very useful to build upon.

5

2 Approach

In order to give a grade to an SSL server implementation it has to be known what
a server implementation should look like. Therefore a literature study has been
done. Then common services have been inspected upon their implementation. By
combining these results, a weighed value is given to each setting. The final result
has been used to create a proof of concept tool that grades an SSL service.

6

3 Research

The research is subdivided in sections according to our Sub Questions.

3.1 Implementing SSL, the right way

For determining bad SSL implementations, we have researched how SSL should be
implemented. This subsection covers the most important aspects of a healthy SSL
service, according to our own research.

3.1.1 Certificates

One important aspect of SSL is the certificate. The SSL certificate “guarantees” that
the SSL service you connect to is indeed the service you want. An SSL certificate
is an implementation of the X.509[5][28] standard. This section describes an SSL
certificate briefly and also mentions what is necessary to make it a valid one.

An SSL certificate has the following structure

• Certificate

– Version

– Serial Number

– Issuer

– Certificate Signature Algorithm

– Validity

* Not Before

* Not After

– Subject

– Subject Public Key Info

* Subject Public Key Algorithm

* Subject’s Public Key

– Extensions

* Extension items...

7

• Certificate Signature Algorithm

• Certificate Signature Value

The version field defines the used certificate version. This is mostly Version 3 as
of that version extensions are introduced. The Serial Number is a unique number
for a certificate signed by a specific Certificate Authority (CA). This is necessary
to be able to uniquely distinguish certificate and to revoke them. The issuer is the
entity that has signed the certificate. The validity describes between which dates
the certificate is valid. The subject describes the service for which the certificate is
issued. The subjects public key info contains information about the public key of the
subject. The extensions contain optional information, either issued by the certificate
authority or inserted by the requester. With these, the CA can force explicit use of
the certificate. The Certificate Signature Algorithm describes which algorithm was
used to generate the signature. The Certificate Signature Value is the signature
itself.

For trusting an SSL service, all attributes of its certificate should be correct.

Trusting the issuer
The certificate is signed by an issuer so the client knows for sure the issuer has ap-
proved the certificate. It is however necessary to trust the issuer as well, otherwise
there is no point in signing. Therefore a client has to check whether the issuer is
trusted. This checking works like a chain, and is called a chain of trust. The issuer
that signed the subject, is a subject itself of its own issuer. This goes on until the
root certificate is reached, which is signed by itself. These root certificates have to
be trusted by the client. If so, the client can then trust the certificate of the service
because it trusts the root certificate.

To be able to do this, the SSL service should provide the certificates in the chain
of trust as well, along its own certificate. If not, the client does not know where to
look. This is called certificate chaining.

Validity check
The certificate might be trusted, but it also has to be valid. This is checked by
comparing the current date to the values in the Validity field. If the current date
is between the Not Before and Not After field, the certificate is valid. This might
sound silly, but if an administrator forgets to update the certificates on a service
when they are expired, the service will not be trusted.

Subject check
Checking whether the subject in the certificate matches the subject of the service
you are using is another very important check. Within HTTPS the subject should
match the host name of the service. If this would not be tested, it would be very
easy to spoof a service with a “valid” certificate from another service (having a

8

different subject).

Hashing Algorithm check
Some hashing algorithms should be avoided at all times. These algorithms are
MD5 and less strong algorithms. Certificate Authorities these days won’t sign MD5
hashes anymore, however it is possible that some long-term certificates still have
the MD5 algorithm. These certificates are vulnerable to collision attacks[13]. MD5
hashes might even be presented in the certificate chain, endangering many certifi-
cates at once.

Random number weakness
Generating an SSL certificate requires a good random number. Having a weak ran-
dom number generator can mean that there is someone out there who can predict
the outcome of it and is thus able to create an identical key pair. Research has been
done on all public SSL and SSH services to find weak public keys which should thus
be avoided[14]. While they do not give away all known vulnerable public keys, they
do provide a check feature for public accessible SSL/SSH services.

Revocation
It can occur that a certificate has to be revoked before the Not After date. For exam-
ple if a private key has been compromised. For this, the Certificate Revocation List
(CRL) mechanism has been introduced. This list lists the serial numbers of revoked
certificates of a certain CA. This means that when full trust of an SSL service is nec-
essary, the CRL should be consulted. CA’s publish their lists publicly. A newer form
of revocation checking is the Online Certificate Status Protocol(OCSP)[16]. This is a
protocol which can be use to request the status of a single certificate, and thus omit
downloading a CRL. The objective remains that an SSL service uses a non-revoked
certificate.

3.1.2 Protocol

The SSL protocol is divided into several versions. The oldest SSL version that is
still required for some browsers, is SSLv3. The list of the available and used SSL
protocols can be found below:

• SSLv2

• SSLv3

• TLS1.0[8]

• TLS1.1[9]

• TLS1.2[10]

9

SSLv2 / SSLv3 protocol
SSLv2 is considered unsafe and should no longer be used as a protocol. SSLv3 is
a significant improvement to the SSLv2 protocol and adds more security and resis-
tance to known attacks on SSLv2 to the protocol[27]. Since SSLv3 is required for a
safe connection for Internet Explorer 6, this could still be enabled to not block any
legitimate users.

Since the SSLv2 protocol is very insecure[27], we are going to rule out SSLv2 as
a potential SSL protocol. However, there are also vulnerabillties in the SSLv3 pro-
tocol. There are known plaintext attacks on the SSLv3 protocol[7] for example.
Another weakness is how the key is derived. This is done based on a MD5 hashing.
MD5 hashing have collissions and is conciderete broken. This might be the main
reason to disable it.

Since SSLv3 implementation is only used to support older browsers e.g. Internet
Explorer 6[20]. The use of Internet Explorer 6, embedded in Windows XP, should
end when XP is no longer supported[18]. Therefore the lowest possible SSL protocol
should be raised to TLS1.0.

TLS protocol
TLSv1.0 is the direct successor of SSLv3. A lot of the specification that is available
for TLSv1.0 is also in SSLv3 with some changes in words[27]. TLSv1.0 however
adds more ciphers to the cipher suite. They are listed in Appendix A. The TLSv1.1
protocol tries to improve on the security vulnerabillities that SSLv3 and TLSv1.0
have by fixing the possible attacks on TLSv1.0. The known plaintext attack, for ex-
ample, is mitigated by the use of explicit initialization vectors[9].

TLSv1.2 takes it one step further. There are more differences towards TLSv1.1.
One of the primary changes is that the MD5/SHA1 hash is replaced by default to
SHA256[10]. Because of the new hashing algorithms, SSL is no longer vulnerable
to MD5 collisions [13]. Also the AES encryption has been added to the supported ci-
pher suites. This provides a more secure environment for the SSL connection.

Compression
The SSL protocol supports compression. If the default SSL compression is used, a
vulnerability is created. This vulnerability is called the Compression Ratio Info-leak
Made Easy (CRIME) attack. This is a clever trick to figure out actual values within
the encrypted message. An easy to follow explanation can be found online[24]. It is
thus recommended to turn off SSL compression. Apart from the possibility of having
a small amount of extra bytes, turning it off should have no disadvantages.

10

3.1.3 Cipher suites

An SSL connection needs to be able to communicate securely. This is done by choos-
ing a cipher suite. This cipher suite is then used to secure the connection.

The client of an SSL based connection transmits its known cipher suites towards
the server. The server then selects the cipher suite it wants to use and sends this
back to the client. Once the cipher suite is selected, a secure connection will be
established. This connection uses the chosen cipher. Thus client and server both
need a common known cipher suite in order to set up a secured connection. A server
administrator determines the available ciphers of an SSL service. For the client this
is usually the program which they use to connect to the SSL service. In case of
HTTPS, the browser vendor adds the supported cipher suites which the client can
(optionally) disable or enable.

A full collection of the cipher suites that OpenSSL4 supports can be found in the
appendix ’A’ and can also be found in the documentation of OpenSSL[19].

Disabling RC4
Microsoft recommends to disable the use of the RC4 cipher[1]. This is based on
recent research[2] towards the cipher suite. While exploiting RC4 is not easy, not
using it at all seems to be good choice.

Using strong ciphers
As we now know some background of the protocol and the cipher suites, we can de-
termine what ciphers not to use, and thus also seek what ciphers to use. Since we
know that MD5 is broken, we will not use the MD5 hashing algorithm. Also NULL
encryption might not be such a great idea, since the traffic will not be encrypted at
all.

Also note that RC4, as mentioned in the previous section, is not easily exploited,
but should be considered not secure. Disabling the RC4 cipher suites is recom-
mended.

A good level of key material must be used to have a secure connection[23]. Com-
mon sense advice is to set the supported bit size for ciphers to a minimum of 128
bits. This eliminates weak ciphers but also the entire DES5 and 3DES6 cipher
suites.

4OpenSSL is one of the most used SSL implementation available.
556 bit keysize and some parity.
6Effectively having only 112 bit (2x56) keysize.

11

3.1.4 Popular known vulnerabilities

Some vulnerabilities were mentioned by Tilburg University.

