
OpenFlow (D)DoS Mitigation

C. Dillon, M. Berkelaar

February 9, 2014

Abstract

This paper proposes a DDoS mitigation solution that utilizes OpenFlow.
OpenFlow keeps statistics on traffic flows. These statistics can be monitored
to detect a large spike in traffic, which could be an indication of a DDoS
attack. OpenFlow can mirror traffic for the suspicious flow to an Intrusion
Detection System, which could be integrated in the OpenFlow controller.
The controller can then analyze the traffic and determine if a DDoS attack
is in progress and what the sources of the attack are. After that, flows can
be created to drop all traffic from those sources.

Because DDoS detection is not a part of OpenFlow, this paper proposes
two methods for identifying DDoS attacks in traffic flows. The first method
analyzes packet symmetry to identify malicious traffic. The second method
temporarily blocks outgoing traffic and checks which sources continue to
send packets. Source-based blocking of these identified sources is ultimately
reached with explicit flows matching source addresses. These mechanisms
are included in custom OpenFlow controller software.

1

Contents

1 Introduction 3
1.1 Research question . 3
1.2 Related work . 3

2 Background 4
2.1 DDoS attacks . 4
2.2 OpenFlow . 4

3 Utilizing OpenFLow in DDoS mitigation 5
3.1 Flow statistics . 5
3.2 Traffic sampling . 6

3.2.1 Mirroring . 6
3.2.2 Packet-in . 6

3.3 Traffic dropping . 6

4 Proposed solution 7
4.1 Initial detection . 7
4.2 Identification . 8

4.2.1 Packet symmetry . 9
4.2.2 Temporary blocking . 9

4.3 Blocking . 10

5 Proof of concept 11
5.1 Experimentation setup . 11
5.2 Performed experiments . 11

5.2.1 Packet symmetry . 11
5.2.2 Outgoing traffic block . 12

6 Conclusion 12

7 Future work 13

8 Appendices 16
8.1 Initial detection . 16
8.2 Identification: Packet symmetry . 16
8.3 Identification: Temporary block . 16
8.4 Mitigation: Blocking . 17

2

1 Introduction

Distributed Denial of Service (DDoS) attacks remain a popular method to degrade the
availability of targeted services on the internet. Different DDoS attacks exist ranging
from high volume flooding on the network to the misuse of application level vulnerabili-
ties. Although the availability of a service or the congestion of the network is relatively
easy to probe, the exact detection of attackers in a DOS introduces a bigger challenge
because of the possible similarities with legitimate traffic.

Many DDoS mitigation solutions exist today. A popular choice is BGP Remote Trig-
gered Black Hole (RTBH), which instructs routers to drop all traffic to the target in
order to decrease the load on the network [1]. Also, a wide variety of in-line DDoS
mitigation hardware appliances exist that filter different kinds of attacks.

Software Defined Networking (SDN) technologies like Openflow introduce more ways
of controlling switching and routing[2]. This research explores the possibilities of utiliz-
ing the Openflow infrastructure itself to mitigate DDoS attacks. First we explain how
OpenFlow features can be used for detecting traffic spikes, sampling suspicious traffic
and dropping unwanted traffic. Then we propose our DDoS mitigation solution that uses
these mechanisms and the custom algorithms that are implemented in our OpenFlow
controller. We explain what experiments we performed to test our solution and what
the results are. Based on these results we will draw a conclusion and make suggestions
for future work.

1.1 Research question

The research question for this project is: How can Openflow be used in DDoS mitigation?
The mitigation of a DDoS attack is further divided into the following subquestions about
the detection of these and the blocking actions to perform.

• How can flow statistics be analyzed to detect DDoS attacks?

• Can packet symmetry in sample traffic be used to detect malicious traffic sources?

• Can malicious traffic sources be detected by temporarily dropping outgoing traffic?

• Can Openflow be used to efficiently block malicious sources while allowing legiti-
mate traffic?

1.2 Related work

Utilizing SDN for DDoS mitigation and other security practices has been the subject of
a number of recent studies. R. Braga, E. Mota and A. Passito use an DDoS detection
mechanism based on Self Organizing Maps (SOM), which is an unsupervised artificial
neural network. SOM is trained by feeding it statistics of OpenFlow traffic flows. It is
then able to classify traffic as abnormal or normal[4].