BEAST Attack
The BEAST attack is a client side attack which is based upon predicting the ini-
tialisation vector used in CBC mode encryption by performing a Man in the Middle
attack[12]. The BEAST attack is a client side attack and is fixed by most up-to-date
clients now[22]. One way to prevent this attack via the server side is to allow only
non-CBC mode cipher suites. This would however result into using RC4, which is
not desired either. Because most clients should be fixed by now we will ignore the
BEAST attack.

The Beast attack relies on the ability of predicting the Initialisation Vector(IV) which
is used in CBC mode cipher suites. The IV “guarantees” that a random pattern in
cipher block chaining occurs, regarding the input. Thus having the same raw input
twice will result in two different encrypted blocks. A solution to fix a predictable IV
is to send the first block of bytes with having only the first byte containing applica-
tion information7. The followed blocks contain the rest of information.

Lucky 13
Another mentioned vulnerability is the Lucky 13 attack[3]. This attack exploits a
server error response to an SSL message. Depending on the response time, the
attacker can determine the type of error that has occurred and use this to make the
server decrypt a message without having the encrypt key. According to the creators
of the Lucky 13 attack, updating to the latest versions of SSL implemented software
will fix the vulnerabilities[25].

7Solution is proposed by Xuelei Fan (https://bugzilla.mozilla.org/show_bug.cgi?id=665814#
c59)

12

https://bugzilla.mozilla.org/show_bug.cgi?id=665814#c59
https://bugzilla.mozilla.org/show_bug.cgi?id=665814#c59

3.2 Common mistakes

The second step is to look for common mistakes. For this, we will determine our
scope and the services we want to test. We also have to define “common” mis-
takes.

3.2.1 Scope

Services

To determine the services we are going to test, we have to know what services are
available and on which port they run. The Internet Assigned Number Authority
provides a list of all registered SSL services along with their port numbers[6]. We
have picked the following services as we thought they are the most commonly used.
This selection is based upon our own experience.

Protocol Port Description

https 443 http over SSL/TLS

imaps 993 imap over SSL/TLS

pop3s 995 pop3 over SSL/TLS

Table 1: Common mistakes service scope

Hosts

We wanted to have a wide range of different SSL hosts and services to research for
their certificate and settings. Because we are on a limited time we don’t want to
have too many hosts. Our examined hosts can be found in the appendices (Appendix
B).

13

Definition

Based upon our first research (Section 3.1), we can now determine what is a good
SSL implementation. We can therefore also determine when an SSL service con-
tains a mistake. The following table contains our demands for a “healthy” SSL
service.

Signature hash algorithm The hashing algorithm used for signing the certificate should be strong. (No MD5)
Certificate (chain) trusted The certificate chain has to be implemented in the right way and has to be trusted.

Certificate is valid The certificate should not be expired, neither should it be valid from the future.
Subject name matches The subject of the certificate should match the hostname of the service.
No Debian weak keys The certificate should have strong a key.
Compression disabled SSL Compression should be disabled (Crime vulnerability).

Key length at least 128bits At least 128bit ciphersuites should be used.
Cipher suites do not contain MD5 MD5 should not be used anymore.
Cipher suites do not contain RC4 RC4 should not be used anymore.
Perfect forward secrecy available Perfect Forward Secrecy(PFS) should be enabled.

SSLv2 Disabled SSLv2 should be disabled.
SSLv3 Disabled SSLv3 should be disabled.

TLSv1.0 Enabled TLSv1.0 should be enabled.
TLSv1.1 Enabled TLSv1.1 should be enabled.
TLSv1.2 Enabled TLSv1.2 should be enabled.

Table 2: Determined demands of an SSL service

14

3.2.2 Results

As mentioned above, we had several tests to check the certificate validity. The per-
centage of passing these tests can be read in table 3. The enabling of SSLv3 resulted
in the fact that most clients did not pass our SSLv3 test, since it was enabled. Most
server administrators keep this enabled because there are still backwards compati-
billity issues with Miscrosoft Windows XP and Internet Explorer 6.

We however recommend to turn of SSLv3 because the protocol support for the bet-
ter TLSv1.0 is already in all the browsers available8. Also Windows XP is no longer
supported from the 8th of April 2014.

Another test that has a low passing rate is the usage of RC4. This encryption method
is weaker then expected and should thus be turned off. However the majority of the
web servers still use RC4.

Testname Percentage passed

Signature hash algorithm 100%

Certificate (chain) trusted 100%

Certificate is valid 100%

No Debian weak keys 100%

Subject name matches 91%

Compression disabled 100%

Cipher suites do not contain MD5 57%

Perfect forward secrecy available 46%

Cipher suites do not contain RC4 17%

Key length at least 128bits 89%

SSLv2 disabled 94%

SSLv3 disabled 3%

TLSv1.0 enabled 97%

TLSv1.1 enabled 63%

TLSv1.2 enabled 63%

Table 3: Percentage of test passing for hosts

8Except Internet Explorer 6

15

3.3 Classifying mistakes

Based upon our research we have developed our tests. We have included tests that
determine whether the certificates are implemented securely, but also tests that
conclude whether the certificate is implemented correctly. For example whether
the chaining is correct and if the date is still valid.

The tests we have done are explained in section 3.3.1. We need to give a value to
a test in order to weigh the test. The final grade will be determined by adding the
weight of all the tests and then dividing by the total possible weight. This will result
in a percentage that can be interpreted as the health of a SSL based service.

However, there is one exception to this calculations. Whenever a so called show-
stopper9 test does not pass, the final percentage will be set to 0%. In practice, a
service using a certificate which is does not pass all of the show-stopper tests should
not be trusted by any client. Most browsers will display a warning.

9A test that must be passed to get a correct implementation, for example the validity of the SSL
certificate

16

3.3.1 Classification

To be able to set up the tool, we have designed an example test (table 4).

Example Test

Name Example

Proposition Requirement in order to pass the test

Weight 50

Required No

Table 4: Test example

A test can either fail or pass. If a tests fails which is required (and thus vital for
the SSL service), the service fails and the health is then 0. For the other tests
we have determined that we will divide the sum of the total weight of the passed
tests divided by the sum of the total weight of all executed tests. This results in a
percentage of the passed tests, with the ability to make more weighted tests having
more influence on the final grade. If all the tests are positive the health of the tested
service is 100%.

Formulas

{requiredtests} ⊂ {passedtests} (1)

Equation 1: The set of all required tests has to be a subset of all passed tests.

100 ∗

N∑
i=1

pi

M∑
j=1

tj

(2)

Equation 2: Where p is a set of all weights of the passed tests and t is a set of all
weights of all performed tests.

17

3.3.2 Implementation

In this section we describe what weight and the required flag we have given to
each test and with what motivation. The weight values have been chosen so that
0 <= weight <= 100 having 0 is no weight at all and 100 is the biggest weight. To
make decisions more easily, we have made up the following table to make rating
ourselves relatively easy.

Rating legend

Rating Urgency to repair

0-19 Very low

20-39 Low

40-59 Medium

60-79 High

80-100 Very high

Hashing Signature

Proposition The hashing algorithm used to sign the certificate is not MD5

Weight 80

Required No

Having an MD5 signed certificate is considered bad because they are vulnerable to
collision attacks[13]. In our findings we have not found any service using an SSL
certificate signed with an MD5 hash. Because this can result a real issue we have
determined this as a high risk.

Trust Test

Proposition The certificate and chain has to be trusted

Weight 0

Required Yes

Having an untrusted certificate (chain) will cause the service to fail. Therefore
we have determined that this test is required to pass. This test will validate the
certificate of the service by the certificate chain supplied by the service.

18

Validity Test

Proposition The certificate has to be valid. (Date check)

Weight 0

Required Yes

Having an expired (or future certificate) will cause the service to fail. Therefore we
have determined that this test is required to pass.

Weak keys

Proposition The certificate does not have a weak key

Weight 100

Required No

Having a weak key means that finding the private key of the certificate is very easy.
Therefore we have determined that it is very important to fix this as soon as possible
and gave it the highest possible weight.

Subject check

Proposition The certificate’s subject matches the host name of the service

Weight 0

Required Yes

Having an SSL service with a certificate of which the subject is not matching the
host name will cause the service to fail. Therefore we have determined that this test
is required to pass.

Compression check

Proposition SSL Compression is disabled

Weight 50

Required No

Having SSL compression enabled will enable the possibility for a CRIME attack[24].
Disabling SSL compression is therefore desirable. We have determined the weight
at medium because most tested services had already disabled SSL compression.

19

MD5 Usage

Proposition Cipher suites using MD5 are not used.

Weight 50

Required No

As stated before, MD5 is vulnerable to collision attacks and cipher-suites containing
it should therefore be disabled. Newer clients probably won’t propose these hashing
algorithms towards a SSL based service. We therefore have decided that this is a
medium weighted test.

RC4 Usage

Proposition Cipher suites using RC4 are not used.

Weight 80

Required No

It is recommended to turn off RC4[2]. Because clients still propose this cipher, we
considered turning RC4 off as a high demand.

PFS Usage

Proposition Perfect forward secrecy cipher suites are enabled.

Weight 50

Required No

Having perfect forward secrecy is higly recommended by us. However, only a small
amount of tested hosts has this feature enabled. It is also not necessary for a service
to implement this to be working in good order. Because we do want services to adopt
this feature, we have put this test on medium.

Weak Chipers

Proposition Cipher suites don’t use less than 128bit keys.

Weight 80

Required No

It is desirable to have strong keys because this reduces the possibility of a successful
brute-force attack. A few of our test subjects allowed for encryption with a 40bit key.
This is very weak and therefore considered dangerous. Therefore we have decided
to put this on high weight.

20

SSLv2

Proposition SSLv2 is disabled.

Weight 100

Required No

SSLv2 is considered broken. Therefore we have determined that disabling SSLv2
should be done as soon as possible, resulting in a very high issue.

SSLv3

Proposition SSLv3 is disabled.

Weight 30

Required No

SSLv3 has some known vulnerabilities. It is however still used because of backwards
compatibility to older clients. For example Microsoft Internet Explorer on Windows
XP. While we would really like to see that SSLv3 is disabled, lot’s of companies
can not do so because their customers will fail to connect to their services. For this
reason we have determined this as a relatively low issue.

TLSv1.0

Proposition TLSv1.0 is enabled.

Weight 75

Required No

TLSv1.0 is enabled on every host we have tested. Most clients support TLSv1.0 and
we have therefore determined that enabling this protocol is desired. Turning this
version off and turn newer versions on is theoretically better but the world is not
yet ready for this, as lots of clients do not support newer versions yet. We have
therefore determined that turning this version on is of a high demand.

TLSv1.1

Proposition TLSv1.1 is enabled.

Weight 100

Required No

TLSv1.1 is more secure than TLSv1.0. Turning it on does not break TLSv1.0 so we

21

do recommend to turn this version on. We have therefore set this test as a very high
demand.

TLSv1.2

Proposition TLSv1.2 is enabled.

Weight 100

Required No

TLSv1.2 is the latest stable TLS version. We therefore also recommend to turn this
on as it won’t break support for older versions of TLS. Therefore TLSv1.2 also has
a high weight. One drawback is that not all server software supports this version
yet.

22

3.4 Implement findings

Based upon our findings we are able to create an health assessment tool. The tool
is going to be a proof of concept and is able to run on a Linux pc and on Mac
OS X. The tool will be using SSLyze[11]10 as an underlying basis. SSLyze gener-
ates an XML document containing information regarding the SSL service and it’s
implementation. Therefore we have found SSLyze a great basis to build our tool
upon. To implement the Debian weak key vulnerability check we will use an online
service[15]. The certificate chain itself will be tested via openSSL.

The proof of concept tool will be written in Python and has to be modular. This
means that the tool has to be written in such a way that adding new tests can be
done without changing the application itself and is very easy. The same concept will
be used to generate output. Output will be handled by so called printers, which can
be added and modified without making changes to the application itself. With this
feature it is thus possible to create an output like XML or JSON, and integrate the
results in existing monitoring tools. Various terminal output printers for easy and
fast reading will be available as well.

The application is divided into several classes. We have created a class diagram to
give an overview of the application. This class diagram can be found in figure 1.

To implement a new test, all one has to do is inherit the Test class and put the file
containing this test into the tests folder. The application will then dynamically load
the test into the application. Adding a different printer works the same, this is done
by adding a class which inherits the Printer class to the printer folder. To select
a printer, you can pass the selected printer as an argument in the command line
interface.

3.4.1 The running application

When the application starts it tries to scan the provided hosts and corresponding
port numbers (host:port). These port numbers are not mandatory and the tool will
use 44311 if not provided. For example, services like IMAPS can be scanned by
appending :993 to the host name.

For each of the provided hosts, a service object will be created. The application
will try to scan the services by using the SSLyze application as a library. The XML

10A tool used to gather information about an SSL service (https://github.com/iSECPartners/
SSLyze)

11HTTPS socket

23

https://github.com/iSECPartners/SSLyze
https://github.com/iSECPartners/SSLyze

Figure 1: Class diagram

that is provided by the SSLyze application will be interpreted by an instance of the
Scanresult class. Once the scan is completed, we will move towards the tests.

For each service, the corresponding scanresult object will be passed towards the
available tests. The test will then determine whether the test passes or fails and
returns a testresult object. For each service, an array with testresult objects will be
passed on to the printer.

The printer then formats the results of the tests in a desired format. Once every
result is printed, the application will terminate and the user can look at the re-
sults.

3.4.2 Testing Tilburg University IP space

Now that we have a working SSL health assessment tool, we have ran it against the
entire Tilburg University IP space. To keep the scope within limits, we have decided
to test all publicly accessible HTTPS servers (accessible from outside of the Tilburg
University network). With nmap[17] we have first scanned the entire IP space for
hosts with an open 443 port.

$ nmap 137.56.0.0/16 -p 443 --open --verbose

24

This resulted in 176 hosts with an open 443 port. To determine which port was
actually listening we have used Curl[4].

$ curl https://hostname:443 --connect-timeout 10; echo $?

For each host, a Curl response code was given. Response code 28 means a connec-
tion time-out, so we have omitted the hosts from our tests having this code. This
resulted in a remainder of 159 hosts. Because among these hosts are also servers
which can have a different host name than the SSL service it services, we have
modified our subject test. The subject test is still executed, but does not affect the
outcome of the test. Normally, having a wrong subject would result in a broken
connection. The result of our health assessment tool can be found in Appendix D.
It took our tool about 30 minutes to test all the services. Because not all the hosts
responded immediately it took the test quite some time to run.

Results

Among our results is a wide range of different outcomes, varying between 0 and
97 percent. Remarkably, 97 is the highest score and the reason for this is the fact
that SSLv3 is enabled on all hosts. This is due to the fact that the University has to
have a lot of backwards compatibility due to old clients and thus can not omit this
version yet. Apart from this, a score of 97 is in our opinion very healthy. The lowest
score in the list is 0. This means that normal clients would break connection upon
connecting to these hosts. What concerns us most are the hosts with a score around
and below 40. Most of these hosts have SSLv2 enabled which is really insecure by
now.

3.4.3 Testing IMAPS vs HTTPS

The proof of concept tool we created also has the possibillity to scan other services
like IMAPS12. For this reason we also tried to scan IMAPS services. IMAPS would
make a great test environment to check whether HTTPS was implemented better
then IMAPS. There is however one problem with IMAPS servers, there are way
more HTTPS servers available than IMAPS servers. For this reason there are only a
few selected IMAPS servers in appendix C.

Results

The selected IMAPS services did not score well. Most of them scored 60%. This
is mostly because of the enabling of SSLv3 and keeping TLSv1.1 and TLSv1.2 off.
Also the useage of MD5 and RC4 ciphersuites have lead to these low values. The
recommended settings are thus not followed in the IMAPS servers.

12Imap is a protocol to retreive mail

25

3.4.4 Testing SURFconext Identity Providers

SURFcontext is the federated authentication platform that is provided by SURFnet,
the national research and education network in The Netherlands 13. Almost all of the
institutions for higher education and research in The Netherlands use this platform
to use a single place of logging in. The organizations use their Identity Provider
(IdP) to provide an interface to log into. Because this is the place where account
usernames and passwords are exchanged, it is very important that the SSL health
is of good quality. We scanned all of the SURFconext IdP’s to test their services. We
did this through a list that we received from the SURFnet organization. The result
of this scan can be found in appendix E.

Results

In these tests, we found out that several services running the HTTPS server were
insecure. In table 5 we show that the most of the hosts are considerate insecure
by our tool. The outliers however score only 15%. This is mostly because SSLv2
and SSLv3 are enabled but all the TLS protocols are disabled. This results in a
low grade. The SSLv2 must definetly be disabled to enhance the security of these
domains.

Score Number of hosts

< 40% 5

40-50% 8

50-60% 82

60-70% 9

70-80 % 13

> 80 % 20

Table 5: SURFconext summary table

The cipher suites are also not very well choosen for these hosts, almost all of them
still use MD5 and RC4. To improve overal security, it is better to disable these
aswell. Last but not least, the TSLv1.1 and TLSv1.2 must be enabled to improve the
security to current standards.

13http://www.surf.nl/diensten-en-producten/surfconext/index.html

26

http://www.surf.nl/diensten-en-producten/surfconext/index.html

Responsible disclosure

Although our scans are based on publically available data and services reachable
from the internet, we’ve practiced so called ‘responsible disclosure’ where we an-
nounced the results of the tests ahead of publication of this report to the respective
service administrators to give them a chance to address any issues. The results of
the scan on the Tilburg University network have been coordinated with the univer-
sity’s incident response team UvT-CERT, and the SURFconext administrators have
been informed about the scores of their IdP’s.