T. Yuzawa uses sFlow to detect DDoS attacks and to determine which sources are
malicious. Upon detection a regular BGP RTBH route is installed for the destination,

3

but OpenFlow is used to change the flow of legit traffic so that this does not get dropped.
This is done by using Floodlight’s static flow pushing API[3].

Chunghwa Telecom Co. propose an OpenFlow DDoS Defender that monitors flows on
an OpenFlow switch. They define a number of thresholds, and start to drop incoming
traffic when these thresholds are met[7].

S. Akbar Mehdi, J. Khalid, and S. Ali Khayam use SDN for traffic anomaly detection.
They implement a number of detection algorithms in the NOX OpenFlow controller.
Their solution only uses the first packet that is sent to the controller when a new con-
nection is established, while allowing the rest of the traffic to continue at line-rate by
pushing a flow for that connection. They found that this is an effective approach to
keeping track what is going on in the network, without need for excessive sampling of
traffic[16].

2 Background

2.1 DDoS attacks

There are numerous denial of service attack methods being used to degrade the perfor-
mance or availability of targeted services on the internet. Usually these methods can be
classified as either network- or application level attacks.

Network level attacks generally produce large volumes of network traffic that are de-
tectable by their packet- or bandwidth-rate. Common examples for this are amplification
and flood attacks.

Application level attacks misuse software in a malicious way, aiming to exhaust re-
sources to process any further requests. These attacks are generally harder to detect
on the network level as they show no clear deviation from legitimate traffic. Common
examples here are expensive search queries and exhaustion of connection pools.

OpenFlow rules match against properties in link, network and transport layers of
the TCP/IP model and is therefore not suited to detect application level attacks with
characteristics present in higher layers. This research will explore the utilization of
Openflow in the detection and mitigation of network level attacks.

2.2 OpenFlow

Before we explain how OpenFlow can be used in DDoS mitigation, a basic understand-
ing is needed of how OpenFLow works and what its limitations are. With OpenFlow
the control plane of the switch is implemented in a separate machine, the OpenFlow
controller. The controller and switch communicate via the OpenFlow protocol. The
controller can install flows on the switch and the switch forwards traffic according to
these flows.

A flow is stored as a 12-tuple with fields that match against incoming packets. Each
flow has an action, a priority and statistics. This is illustrated in Figure 1.

1http://yuba.stanford.edu/cs244wiki/index.php/Overview

4

Figure 1: OpenFlow Table Entry1

Flows are stored in the Ternary Content-Addressable Memory (TCAM) table of the
switch. In hardware switches the number of flows is limited by the size of the TCAM
table. When a switch receives a packet, it tries to match it against a flow in the table, if
a match is found the action associated with the flow is taken and the flow statistics are
updated. If there are no matching flows, the switch will send a Packet-In message to the
controller. The Packet-In message either encapsulates the entire packet or the header
of the packet. The controller sends back a Packet-Out message to the switch to tell the
switch what action to take. The controller can also push a new flow to switches in the
network, so that future packets will match against the flow. [8]

3 Utilizing OpenFLow in DDoS mitigation

A number of methods have been researched in the field of detecting malicious activity
using Openflow. These methods vary from the detection of infected hosts on the local
network by comparing flows [16] to deterministic sampling using Openflow to inspect
certain traffic classes. [6]

We researched the possibilities of using Openflow to detect Denial of Service attacks
with the features available in Openflow version 1.0. The complete mitigation proposed
is divided in the initial detection, sampling methods and blocking actions that can be
taken with Openflow.

3.1 Flow statistics

Openflow keeps basic statistics for active flows, like the total amount of bytes and packets
matched and the time since the flow was deployed and last used.

These statistics can be polled at regular intervals by the controller to create a plot
of the network utilization for individual flows. Keeping a history of this data allows for
detection of spikes in traffic that may indicate an attack on the network or a specific
host.

5

3.2 Traffic sampling

Traffic sampling is an important part of all Intrusion Detection Systems (IDS). Some
research has been done on how to utilize SDN in intrusion detection. sFlow is a popular
choice for this task as it’s specifically designed for traffic sampling[9]. It enables switches
and routers to send 1 in every X packets to a server called an sFlow collector, where X
is a predetermined number. It also keeps statistics on all interfaces, comparable to the
OpenFlow flow statistics.