27

4 Conclusion

We set out to find a way to test SSL server side implementations for their health in
a way that it can easily be implemented in software. Although software that tests
the health of an SSL service already exist, this research shows a different way in
testing. The main difference between existing software and the developed method
is the way of grading an SSL service and the ability to do this in bulk, making it
easy to monitor a whole server cluster for its status. The software has been tested
in the large environments and had positive results. The following sections describe
the results of our research.

How can we determine a bad SSL implementation?
Based upon literature studies on how SSL services should be implemented, the
criteria for good SSL implementations are determined. For example, support for
TLSv1.2 is mandatory and earlier versions are less secure or support less strong
cipher suites. However, for backward compatibility it is just not possible to enable
TLSv1.2 only. Therefore is concluded that TLSv1.0 and 1.1 should still be enabled.
SSLv3 is still used widely but should be disabled. SSLv2 is really broken so this
should be disabled at all times.

What mistakes are commonly made by server administrators regarding im-
plementing SSL?
The performed research into real world services indicate that the most common
mistakes are that 97% still uses SSLv3 and 37% of the services have not enabled
TLSv1.1 or TLSv1.2. Another recurring theme is the usage of RC4 which is proven
vulnerable. A lot of common SSL services are not implemented the correct way.

How can we classify these mistakes?
In order to classify a server setting, we have given each setting a certain weight
based upon the level of vulnerability and put them into a test. For example, this
results in granting a very high weight for enabling SSLv2, which should definitely
not be done. The health value of an SSL service is based upon the classification of
the tests and is represented by a formula that uses the weight of all passed tests
combined with the total weight of all tests.

28

5 Future work

While doing this research we discovered several interesting fields that have yet to
be explored. Some of these fields are listed below.

5.1 Starttls

Starttls is one of the fields that still need to be examined. This is basically starting
an unsecure connection and then upgrade the connection to use SSL. This has not
been researched in this paper and could be researched in the future.

5.2 HTTPS protocol

There are several aspects of the HTTPS protocol specifically. This is for example the
headers that can be sent with an HTTPS page. The research done in this paper was
about the general SSL TLS connection, therefore going deeper in one of its uses
was beyond the scope of this project.

An example of such a header is the https strict header. Whenever a browser receives
this header, the browser knows for future visits to go to the HTTPS version of the
web page. When a man in the middle attack is performed in such a way that it
downgrades the HTTPS to plain HTTP, the browser knows that it must not serve the
web page to the end user.

5.3 Proof of Concept

The proof of concept does not validate SSL services that request an (optional) client
certificate in a right way. This is however desirable since this is less common but is
a valid feature of an SSL service.

It also does not handle server name indication, which is also very desirable if you
want to test a host that serves multiple domains.

As last, the tool is based upon SSLyze[11], which is not providing all necessary data
for all tests. These tests are implemented in a different way using either openSSL
or an online service[15] for detecting Debian weak keys. As of Python 3.4(which is
currently in beta), a lot of SSL features have been added. Amongst these features
is for example a test for the chain of trust. Rewriting the tool as a standalone tool
might be a nice next step.

29

References

[1] Ie11 automatically makes over 40sites continue to work, 2013.
http://blogs.msdn.com/b/ie/archive/2013/11/12/ie11-automatically-makes-
over-40-of-the-web-more-secure-while-making-sure-sites-continue-to-
work.aspx.

[2] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poet-
tering, and Jacob C.N. Schuldt. On the security of rc4 in tls and wpa. 2013.

[3] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the tls
and dtls record protocols. February 2013.

[4] Various Authors. Curl, 2014. http://curl.haxx.se/.

[5] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Inter-
net X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. RFC 5280 (Proposed Standard), May 2008. Updated by RFC
6818.

[6] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire. Internet As-
signed Numbers Authority (IANA) Procedures for the Management of the Ser-
vice Name and Transport Protocol Port Number Registry. RFC 6335 (Best
Current Practice), August 2011. http://www.ietf.org/rfc/rfc6335.txt.

[7] Bruce Schneier David Wagner. Analysis of the ssl 3.0 protocol, April 1996.
https://www.schneier.com/paper-ssl-revised.pdf.

[8] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246, Internet
Engineering Task Force, January 1999.

[9] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1. RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246,
updated by RFCs 4366, 4680, 4681, 5746, 6176.

[10] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746,
5878, 6176.

[11] Alban Diquet and Aaron Grattafiori. Sslyze, 2014. https://code.google.com/
p/sslyze/.

[12] Thai Duong. Beast, September 2011. http://vnhacker.blogspot.nl/2011/
09/beast.html.

[13] Dario Forte. The death of md5. Network Security, 2009.

30

http://curl.haxx.se/
http://www.ietf.org/rfc/rfc6335.txt
https://www.schneier.com/paper-ssl-revised.pdf
https://code.google.com/p/sslyze/
https://code.google.com/p/sslyze/
http://vnhacker.blogspot.nl/2011/09/beast.html
http://vnhacker.blogspot.nl/2011/09/beast.html

[14] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Min-
ing your Ps and Qs: Detection of widespread weak keys in network devices. In
Proceedings of the 21st USENIX Security Symposium, August 2012.

[15] Nadia Heninger and J. Alex Halderman. Fastgcd, 2012. https://factorable.
net/keycheck.html.

[16] R. Huang, Q. Wu, H. Asaeda, and G. Zorn. RTP Control Protocol (RTCP) Ex-
tended Report (XR) Block for MPEG-2 Transport Stream (TS) Program Specific
Information (PSI) Independent Decodability Statistics Metrics Reporting. RFC
6990 (Proposed Standard), August 2013.

[17] Gordon Lyon. Nmap, 2014. http://nmap.org/.

[18] Microsoft. Microsoft support lifecycle, January 2014. http://support.
microsoft.com/lifecycle/?ln=en-gb&c2=1173.

[19] Openssl. Openssl cipher list, 01 2014. http://www.openssl.org/docs/apps/
ciphers.html.

[20] Qualys. Internet explorer 6 support configuration, January 2014.
https://www.ssllabs.com/ssltest/viewClient.html?name=IE&version=
6&platform=XP.

[21] Qualys. Ssl server test tool, 2014. https://www.ssllabs.com/ssltest/
index.html.

[22] Ivan Ristic. Is beast still a threat?, 2013. https://community.qualys.com/
blogs/securitylabs/2013/09/10/is-beast-still-a-threat Qualys SSL
labs.

[23] Ivan Ristić. Ssl/tls deployment best practices, September 2013. https://www.
ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices_1.3.pdf
Qualys SSL labs.

[24] Tom Ritter. Details on the "crime" attack, 2012. https://isecpartners.com/
blog/2012/september/details-on-the-crime-attack.aspx.

[25] Pratik Guha Sarkar and Shawn Fitzgerald. Lucky 13, 2013. http://www.isg.
rhul.ac.uk/tls/Lucky13.html.

[26] Alex Wawro. Researchers crack web encryption. PC World, 2011.

[27] Loren Weith. Differences between sslv2, sslv3, and tls, 2006. http://www.
yaksman.org/~lweith/ssl.pdf.

31

https://factorable.net/keycheck.html
https://factorable.net/keycheck.html
http://nmap.org/
http://support.microsoft.com/lifecycle/?ln=en-gb&c2=1173
http://support.microsoft.com/lifecycle/?ln=en-gb&c2=1173
http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html
https://www.ssllabs.com/ssltest/viewClient.html?name=IE&version=6&platform=XP
https://www.ssllabs.com/ssltest/viewClient.html?name=IE&version=6&platform=XP
https://www.ssllabs.com/ssltest/index.html
https://www.ssllabs.com/ssltest/index.html
https://community.qualys.com/blogs/securitylabs/2013/09/10/is-beast-still-a-threat
https://community.qualys.com/blogs/securitylabs/2013/09/10/is-beast-still-a-threat
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices_1.3.pdf
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices_1.3.pdf
https://isecpartners.com/blog/2012/september/details-on-the-crime-attack.aspx
https://isecpartners.com/blog/2012/september/details-on-the-crime-attack.aspx
http://www.isg.rhul.ac.uk/tls/Lucky13.html
http://www.isg.rhul.ac.uk/tls/Lucky13.html
http://www.yaksman.org/~lweith/ssl.pdf
http://www.yaksman.org/~lweith/ssl.pdf

[28] P. Yee. Updates to the Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. RFC 6818 (Proposed Standard),
January 2013.

32

Appendices

A SSL Ciphers

A.1 SSLv3

Cipher name openssl Implementation
SSL_RSA_WITH_NULL_MD5 NULL-MD5
SSL_RSA_WITH_NULL_SHA NULL-SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5 EXP-RC4-MD5
SSL_RSA_WITH_RC4_128_MD5 RC4-MD5
SSL_RSA_WITH_RC4_128_SHA RC4-SHA
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 EXP-RC2-CBC-MD5
SSL_RSA_WITH_IDEA_CBC_SHA IDEA-CBC-SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DES-CBC-SHA
SSL_RSA_WITH_DES_CBC_SHA DES-CBC-SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA
SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA EXP-DH-DSS-DES-CBC-SHA
SSL_DH_DSS_WITH_DES_CBC_SHA DH-DSS-DES-CBC-SHA
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA DH-DSS-DES-CBC3-SHA
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DH-RSA-DES-CBC-SHA
SSL_DH_RSA_WITH_DES_CBC_SHA DH-RSA-DES-CBC-SHA
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA DH-RSA-DES-CBC3-SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA EXP-DHE-DSS-DES-CBC-SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA DHE-DSS-CBC-SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE-DSS-DES-CBC3-SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DHE-RSA-DES-CBC-SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA DHE-RSA-DES-CBC-SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE-RSA-DES-CBC3-SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 EXP-ADH-RC4-MD5
SSL_DH_anon_WITH_RC4_128_MD5 ADH-RC4-MD5
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA EXP-ADH-DES-CBC-SHA
SSL_DH_anon_WITH_DES_CBC_SHA ADH-DES-CBC-SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA ADH-DES-CBC3-SHA
SSL_FORTEZZA_KEA_WITH_NULL_SHA Not implemented.
SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA Not implemented.
SSL_FORTEZZA_KEA_WITH_RC4_128_SHA Not implemented.

33

A.2 TLSv1.0/TLSv1.1

Cipher name openssl Implementation
TLS_RSA_WITH_NULL_MD5 NULL-MD5
TLS_RSA_WITH_NULL_SHA NULL-SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5 EXP-RC4-MD5
TLS_RSA_WITH_RC4_128_MD5 RC4-MD5
TLS_RSA_WITH_RC4_128_SHA RC4-SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 EXP-RC2-CBC-MD5
TLS_RSA_WITH_IDEA_CBC_SHA IDEA-CBC-SHA
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DES-CBC-SHA
TLS_RSA_WITH_DES_CBC_SHA DES-CBC-SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA
TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Not implemented.
TLS_DH_DSS_WITH_DES_CBC_SHA Not implemented.
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA Not implemented.
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_DES_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA Not implemented.
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA EXP-DHE-DSS-DES-CBC-SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA DHE-DSS-CBC-SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE-DSS-DES-CBC3-SHA
TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DHE-RSA-DES-CBC-SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA DHE-RSA-DES-CBC-SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE-RSA-DES-CBC3-SHA
TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 EXP-ADH-RC4-MD5
TLS_DH_anon_WITH_RC4_128_MD5 ADH-RC4-MD5
TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA EXP-ADH-DES-CBC-SHA
TLS_DH_anon_WITH_DES_CBC_SHA ADH-DES-CBC-SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA ADH-DES-CBC3-SHA

34

A.3 TLSv1.2

Cipher name openssl Implementation
TLS_RSA_WITH_NULL_SHA256 NULL-SHA256
TLS_RSA_WITH_AES_128_CBC_SHA256 AES128-SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256 AES256-SHA256
TLS_RSA_WITH_AES_128_GCM_SHA256 AES128-GCM-SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384 AES256-GCM-SHA384
TLS_DH_RSA_WITH_AES_128_CBC_SHA256 DH-RSA-AES128-SHA256
TLS_DH_RSA_WITH_AES_256_CBC_SHA256 DH-RSA-AES256-SHA256
TLS_DH_RSA_WITH_AES_128_GCM_SHA256 DH-RSA-AES128-GCM-SHA256
TLS_DH_RSA_WITH_AES_256_GCM_SHA384 DH-RSA-AES256-GCM-SHA384
TLS_DH_DSS_WITH_AES_128_CBC_SHA256 DH-DSS-AES128-SHA256
TLS_DH_DSS_WITH_AES_256_CBC_SHA256 DH-DSS-AES256-SHA256
TLS_DH_DSS_WITH_AES_128_GCM_SHA256 DH-DSS-AES128-GCM-SHA256
TLS_DH_DSS_WITH_AES_256_GCM_SHA384 DH-DSS-AES256-GCM-SHA384
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 DHE-RSA-AES128-SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 DHE-RSA-AES256-SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 DHE-RSA-AES128-GCM-SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 DHE-RSA-AES256-GCM-SHA384
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 DHE-DSS-AES128-SHA256
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 DHE-DSS-AES256-SHA256
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 DHE-DSS-AES128-GCM-SHA256
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 DHE-DSS-AES256-GCM-SHA384
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 ECDH-RSA-AES128-SHA256
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 ECDH-RSA-AES256-SHA384
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 ECDH-RSA-AES128-GCM-SHA256
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 ECDH-RSA-AES256-GCM-SHA384
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 ECDH-ECDSA-AES128-SHA256
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 ECDH-ECDSA-AES256-SHA384
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 ECDH-ECDSA-AES128-GCM-SHA256
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 ECDH-ECDSA-AES256-GCM-SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 ECDHE-RSA-AES128-SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 ECDHE-RSA-AES256-SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 ECDHE-RSA-AES128-GCM-SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ECDHE-RSA-AES256-GCM-SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 ECDHE-ECDSA-AES128-SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 ECDHE-ECDSA-AES256-SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 ECDHE-ECDSA-AES128-GCM-SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 ECDHE-ECDSA-AES256-GCM-SHA384
TLS_DH_anon_WITH_AES_128_CBC_SHA256 ADH-AES128-SHA256
TLS_DH_anon_WITH_AES_256_CBC_SHA256 ADH-AES256-SHA256
TLS_DH_anon_WITH_AES_128_GCM_SHA256 ADH-AES128-GCM-SHA256
TLS_DH_anon_WITH_AES_256_GCM_SHA384 ADH-AES256-GCM-SHA384

35

B Examined Hosts

The hosts and their corresponding services we used in our research to look for
common mistakes are listed below.

Tag Description Weight Required
A Signature hash algorithm 80 No
B Certificate (chain) trusted 0 Yes
C Certificate is valid 0 Yes
D No Debian weak keys 100 No
E Subject name matches 0 Yes
F Compression disabled 50 No
G Cipher suites do not contain MD5 50 No
H Perfect forward secrecy available 50 No
I Cipher suites do not contain RC4 80 No
J Key length at least 128bits 80 No
K SSLv2 disabled 100 No
L SSLv3 disabled 30 No
M TLSv1.0 enabled 75 No
N TLSv1.1 enabled 100 No
O TLSv1.2 enabled 100 No

Table 6: Common mistakes service legend

Host Port A B C D E F G H I J K L M N O
www.os3.nl 443

√ √ √ √ √ √ √
× ×

√ √
×

√ √ √

www.hva.nl 443
√ √ √ √ √ √ √

× ×
√ √

×
√

× ×
www.uvt.nl 443

√ √ √ √ √ √ √ √ √ √ √
×

√ √ √

www.hostnet.nl 443
√ √ √ √ √ √

×
√

× ×
√

×
√ √ √

www.transip.nl 443
√ √ √ √ √ √ √ √

×
√ √

×
√ √ √

www.versio.nl 443
√ √ √ √ √ √ √ √

×
√ √

×
√ √ √

www.pcextreme.nl 443
√ √ √ √ √ √

× × × × × ×
√

× ×
www.mijndomein.nl 443

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

www.ing.nl 443
√ √ √ √ √ √ √

×
√ √ √

×
√ √ √

www.abnamro.nl 443
√ √ √ √ √ √

×
√

×
√ √

×
√ √ √

www.rabobank.nl 443
√ √ √ √ √ √

× × ×
√ √

×
√ √ √

www.snsbank.nl 443
√ √ √ √ √ √

× × ×
√ √

×
√

× ×
www.bol.com 443

√ √ √ √ √ √
× × ×

√ √
×

√
× ×

www.wehkamp.nl 443
√ √ √ √ √ √ √

× ×
√ √

×
√ √ √

www.conrad.nl 443
√ √ √ √ √ √ √

× ×
√ √

×
√ √ √

www.alternate.nl 443
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

www.4launch.nl 443
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
www.google.nl 443

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

www.microsoft.com 443
√ √ √ √ √ √

× × ×
√ √

×
√

× ×
www.yahoo.com 443

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

www.duckduckgo.com 443
√ √ √ √ √ √ √ √

×
√ √

×
√ √ √

www.ask.com 443
√ √ √ √

×
√

× × × × × ×
√ √ √

www.facebook.com 443
√ √ √ √ √ √

×
√

×
√ √

×
√ √ √

www.linkedin.com 443
√ √ √ √ √ √

× × ×
√ √

×
√

× ×
www.twitter.com 443

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

www.tumblr.com 443
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

www.instagram.com 443
√ √ √ √

×
√

× × ×
√ √

×
√

× ×
www.edarling.nl 443

√ √ √ √ √ √ √ √
×

√ √
×

√ √ √

www.relatieplanet.nl 443
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

www.e-matching.nl 443
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
www.studentdating.eu 443

√ √ √ √
×

√
×

√
×

√ √
×

√
× ×

www.tweakers.net 443
√ √ √ √ √ √ √

× ×
√ √

×
√ √ √

www.ov-chipkaart.nl 443
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
www.9292.nl 443

√ √ √ √ √ √ √
×

√ √ √
× × × ×

www.ns.nl 443
√ √ √ √ √ √

× × × ×
√

×
√ √ √

Table 7: Common mistakes service scope. (
√

= in order, × is not in order.)