OpenFlow focuses on complete traffic flows and not individual packets, this makes it
less attractive for sampling. S. Shirali-Shahreza and Y. Ganjali propose a solution for
this problem in the form of an extension to the OpenFlow specification, which allows
OpenFlow to sample individual packets, comparable to sFlow[6]. However, in the current
OpenFlow specification such a solution is not available. OpenFlow does provide mecha-
nisms which we can use for temporarily sampling traffic flows. And because OpenFlow
allows for per-flow configuration of sampling, it can be more flexible than sFlow.

3.2.1 Mirroring

Flow mirroring is a method to sample all traffic that matches a flow that is believed to
forward DOS traffic. The action for that flow is modified to not only forward packets to
the real destination, but also to the controller. In comparison to conventional mirroring
based on switchport numbers this allows for filtering using the Openflow flow entry,
limiting the sample to only the traffic that is needed for further analysis.

3.2.2 Packet-in

The packet-in communication channel between the switch and controller can be utilized
to send sample packets for analysis. An extra action in the flow entry specifies the traffic
to not only be forwarded to the destination, but also be encapsulated and sent to the
controller over the packet-in channel. The packet-in channel is normally used when the
switch has no matching flow and the controller has to create and push one based on
the information that unmatched packet provides. For these decisions it is generally not
required to have any information beyond the L4 header. In order to not waste bandwidth
and resources on sending parts of packets that are not needed it is possible to specify a
byte range that should be sampled, stripping unneeded payloads.

3.3 Traffic dropping

OpenFlow offers a lot of flexiblity in dropping traffic by setting the action of a flow to
drop all packets for that flow. When sources of malicious traffic are identified, flows that
match against the IP addresses of those sources can be pushed to a switch so that traffic
from those sources is dropped. This of course will only work if the DDoS attacker does
not spoof the source addresses. If the sources are not spoofed the effectiveness of sources
based filtering depends on the scale of the attack and the size of the TCAM table in the

6

switch, as every flow will take up space in the table. However, there are switches which
can store over 100,000 flows[10].

If source based filtering is not an option, destination based filtering can still be done
to avoid congestion in the network. While traditional destination based filtering like
BGP RTBH drops all traffic for that destination, OpenFlow can match specific classes
of traffic. If an attack only generates UDP traffic on a specific port, a flow can be
installed that drop all traffic for the destination on that UDP port. This allows other
traffic to continue as usual.

4 Proposed solution

We propose a DDOS mitigation method that utilizes OpenFlow to assist in the detection
and blocking of attacks. To do this we divide the complete mitigation into a number of
components:

• Initial detection

• Identification

• Blocking

The initial detection will utilize OpenFlow flow statistics to detect anomolies in net-
work usage. The identification will then detect the sources that are performing an attack
through the analysis of packet samples. Identified attackers will finally be dropped with
OpenFlow drop flows.

4.1 Initial detection

The flow statistics offer data that can be used to detect potential DDoS attacks, although
it may not result in explicitly detecting the attacking sources. For this reason we propose
the use of the flow statistics merely to trigger further detection mechanisms.

The initial detection will primarily focus on anomaly detection with the byte- and
packet counters that are kept for every active flow. Every second these statistics are
polled by the controller and the difference between the current and previous value is
prepended to data set Q, which has a fixed size of 60 entries. Every entry in Q represents
the packet/byte rate for that interval. A dataset size of 60 entries was chosen to make
sure that sudden deviations in this rate are easily detectable.

The standard deviation of this list (σ(Q)) represents the apparent deviation between
the packet and byte rates over the last 60 entries.

σ(Q) =

√√√√ 1

60

60∑
i=1

(Qi − µ)2

With a comparison of the expected deviation, based on the standard deviation, and
the real deviation in data set Q it is possible to detect anomalies that may potentially

7

be DDoS attacks. The first entry of Q, (Q1), is the newest value from the flow statistics.
This value is subtracted with the mean of Q to get the deviation D of Q1. This value is
compared with variable tresholds to determine if it falls out of the expected boundaries
and is thus considered a potential attack. The detection of a potential attack will trigger
further detection mechanisms, denoted with Z.
The following items form the tresholds used during the experiment:

• Deviation (D) from the mean is positive, with D > 0

• Minimum deviation (M) to trigger is three times the standard deviation, where
M = (Q1 − µ(Q)) > (3 · σ(Q))

• The minimum value (V)(Value of Q1b (Bytes) is larger than 5000000 Bytes or
Q1p (Packets) is larger than 5000 packets, with Q1b > 5000000 ∨ Q1p > 5000,
preventing likely false positives at low bandwidth rates.