36

C Testresults IMAPS

These are the results for the tests on the production IMAPS servers

Tag Description Weight Required

A Signature hash algorithm 80 No

B Certificate (chain) trusted 0 Yes

C Certificate is valid 0 Yes

D No Debian weak keys 100 No

E Subject name matches 0 Yes

F Compression disabled 50 No

G Cipher suites do not contain MD5 50 No

H Perfect forward secrecy available 50 No

I Cipher suites do not contain RC4 80 No

J Key length at least 128bits 80 No

K SSLv2 disabled 100 No

L SSLv3 disabled 30 No

M TLSv1.0 enabled 75 No

N TLSv1.1 enabled 100 No

O TLSv1.2 enabled 100 No

Table 8: Imaps service legend

Host Port Score A B C D E F G H I J K L M N O
mailhost.uvt.nl 465 73.0%

√ √ √ √ √ √
×

√
× ×

√
×

√ √ √

imap.hostnet.nl 993 51.0%
√ √ √ √ √ √

×
√

× ×
√

×
√

× ×
imap.os3.nl 993 82.0%

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

imap-mail.outlook.com 993 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
imap.gmail.com 993 82.0%

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

imap.xs4all.nl 993 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
mailbox.uvt.nl 993 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

webmail.uva.nl 993 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
mail.axc.nl 993 74.0%

√ √ √ √ √ √ √ √ √ √ √
×

√
× ×

Table 9: Imaps service results. (
√

= in order, × is not in order.)

37

D Testresults Tilburg University IP Space

This results are based upon our health assessment tool with one change in the set-
tings. The Subject Name check is performed but does not affect the outcome of
the test. This is done due the fact that a single server can host multiple services
and thus listens to multiple host names. The result of the check is however listed
in our result table because for some hosts it might be desirable to have this test
passed.

Tag Description Weight Required
A Signature hash algorithm 80 No
B Certificate (chain) trusted 0 Yes
C Certificate is valid 0 Yes
D No Debian weak keys 100 No
E Subject name matches 0 Yes
F Compression disabled 50 No
G Cipher suites do not contain MD5 50 No
H Perfect forward secrecy available 50 No
I Cipher suites do not contain RC4 80 No
J Key length at least 128bits 80 No
K SSLv2 disabled 100 No
L SSLv3 disabled 30 No
M TLSv1.0 enabled 75 No
N TLSv1.1 enabled 100 No
O TLSv1.2 enabled 100 No

Table 10: Tilburg University IP Space legend

Host Port Score A B C D E F G H I J K L M N O
vpn.uvt.nl 443 60.0%

√ √ √ √ √ √ √
× ×

√ √
×

√
× ×

137.56.127.11 443 60.0%
√ √ √ √

o
√ √

× ×
√ √

×
√

× ×
freitag-1.uvt.nl 443 97.0%

√ √ √ √
o

√ √ √ √ √ √
×

√ √ √

freitag.uvt.nl 443 97.0%
√ √ √ √

o
√ √ √ √ √ √

×
√ √ √

ef0171.uvt.nl 443 88.0%
√ √ √ √

o
√ √ √

×
√ √

×
√ √ √

ef0174.uvt.nl 443 82.0%
√ √ √ √

o
√

×
√

×
√ √

×
√ √ √

maximus.uvt.nl 443 0.0%
√

× ×
√

o
√

×
√

×
√ √

×
√

× ×
flowsel.uvt.nl 443 88.0%

√ √ √ √
o

√ √ √
×

√ √
×

√ √ √

caesar.ilo.uvt.nl 443 0.0%
√

×
√ √

o
√

× × × ×
√

×
√ √ √

stuwww.uvt.nl 443 88.0%
√ √ √ √ √ √ √ √

×
√ √

×
√ √ √

africa.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
zermelo.uvt.nl 443 97.0%

√ √ √ √ √ √ √ √ √ √ √
×

√ √ √

dolus.uvt.nl 443 88.0%
√ √ √ √ √ √ √ √

×
√ √

×
√ √ √

buizel.uvt.nl 443 82.0%
√ √ √ √ √ √ √

× ×
√ √

×
√ √ √

homsar.uvt.nl 443 88.0% ×
√ √ √

o
√ √ √ √ √ √

×
√ √ √

pichu.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

acceptatie.meresco.uvt.nl 443 60.0%
√ √ √ √ √ √ √

× ×
√ √

×
√

× ×
xe0123.uvt.nl 443 0.0%

√
×

√ √
o

√
×

√
×

√ √
×

√
× ×

lunatone.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

aplan001.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
lw0159.uvt.nl 443 0.0% × × ×

√
o

√ √ √
×

√ √
×

√ √ √

lw0198.uvt.nl 443 60.0%
√ √ √ √

o
√

×
√

×
√ √

×
√

× ×
jupiler.uvt.nl 443 54.0%

√ √ √ √
o

√
× × ×

√ √
×

√
× ×

cdata3.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
cdata4.uvt.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

cdata4-1.uvt.nl 443 0.0%
√

× ×
√

o
√

×
√

×
√ √

×
√

× ×
cdata8.uvt.nl 443 73.0%

√ √ √ √ √ √
×

√
× ×

√
×

√ √ √

cdata9.uvt.nl 443 60.0%
√ √ √ √

o
√

×
√

×
√ √

×
√

× ×
cs0218.uvt.nl 443 0.0%

√
×

√ √
o

√
× × ×

√ √
×

√
× ×

Table 11: Tilburg University IP Space results (
√

= in order, × is not in order, o is
ignored.)

38

Host Port Score A B C D E F G H I J K L M N O
cdata21.uvt.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

cdata23.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
cdata24.uvt.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

cdata26.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
cs0225.uvt.nl 443 60.0%

√ √ √ √
o

√
×

√
×

√ √
×

√
× ×

cs0229.uvt.nl 443 0.0%
√

× ×
√

o
√

×
√

×
√ √

×
√

× ×
cs0230.uvt.nl 443 60.0%

√ √ √ √
o

√
×

√
×

√ √
×

√
× ×

cs0231.uvt.nl 443 0.0%
√

× ×
√

o
√

×
√

×
√ √

×
√

× ×
cdata27.uvt.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

cs0234.uvt.nl 443 60.0%
√ √ √ √

o
√

×
√

×
√ √

×
√

× ×
www.profilesregistry.nl 443 60.0%

√ √ √ √
o

√
×

√
×

√ √
×

√
× ×

cs0240.uvt.nl 443 0.0%
√

×
√ √

o
√

×
√

×
√ √

×
√

× ×
cs0241.uvt.nl 443 0.0%

√
×

√ √
o

√
×

√
×

√ √
×

√
× ×

cdata29.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
cdata30.uvt.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

cdata31.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
ls0022.uvt.nl 443 65.0%

√ √ √ √
o

√ √ √
×

√ √
×

√
× ×

ls0023.uvt.nl 443 60.0%
√ √ √ √

o
√

×
√

×
√ √

×
√

× ×
ls0026.uvt.nl 443 65.0%

√ √ √ √
o

√ √ √
×

√ √
×

√
× ×

wronski.uvt.nl 443 60.0%
√ √ √ √

o
√ √

× ×
√ √

×
√

× ×
nash.uvt.nl 443 88.0%

√ √ √ √ √ √ √ √
×

√ √
×

√ √ √

praalder.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

graves.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

ha-1.redirect.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

ha-2.redirect.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

azumaya.uvt.nl 443 0.0%
√

×
√ √

o
√ √ √ √ √ √

×
√ √ √

cataldi.uvt.nl 443 97.0%
√ √ √ √

o
√ √ √ √ √ √

×
√ √ √

xv0032.uvt.nl 443 60.0%
√ √ √ √

o
√

×
√

×
√ √

×
√

× ×
drec.cert.uvt.nl 443 88.0%

√ √ √ √ √ √ √ √
×

√ √
×

√ √ √

mayall.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

tnas012.tiasnimbas.edu 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
tnli002.tiasnimbas.edu 443 60.0%

√ √ √ √
o

√ √
× ×

√ √
×

√
× ×

ts0024.uvt.nl 443 60.0%
√ √ √ √

o
√

×
√

×
√ √

×
√

× ×
neumann.tiasnimbas.edu 443 97.0%

√ √ √ √
o

√ √ √ √ √ √
×

√ √ √

tnli005.tiasnimbas.edu 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

siegel.tiasnimbas.edu 443 97.0%
√ √ √ √

o
√ √ √ √ √ √

×
√ √ √

prjsf101.campus.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
kahina.uvt.nl 443 54.0%