D ∧M ∧ V → Z

Figure 2 shows a plot of a simulated initial detection using the tresholds mentioned
before. A sudden burst of packets triggers the mechanism here to perform an analysis
determining if this is a DDoS. The initial detection mechanism is implemented in the
Ryu framework with a sample of the code included in section 8.1.

Figure 2: Initial detection

4.2 Identification

OpenFlow by itself is not entirely capable of detecting DDoS attacks, but can be lever-
aged in the process by external logic. The identification of malicious attackers is trig-
gered by the initial detection and consists of two explored methods. The first method

8

looks into sampling specific flows and analyzing packet symmetry. The second method
uses OpenFlow to sample traffic and temporarily block outgoing traffic to detect which
sources continue to send requests while there are no replies.

4.2.1 Packet symmetry

Packet symmetry can be used to distinguish malicious from legitimate traffic[5]. An
attacker will send huge amounts of packets to the victim, even if there are no replies.
While normal protocols might not blindly continue to send data if there are no ac-
knowledgements or replies. This is especially true for TCP as every packet has to be
acknowledged. But even UDP traffic does not exceed a symmetry ratio of 8:1 under
normal circumstances[5].

Using OpenFlow, we can create flows for incoming and outgoing traffic from the victim
of a DDoS attack and mirror this traffic to the controller. Having sample traffic from
and to the victim allows us to analyze the ratio between requests and replies per source.
Sources with a highly asymmetric ratio can be considered malicious and flows can be
pushed to drop traffic from these sources, as explained in chapter 4.3. In order for this
to work we need to define a threshold for the symmetry ratio. For our experiments we
used a threshold of 50:1, but we make no claims on what an appropriate threshold is for
real world situations.

4.2.2 Temporary blocking

Openflow enables easy modification of forwarding rules that make it possible to tem-
porarily halt traffic flows and register the behaviour of a set of sources. We propose
a mechanism that drops outgoing traffic from the target for a short duration of time,
enabling one to recognize well- and non-well behaving sources. We found that a tem-
porary block with a duration of approximately one second is enough to detect non-well
behaving clients, whilst not breaking common legitimate traffic like SCP- and HTTP
transfers.

Based on the characteristics of common protocols one can expect sources to behave in
a certain way. TCP streams may for example retransmit the previous segments when no
acknowledgements are received and increase the retransmit timer resulting in a dropping
rate of traffic.[14]

UDP traffic is not dependent on acknowledgements, but is likely to be request-response
based from the application layer.[15] If no requests are sent out we expect no incoming
responses. The behaviour of the latter holds true for services like DNS and NTP, often
used in spoofed DDOS attacks[5], but may not be applicable to other UDP based com-
munication. The behaviour of common services that utilize UDP and ICMP in contrast
to this mechanism should be further researched.

Figure 3 represents the three stages in this mechanism, consisting of sampling, block-
ing and analysis. The first stage installs sampling and blocking flows after an initial
detection (4.1) was made. The sample flows forward traffic to both the controller and

9

the destination, while the blocking flows only forward traffic to the controller and thus
block traffic whilst active after the first sample flows expired. During this stage the con-
troller will learn the rate of packets from every source communicating with the target.
The second stage learns the packet rate from every source while the block flow is active.

The ratio R between incoming packets before (Pbefore) and after (Pafter) the block can
be analysed to determine if sources are either well-behaving flows or floods. R is simply

calculated with
P(after)

P(before)
Floods can be recognized with a ratio that is close or equal to

1 : 1 For our experiments we used a threshold of 1 : 5 as the lower boundary, but further
research is required to find an optimal treshold for real network traffic. Sources with a
higher ratio are marked as an attack and instructed to be blocked with an OpenFlow
drop flow, while legitimate traffic will most likely recover after a short interruption [4.3].

Figure 3: Temporary block visualised

4.3 Blocking

OpenFlow enables filtering with flows that could potentially only drop sources commu-
nicating with specific protocols and/or ports.[3.3] During this research, the goal was to
find an effective way to do source-based blocking with OpenFlow, leaving fine grained
filters to be further researched.

Block flows preventing DoS sources from further communicating with hosts on the
local network will be created on the OpenFlow switch closest to the uplink. Block flows
will match on the source IP address of the attacker and will be given the highest priority
of 0xFFFF, ensuring this flow to overrule any other matching flows currently active. To
prevent the TCAM table of switches to fill with unused blockflows the idle-timeout of
these flows will be set to 15 minutes. This automatically deletes block flows that haven’t
shown activity for this duration. The code to install blocking flows is included in section
8.4.

10

5 Proof of concept

5.1 Experimentation setup

We used two different experimentation setups for our Proof of Concept. One with a
software switch and one with a hardware switch. The first environment consists of a sin-
gle machine running Linux KVM and OpenVSwitch. We created two Virtual Machines
(VM) on KVM, one to perform the attacks and the other as victim. Both VMs are con-
nected to an OpenVSwitch interface. The KVM host is also connected to OpenVSwitch
and runs the controller software.

For the second environment we used a VMware ESXi server and an Arista 7050 switch.
We installed three VMs on VMware. An attacker, a victim and a controller. The attacker
has a 10gb link to the switch and the controller and victim have separate 1gb links.

We wrote our own controller software using the Python Ryu SDN framework[11].
The controller includes our DDoS detection and mitigation mechanisms as explained in
Chapter 4. The source code is available on GitHub[12] and some important parts are
included in the appendix.

We installed the nginx webserver on the victim VM which was used as source for
legitimate traffic. We simulated DDoS attacks using the traffic generator hping3[13]
from the attacker VM.

5.2 Performed experiments

5.2.1 Packet symmetry

Our first experiment was successfully performed on hardware and software switches.
Here we explain the experiment on the hardware switch setup. First, from the attacker,
we started a large file transfer over HTTP on the victim. This saturates the 1gbps uplink
of the victim machine. This is shown as the black line in Figure 4. Then we started a
DDoS from five spoofed IP addresses from the attacker to the victim. The DDoS traffic
completely suppresses the HTTP traffic. This is shown as the red line in Figure 4.

The controller polls the flow statistics every two seconds and notices the high rise
in traffic on the flow towards the victim. This triggers the controller to push two new
flows to the switch: one from the attacker to the victim and one from the victim to the
attacker. Both flows output traffic to the regular port and also to the controller. These
flows automatically expire after 10 seconds.

While traffic is being sampled to the controller, the controller counts the ratio between
incoming and outgoing traffic per IP address. The DDoS traffic has a high incoming
traffic ratio because the victim does not reply to packets and the attacker keeps sending
packets, while the regular HTTP traffic stops because the victim does not reply. Once
the ratio counters exceed a treshold of 50:1, new flows are pushed to drop traffic from
the source IP. This is visible in after the 9th second in Figure 4. Shortly after that,
the TCP HTTP session is restored and the transfer of the file continues. This is visible
after the 13th second in Figure 4. The mechanism for the packet symmetry detection is
worked out in Python code included in section 8.2.

11

Figure 4: Async dump

5.2.2 Outgoing traffic block

The second experiment was only successfully performed on the software switch, because
the timing of installing flows on the hardware switch was found to be unreliable. Note
that because of the software switch, the DDoS traffic was not able to fully suppress the
HTTP traffic in Figure 5. This experiment started in the same way as the first: the
attacker starts a HTTP file transfer from the victim with a DDoS simulation closely
followed.

The initial detection trigger the creation of two sample flows and two block flows. The
sample flows mirror the traffic going to the target for a duration of two seconds after
which they expire. On expiration of the sample flows the block flows become active.
These flows only forward traffic to the controller, essentially blocking all communica-
tion to the target. The flooding based attack shows no sign of slowing down while no
responses from the target are sent. The HTTP transfer essentially halts because no ac-
knowledgements are received, thus only retransmitting previous segments at a declining
rate. Figure 5 doesn’t show the flood to continue at the same rate as this plot is made
from a TCPdump on the DDoS target, thus missing all traffic that was sent while the
block flow was active. On expiration of the block flow the original flows restore commu-
nication between all sources and the DDoS target. The controller will now analyse all
traffic that was mirrored to identify the sources that did not show a declining rate of
traffic while the drop flow was active. Because the software switch environment was not
capable of analysing at line rate it took the controller till 11 seconds into the expirimen-
tation to block the attacking sources. The code used for temporary blocking is included
in section 8.3.

6 Conclusion

During this research we looked at how OpenFlow can be utilized in the field of DDoS
mitigation. The features of OpenFlow are leveraged with the initial detection to isolate
DDoS victims and trigger further analysis. The identification of attackers is performed

12

Figure 5: blockflow dump

with sample flows to either perform packet symmetry analysis or block outgoing traffic
with additional flows to detect flooding based attacks. On positive detection, blocking
flows will be pushed to the switch to prevent the attack from congesting the network.