√ √ √ √ √ √
× × ×

√ √
×

√
× ×

remote.feb.uvt.nl 443 34.0%
√ √ √ √ √ √

× × × × × ×
√

× ×
es0061.uvt.nl 443 60.0%

√ √ √ √
o

√
×

√
×

√ √
×

√
× ×

es0063.uvt.nl 443 69.0%
√ √ √ √

o
√ √

×
√ √ √

×
√

× ×
monitor.feb.uvt.nl 443 88.0%

√ √ √ √ √ √ √ √
×

√ √
×

√ √ √

es0091.uvt.nl 443 60.0%
√ √ √ √

o
√

×
√

×
√ √

×
√

× ×
ls0136.uvt.nl 443 0.0%

√
×

√ √
o

√ √ √
×

√ √
×

√
× ×

ls0152.uvt.nl 443 0.0%
√

×
√ √

o
√ √ √ √ √ √

×
√ √ √

ls0158.uvt.nl 443 65.0%
√ √ √ √

o
√ √ √

×
√ √

×
√

× ×
gregorius.uvt.nl 443 0.0%

√
×

√ √ √ √ √ √ √ √ √
×

√
× ×

portalis.uvt.nl 443 45.0%
√ √ √ √ √ √

× × × ×
√

×
√

× ×
rs0226.uvt.nl 443 60.0%

√ √ √ √
o

√
×

√
×

√ √
×

√
× ×

dbicluster.oder.uvt.nl 443 60.0%
√ √ √ √ √ √ √

× ×
√ √

×
√

× ×
galois.uvt.nl 443 60.0%

√ √ √ √ √ √ √
× ×

√ √
×

√
× ×

sherwood-ha8.uvt.nl 443 15.0%
√ √ √

× o
√

× × × × × × × × ×
lovelace.uvt.nl 443 60.0%

√ √ √ √
o

√ √
× ×

√ √
×

√
× ×

qurra-ha.uvt.nl 443 97.0%
√ √ √ √

o
√ √ √ √ √ √

×
√ √ √

yunus-ha.uvt.nl 443 97.0%
√ √ √ √

o
√ √ √ √ √ √

×
√ √ √

pplan001.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
descartes.uvt.nl 443 35.0%

√ √ √
× o

√
× × ×

√ √
× × × ×

cooper.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

cr0072.uvt.nl 443 82.0%
√ √ √ √

o
√

×
√

×
√ √

×
√ √ √

davinci-ha0.uvt.nl 443 15.0%
√ √ √

× o
√

× × × × × × × × ×
dbicluster.uvt.nl 443 60.0%

√ √ √ √ √ √ √
× ×

√ √
×

√
× ×

davinci-ha1.uvt.nl 443 15.0%
√ √ √

× o
√

× × × × × × × × ×
sherwood-ha3.uvt.nl 443 15.0%

√ √ √
× o

√
× × × × × × × × ×

sherwood-ha4.uvt.nl 443 15.0%
√ √ √

× o
√

× × × × × × × × ×
sherwood-ha5.uvt.nl 443 15.0%

√ √ √
× o

√
× × × × × × × × ×

sherwood-ha6.uvt.nl 443 15.0%
√ √ √

× o
√

× × × × × × × × ×
sherwood-ha7.uvt.nl 443 15.0%

√ √ √
× o

√
× × × × × × × × ×

norma.uvt.nl 443 54.0%
√ √ √ √

o
√

× × ×
√ √

×
√

× ×
curry.uvt.nl 443 60.0%

√ √ √ √ √ √ √
× ×

√ √
×

√
× ×

fibonacci.uvt.nl 443 60.0%
√ √ √ √ √ √ √

× ×
√ √

×
√

× ×
hermite.uvt.nl 443 60.0%

√ √ √ √ √ √ √
× ×

√ √
×

√
× ×

productie.gx.uvt.nl 443 60.0%
√ √ √ √

o
√ √

× ×
√ √

×
√

× ×

Table 12: Tilburg University IP Space results (
√

= in order, × is not in order, o is
ignored.)

39

Host Port Score A B C D E F G H I J K L M N O
cr0136.uvt.nl 443 60.0%

√ √ √ √
o

√
×

√
×

√ √
×

√
× ×

dloprd.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

cardano.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

azimuth.uvt.nl 443 60.0%
√ √ √ √ √ √ √

× ×
√ √

×
√

× ×
tolstoj.uvt.nl 443 60.0%

√ √ √ √ √ √ √
× ×

√ √
×

√
× ×

cr0191.uvt.nl 443 82.0%
√ √ √ √

o
√

×
√

×
√ √

×
√ √ √

meresco.uvt.nl 443 60.0%
√ √ √ √ √ √ √

× ×
√ √

×
√

× ×
cr0197.uvt.nl 443 82.0%

√ √ √ √
o

√
×

√
×

√ √
×

√ √ √

sherwood-ha1.uvt.nl 443 15.0%
√ √ √

× o
√

× × × × × × × × ×
davinci-ha4.uvt.nl 443 15.0%

√ √ √
× o

√
× × × × × × × × ×

davinci-ha6.uvt.nl 443 15.0%
√ √ √

× o
√

× × × × × × × × ×
webap001.uvt.nl 443 60.0%

√ √ √ √
o

√
×

√
×

√ √
×

√
× ×

an0024.uvt.nl 443 60.0%
√ √ √ √

o
√

×
√

×
√ √

×
√

× ×
tsgateway.campus.uvt.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

spitswww.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
an0032.uvt.nl 443 60.0%

√ √ √ √
o

√
×

√
×

√ √
×

√
× ×

an0033.uvt.nl 443 54.0%
√ √ √ √

o
√

× × ×
√ √

×
√

× ×
an0034.uvt.nl 443 60.0%

√ √ √ √
o

√
×

√
×

√ √
×

√
× ×

an0036.uvt.nl 443 60.0%
√ √ √ √

o
√

×
√

×
√ √

×
√

× ×
an0037.uvt.nl 443 54.0%

√ √ √ √
o

√
× × ×

√ √
×

√
× ×

an0038.uvt.nl 443 60.0%
√ √ √ √

o
√

×
√

×
√ √

×
√

× ×
an0039.uvt.nl 443 60.0%

√ √ √ √
o

√
×

√
×

√ √
×

√
× ×

feweb.uvt.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
autodiscover.campus.uvt.nl 443 58.0%

√ √ √ √
o

√
× × ×

√ √ √ √
× ×

sip.tilburguniversity.edu 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
lynccon.tilburguniversity.edu 443 64.0%

√ √ √ √ √ √ √
×

√ √ √ √
× × ×

lynccon.tilburguniversity.edu 443 64.0%
√ √ √ √ √ √ √

×
√ √ √ √

× × ×
lync.tilburguniversity.edu 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

officewebapps.tilburguniversity.edu 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
an0057.uvt.nl 443 54.0%

√ √ √ √
o

√
× × ×

√ √
×

√
× ×

Table 13: Tilburg University IP Space results. (
√

= in order, × is not in order, o is
ignored.)

40

E Testresults SURFconext IdP’s

These are the results for the tests on the production SURFconext IdP’s.

Tag Description Weight Required

A Signature hash algorithm 80 No

B Certificate (chain) trusted 0 Yes

C Certificate is valid 0 Yes

D No Debian weak keys 100 No

E Subject name matches 0 Yes

F Compression disabled 50 No

G Cipher suites do not contain MD5 50 No

H Perfect forward secrecy available 50 No

I Cipher suites do not contain RC4 80 No

J Key length at least 128bits 80 No

K SSLv2 disabled 100 No

L SSLv3 disabled 30 No

M TLSv1.0 enabled 75 No

N TLSv1.1 enabled 100 No

O TLSv1.2 enabled 100 No

Table 14: SURFnet SSO result legend

41

Host Port Score A B C D E F G H I J K L M N O
access.hro.nl 443 65.0%

√ √ √ √ √ √ √ √
×

√ √
×

√
× ×

adfs.amolf.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.artez.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs.che.nl 443 45.0%
√ √ √ √ √ √

× × × ×
√

×
√

× ×
adfs.cibap.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs.differ.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.esciencecenter.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs.fryske-akademy.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.gildeopleidingen.nl 443 45.0%

√ √ √ √ √ √
× × × ×

√
×

√
× ×

adfs.glu.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.grac.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs.hsleiden.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.hsmarnix.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs.iknl.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.ipabo.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs.kb.nl 443 65.0%
√ √ √ √ √ √ √ √

×
√ √

×
√

× ×
adfs.knmi.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs.kpz.nl 443 82.0%
√ √ √ √ √ √

×
√

×
√ √

×
√ √ √

adfs.maastrichtuniversity.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.myhz.nl 443 54.0%

√ √ √ √ √ √
× × ×

√ √
×

√
× ×

adfs.ncoi.com 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.netwerkopleidingartsen.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs.nioz.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.nwo.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs.nyenrode.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.somt.nl 443 82.0%

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

adfs.stenden.com 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.studielink.nl 443 82.0%

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

adfs.tue.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs.uvh.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs01.kempel.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs1.oba.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs2.cbs.knaw.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs2.cito.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs2.fontys.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs2.hubrecht.eu 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfs2.politieacademie.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs20.hva.nl 443 82.0%

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

adfs2host.tmg.rocmn.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
adfs2prod.aventus.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

adfsv2.inholland.nl 443 54.0%
√ √ √ √ √ √

× × ×
√ √

×
√

× ×
auth.onderwijsgroeptilburg.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

authentigate.surfmarket.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
bureau.idp.knaw.nl 443 73.0%

√ √ √ √ √ √
×

√
× ×

√
×

√ √ √

conext.authenticatie.ru.nl 443 73.0%
√ √ √ √ √ √

×
√

× ×
√

×
√ √ √

dans.idp.knaw.nl 443 73.0%
√ √ √ √ √ √

×
√

× ×
√

×
√ √ √

ehumanities.idp.knaw.nl 443 73.0%
√ √ √ √ √ √

×
√

× ×
√

×
√ √ √

engine.surfconext.nl 443 82.0%
√ √ √ √ √ √ √

× ×
√ √

×
√ √ √

engine.surfconext.nl 443 82.0%
√ √ √ √ √ √ √

× ×
√ √

×
√ √ √

espee.SURFnet.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
fed.rijnijssel.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

federaasje.tresoar.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
federatie.amc.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

federatie.cbg.nl 443 88.0%
√ √ √ √ √ √ √ √

×
√ √

×
√ √ √

federatie.clusius.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
federatie.driestar-educatief.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

federatie.gh.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
federatie.graafschapcollege.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

federatie.hku.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
federatie.lumc.nl 443 60.0%

√ √ √ √ √ √ √
× ×

√ √
×

√
× ×

federatie.nivel.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
federatie.trimbos.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

federatie.umcn.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
federatie.zadkine.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

federation.hanze.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
federation.hdh.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

federation.nioo.knaw.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×

Table 15: SURFconext IdP’s. (
√

= in order, × is not in order.)

42

Host Port Score A B C D E F G H I J K L M N O
federation.novay.nl 443 82.0%

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

fedlogin.noh-i.nl 443 37.0%
√ √ √ √ √ √

× × × × × × × × ×
fedlogin.ojh.nl 443 37.0%

√ √ √ √ √ √
× × × × × × × × ×

fedlogin.schakelzone.nl 443 37.0%
√ √ √ √ √ √

× × × × × × × × ×
fedlogin.studienet.ou.nl 443 37.0%

√ √ √ √ √ √
× × × × × × × × ×

fedlogin.utwente.nl 443 37.0%
√ √ √ √ √ √

× × × × × × × × ×
fs.multrix.com 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

fs.rocmondriaan.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
fshub.umcutrecht.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

gatekeeper2.tudelft.nl 443 51.0%
√ √ √ √ √ √

×
√

× ×
√

×
√

× ×
glr-adfs.glr.nl 443 82.0%

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

huygens.idp.knaw.nl 443 73.0%
√ √ √ √ √ √

×
√

× ×
√

×
√ √ √

icin.idp.knaw.nl 443 73.0%
√ √ √ √ √ √

×
√

× ×
√

×
√ √ √

idp.cwi.nl 443 82.0%
√ √ √ √ √ √ √

× ×
√ √

×
√ √ √

idp.dir.garr.it 443 88.0%
√ √ √ √ √ √ √ √

×
√ √

×
√ √ √

idp.ihe.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
idp.mijnhelicon.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

idp.mpi.nl 443 40.0%
√ √ √ √ √ √

×
√

× × × ×
√

× ×
idp.SURFnet.nl 443 64.0%

√ √ √ √ √ √ √
×

√ √ √ √
× × ×

idp01.nhl.nl 443 40.0%
√ √ √ √ √ √

×
√

× × × ×
√

× ×
idservice.zuyd.nl 443 45.0%

√ √ √ √ √ √
× × × ×

√
×

√
× ×

iisg.idp.knaw.nl 443 73.0%
√ √ √ √ √ √

×
√

× ×
√

×
√ √ √

imogen.SURFnet.nl 443 65.0%
√ √ √ √ √ √ √ √

×
√ √

×
√

× ×
inloggen.hogeschoolutrecht.nl 443 74.0%

√ √ √ √ √ √ √ √ √ √ √
×

√
× ×

login.ahk.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
login.avans.nl 443 51.0%

√ √ √ √ √ √
×

√
× ×

√
×

√
× ×

login.has.nl 443 82.0%
√ √ √ √ √ √

×
√

×
√ √

×
√ √ √

login.services.uu.nl 443 82.0%
√ √ √ √ √ √

×
√

×
√ √

×
√ √ √

login.stc-r.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
login.terena.org 443 88.0%

√ √ √ √ √ √ √ √
×

√ √
×

√ √ √

login.uaccess.leidenuniv.nl 443 51.0%
√ √ √ √ √ √

×
√

× ×
√

×
√

× ×
logon.erasmusmc.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

mdb-vw-adfs.zebi.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
meertens.idp.knaw.nl 443 73.0%

√ √ √ √ √ √
×

√
× ×

√
×

√ √ √

nam-id.astron.nl 443 82.0%
√ √ √ √ √ √

×
√

×
√ √

×
√ √ √

namidp.rocvantwente.nl 443 65.0%
√ √ √ √ √ √ √ √ √

×
√

×
√

× ×
nias.idp.knaw.nl 443 73.0%

√ √ √ √ √ √
×

√
× ×

√
×

√ √ √

nidi.idp.knaw.nl 443 73.0%
√ √ √ √ √ √

×
√

× ×
√

×
√ √ √

niod.idp.knaw.nl 443 73.0%
√ √ √ √ √ √

×
√

× ×
√

×
√ √ √

nsab4050.nlda.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
openidp.feide.no 443 88.0%

√ √ √ √ √ √ √ √
×

√ √
×

√ √ √

rathenau.idp.knaw.nl 443 73.0%
√ √ √ √ √ √

×
√

× ×
√

×
√ √ √

remote.bplusc.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
saml.hhs.nl 443 40.0%

√ √ √ √ √ √
×

√
× × × ×

√
× ×

saml.uvt.nl 443 97.0%
√ √ √ √ √ √ √ √ √ √ √

×
√ √ √

secure.uva.nl 443 54.0%
√ √ √ √ √ √

× × ×
√ √

×
√

× ×
senldogo0803.springer-sbm.com 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

signon.rug.nl 443 51.0%
√ √ √ √ √ √

×
√

× ×
√

×
√

× ×
sso.eur.nl 443 54.0%

√ √ √ √ √ √
× × ×

√ √
×

√
× ×

sso.han.nl 443 82.0%
√ √ √ √ √ √

×
√

×
√ √

×
√ √ √

sso.nikhef.nl 443 69.0%
√ √ √ √ √ √ √

×
√ √ √

×
√

× ×
sso.sara.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

sso.saxion.nl 443 65.0%
√ √ √ √ √ √ √ √

×
√ √

×
√

× ×
sts.deltion.nl 443 82.0%

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

sts.mumc.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
sts.nuffic.nl 443 82.0%

√ √ √ √ √ √
×

√
×

√ √
×

√ √ √

sts.roc-nijmegen.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
sts.talnet.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

sts.windesheim.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
sts.wur.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

student.asre.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
surf-sso.ubvu.vu.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

surfspot.biblionetwerken.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
tcs01.pbl.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

teamwerk.fed.vumc.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
wayf-test.SURFnet.nl 443 40.0%

√ √ √ √ √ √
×

√
× × × ×

√
× ×

wayf.SURFnet.nl 443 60.0%
√ √ √ √ √ √

×
√

×
√ √

×
√

× ×
wayf.SURFnet.nl 443 60.0%

√ √ √ √ √ √
×

√
×

√ √
×

√
× ×

wayf.wayf.dk 443 65.0%
√ √ √ √ √ √ √ √

×
√ √

×
√

× ×
www.onegini.me 443 69.0%

√ √ √ √ √ √ √
×

√ √ √
×

√
× ×

Table 16: SURFconext IdP’s. (
√

= in order, × is not in order.)

43

F SSLlabs Comparison

SSLlabs is used to test SSL hosts as well. However, it is found that is it possible
to get the best result (A+) with different settings. Below is the outcome of two
different hosts getting the same overall rating while having different settings.

Figure 2: Tilburg University test server

Figure 3: Own test server

44

	Introduction
	Approach
	Research
	Implementing SSL, the right way
	Certificates
	Protocol
	Cipher suites
	Popular known vulnerabilities

	Common mistakes
	Scope
	Results

	Classifying mistakes
	Classification
	Implementation

	Implement findings
	The running application
	Testing Tilburg University IP space
	Testing IMAPS vs HTTPS
	Testing SURFconext Identity Providers

	Conclusion
	Future work
	Starttls
	HTTPS protocol
	Proof of Concept

	SSL Ciphers
	SSLv3
	TLSv1.0/TLSv1.1
	TLSv1.2

	Examined Hosts
	Testresults IMAPS
	Testresults Tilburg University IP Space
	Testresults SURFconext IdP's
	SSLlabs Comparison