Attack simulations show that it’s possible to do fairly accurate detection of floods
with packet symmetry analysis, keeping the victim available without interruption. Tem-
porarily blocking the outgoing traffic with OpenFlow shows potential to get even more
accurate detections with connection oriented- or request-response based protocols, at
the cost of short interruptions to availability. Experiments of the latter detection mech-
anism on the hardware switch showed timing related issues, limiting us to the software
platform for testing.

OpenFlow shows potential in DDoS mitigation with easy control over individual flows
in the network and the capacity to filter at line-rate. However, with the limited size of
TCAM tables in hardware switches currently available it leaves the application in real
environments as something that has yet to be explored.

7 Future work

The tresholds used throughout this research are mostly based on simulations that may
not be well suited for real world scenarios. Tests of these mechanisms should be per-
formed to confirm the tresholds set during this research, or find more appropiate ones,
with real live data.

This research focussed on the protection from DDoS attacks originating from outside
of the local network. We believe that the explored mechanisms could be used to detect
attacks that originate from the local network and participate in a DDoS attack. Scenar-
ios for this could be infected zombie hosts or services being leveraged in amplification
attacks.

13

Temporary outgoing blocks that we propose simply look at the ratio of packets before
and after a blocking flow is installed. A more advanced detection mechanism could also
look at characteristics of the traffic being dropped, like looking for retransmissions or
retransmission timers.

References

[1] W. Kumari, D. McPherson, RFC 5635: Remote Triggered Black Hole Filtering with
Unicast Reverse Path Forwarding (uRPF), 2009
http://www.hjp.at/doc/rfc/rfc5635.html

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, OpenFlow: Enabling Innovation in Campus Networks, 2008
http://www.net.t-labs.tu-berlin.de/teaching/ss09/IR_seminar/papers/

openflow-wp-latest.pdf

[3] T. Yuzawa, OpenFlow 1.0 Actual Use-Case: RTBH of DDoS Traffic While Keeping
the Target Online, 2013
http://packetpushers.net/openflow-1-0-actual-use-case-rtbh-of-ddos&#

45;traffic-while-keeping-the-target-online/

[4] R. Braga, E. Mota, A. Passito, Lightweight DDoS Flooding Attack Detection Using
NOX/OpenFlow, 2010
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5735752

[5] M. Wood, Preventing Denial-of-Service Attacks with Packet Symmetry, 2008
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.186.

4788&rep=rep1&type=pdf

[6] S. Shirali-Shahreza, Y. Ganjali, FleXam: Flexible Sampling Extension for Monitor-
ing and Security Applications in OpenFlow, 2011
http://conferences.sigcomm.org/sigcomm/2013/papers/hotsdn/p167.pdf

[7] C. YuHunag, T. MinChi, C. YaoTing, C. YuChie, C.YanRen, A Novel Design for
Future On-Demand Service and Security, 2010
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5689156

[8] Open Networking Foundation, OpenFlow Switch Specification v1.0, 2009
https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf

[9] P. Phaal, M. Lavine (sFlow.org), sFlow Version 5, 2004
http://sflow.org/sflow_version_5.txt

[10] IBM, IBM System Networking RackSwitch G8264CS, 2013
http://www.redbooks.ibm.com/abstracts/tips0970.html?Open#contents

14

[11] Open Source Software Computing Group, Ryu SDN framework, 2014
http://osrg.github.io/ryu/

[12] C. Dillon, M. Berkelaar OpenFlow DDoS mitigation controller, 2014
https://github.com/ConnorDillon/openflowddos

[13] hping.org, http://www.hping.org/hping3.html, 2014
http://www.hping.org/hping3.html

[14] Tcpipguide.com, TCP adaptive retransmission calculations, 2005
http://www.tcpipguide.com/free/t TCPAdaptiveRetransmissionandRetr
ansmissionTimerCal-2.htm

[15] Tcpipguide.com, UDP operation, 2005
http://www.tcpipguide.com/free/t_UDPOperation.htm

[16] S. Akbar Mehdi, J. Khalid, and S. Ali Khayam, Revisiting Traffic Anomaly
Detection using Software Defined Networking, 2011
http://www.xflowresearch.com/docs/Revisiting_Traffic_Anomaly_

Detection_using_Software_Defined_Networking.pdf

15

8 Appendices

The full source code of our OpenFlow controller can be found at:
https://github.com/ConnorDillon/openflowddos

8.1 Initial detection

def detect(self, cookie, treshold, data):

difference_list = []

for i in range(0, (len(data) - 1)):

difference = data[i] - data[i + 1]

difference_list.append(difference)

if len(difference_list) == 0:

return 0

average_difference = sum(difference_list) / len(difference_list)

std = numpy.std(difference_list)

for item in difference_list:

if item - average_difference > 3 * std and item > treshold and item - average_difference >= 0:

print item, " is > then 3 times the standard deviation", std, " item: ", item

if not cookie in self.detected_flags:

self.detected_flags[cookie] = 1

return 1

else:

if self.detected_flags[cookie] == 1:

return 0

elif self.detected_flags[cookie] == 0:

self.detected_flags[cookie] = 1

return 1

else:

return 0

8.2 Identification: Packet symmetry

def ratio_counter(self, packet):

pair_list = sorted([packet[’ip_src’], packet[’ip_dst’]])

pair = ’-’.join(pair_list)

if pair in self.ratio_count:

self.ratio_count[pair][packet[’ip_src’]] += 1

ratio = float(self.ratio_count[pair][pair_list[0]]) / float(self.ratio_count[pair][pair_list[1]])

self.ratio_count[pair][’ratio’] = ratio

if ratio > 50:

self.create_blocking_flow(packet[’ip_src’])

else:

self.ratio_count[pair] = {packet[’ip_src’]: 1, packet[’ip_dst’]: 1, ’ratio’: 1}

8.3 Identification: Temporary block

def outgoing_block_v2(self, packet):

mac_dst = packet[’mac_dst’]

if mac_dst in outgoing_block_mode_v2_dict:

packet_time = int(packet[’time’] * 1000) # msec

pair_list = sorted([packet[’ip_src’], packet[’ip_dst’]])

pair = ’-’.join(pair_list)

if outgoing_block_mode_v2_dict[mac_dst][0] < packet_time < \

(outgoing_block_mode_v2_dict[mac_dst][0] + 2000): # 2000 msec

if pair in self.block_packet_count:

Reset old data

if self.block_packet_count[pair][’time_created’] < (time.time() - 30):

16

self.block_packet_count[pair] = {’packets_before’: 1, ’packets_after’: 1,

’time_created’: time.time()}

else:

self.block_packet_count[pair][’packets_before’] += 1

else:

self.block_packet_count[pair] = {’packets_before’: 1, ’packets_after’: 1,

’time_created’: time.time()}

block_time = outgoing_block_mode_v2_dict[mac_dst][0] + 2000

if packet_time > block_time:

if not pair in self.block_packet_count:

pass

else:

if block_time < packet_time < (block_time + 250):

First 250 ms is discarded

pass

elif packet_time > block_time and (block_time + 250) < packet_time < (block_time + 750):

self.block_packet_count[pair][’packets_after’] += 1

elif (block_time + 750) < packet_time < (block_time + 1100):

p_before = self.block_packet_count[pair][’packets_before’]

if p_before > 1000:

ratio = float(self.block_packet_count[pair][’packets_before’]) \

/ float((self.block_packet_count[pair][’packets_after’] * 4))

else:

ratio = 1

if ratio < 5:

Switch flood protection

if not packet[’ip_src’] in self.already_blocked:

self.create_blocking_flow(packet[’ip_src’])

self.already_blocked.append(packet[’ip_src’])

print "Created blocking flow for: ", packet[’ip_src’]

8.4 Mitigation: Blocking

def create_blocking_flow(self, ip_src):

if not ip_src in self.blocked_sources:

self.blocked_sources.append(ip_src)

match = datapath.ofproto_parser.OFPMatch(dl_type=0x0800, nw_src=ipv4_text_to_int(ip_src), nw_src_mask=32)

mod = datapath.ofproto_parser.OFPFlowMod(

datapath=datapath, match=match, cookie=random_int(),

command=datapath.ofproto.OFPFC_ADD, idle_timeout=900, hard_timeout=0,

priority=0xffff, flags=datapath.ofproto.OFPFF_SEND_FLOW_REM)

datapath.send_msg(mod)

print ’creating blocking flow for source: {0}’.format(ip_src)

17

