Security assessment on a VXLAN-based network

Guido Pineda Reyes

MSc. Systems and Networking Engineering University of Amsterdam

February 5, 2014

(*) *) *) *)

Outline

1 Introduction

- Virtual eXtensible LAN
- Research question
- Approach
- 2 VXLAN prototype
- 3 Security assessment
 - MAC Flood Attack
 - Double-Encapsulated 802.1Q/Nested VLAN Attack
 - ARP Attack
 - UDP Flood Attack
 - Future research
 - Conclusions

A B > A B >

Virtual eXtensible LAN Research question Approach

Outline

1 Introduction

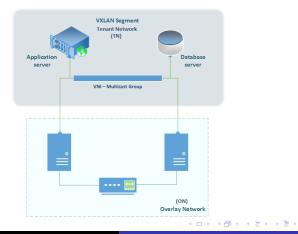
Virtual eXtensible LAN

- Research question
- Approach
- 2 VXLAN prototype
- 3 Security assessment
 - MAC Flood Attack
 - Double-Encapsulated 802.1Q/Nested VLAN Attack
 - ARP Attack
 - UDP Flood Attack
 - Future research
 - Conclusions
- 4 Q&/

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Virtual eXtensible LAN Research question Approach

Virtual eXtensible LAN Introduction


- Still an Internet Draft, current revision: 7th
- Allows to extend logical networks
- Encapsulates layer MAC-based Layer 2 frames within a UDP packet
- Up to 16 million logical networks
- Security measurements have not been performed yet

- 4 同 ト 4 ヨ ト 4 ヨ ト

Virtual eXtensible LAN Research question Approach

Virtual eXtensible LAN

Typical use case

Virtual eXtensible LAN Research question Approach

Outline

1 Introduction

Virtual eXtensible LAN

Research question

- Approach
- 2 VXLAN prototype
- 3 Security assessment
 - MAC Flood Attack
 - Double-Encapsulated 802.1Q/Nested VLAN Attack
 - ARP Attack
 - UDP Flood Attack
 - Future research
 - Conclusions
- 4 Q&/

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Virtual eXtensible LAN Research question Approach

Research questions

- Main question: How feasible are the known VLAN attacks in a VXLAN environment?
- Subquestions:
 - Which attacks were successful?
 - What is the difference between these attacks in a VLAN and a VXLAN environment?
 - Is there anyway to prevent them or mitigate them?

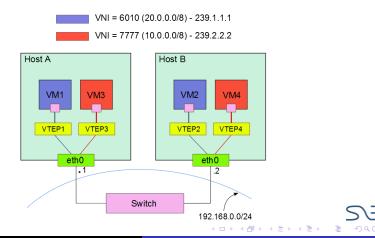
伺 ト イヨト イヨト

Virtual eXtensible LAN Research question Approach

Outline

1 Introduction

- Virtual eXtensible LAN
- Research question
- Approach
- 2 VXLAN prototype
- 3 Security assessment
 - MAC Flood Attack
 - Double-Encapsulated 802.1Q/Nested VLAN Attack
 - ARP Attack
 - UDP Flood Attack
 - Future research
 - Conclusions
- 4 Q&/


▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Virtual eXtensible LAN Research question Approach



- Build the VXLAN prototype.
- Deploy the security assessment on the prototype.
- Focus on successful attacks.
- Understand how this attacks work to give a solution on how to mitigate or prevent them.

VXLAN prototype Design

Guido Pineda Reyes Security assessment on a VXLAN-based network

- VMware vSphere products
- VMware vSphere + Cisco Nexus 1000v

Guido Pineda Reyes

VXLAN Linux implementation (needs kernel modification)

VXLAN prototype Connectivity tests: UDP encapsulated traffic

247 55.149004000	192.168.0.1	192.168.0.2	UDP
248 55.149352000	192.168.0.2	192.168.0.1	UDP
249 55.149403000	192.168.0.2	192.168.0.1	UDP
250 55.149418000	192.168.0.2	192.168.0.1	UDP
251 55.149430000	192.168.0.2	192.168.0.1	UDP
252 55.149759000	192.168.0.1	192.168.0.2	UDP
253 55.149809000	192.168.0.1	192.168.0.2	UDP

・四マ・山下・山下・ 山下・

VXLAN prototype Connectivity tests: VXLAN encapsulation

Frame 436: 148 bytes on wire (1184 bits), 148 bytes captured (1184 bits) on interface 0

B Ethernet II, Src: Parallel_b0:6e:42 (00:1c:42:b0:6e:42), Dst: Dell_8b:82:ab (b8:ac:6f:8b:82:ab)

Internet Protocol Version 4, Src: 192.168.0.2 (192.168.0.2), Dst: 192.168.0.1 (192.168.0.1)

- ⊎ User Datagram Protocol, Src Port: 56992 (56992), Dst Port: otv (8472)
- Virtual extensible Local Area Network

Reserved: 0x000000

VXLAN Network Identifier (VNI): 6010

Reserved: 0

Ethernet II Src: CadmusCo_19:49:23 (08:00:27:19:49:23), Dst: CadmusCo_82:35:ae (08:00:27:82:35:ae)

∃ Internet Protocol Version 4, Src: 20.0.0.4 (20.0.0.4), Dst: 20.0.0.3 (20.0.0.3)

Internet Control Message Protocol

(日) (同) (三) (三)

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

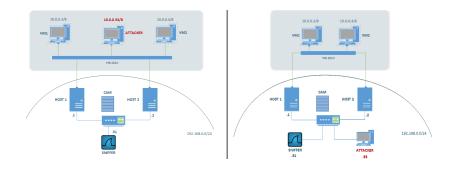
Security Assessment

- MAC Flood Attack
- Double-Encapsulated 802.1Q/Nested VLAN Attack
- ARP Attack
- UDP Flood Attack
- Evaluation

MAC Flood Attack

Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

Outline


- 1 Introduction
 - Virtual eXtensible LAN
 - Research question
 - Approach
- 2 VXLAN prototype
- 3 Security assessment
 - MAC Flood Attack
 - Double-Encapsulated 802.1Q/Nested VLAN Attack
 - ARP Attack
 - UDP Flood Attack
 - Future research
 - Conclusions
- 4 Q&/

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

MAC Flood Attack

MAC Flood Attack

Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

<ロ> <同> <同> < 同> < 同>

э

MAC Flood Attack Double-Encapsulated 802.1Q/

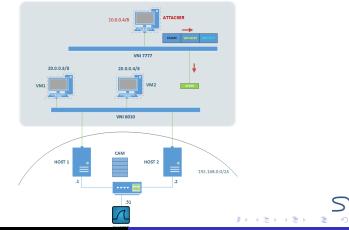
ARP Attack UDP Flood Attack Future research Conclusions

MAC Flood Attack

- Tool: macof
- Results:
 - Attacker on physical net: Successful
 - Attacker on logical net: Failed
- Mitigation/Prevention:
 - Restrict the number of MAC addresses to one port
 - Specify static MAC address association
 - IDS

1	f89f.094e.dbfe	DYNAMIC	Gi1/0/9
1	f8e4.945f.e54e	DYNAMIC	Gi1/0/9
1	fa92.480b.dc2f	DYNAMIC	Gi1/0/9
1	fab1.d42b.8ed5	DYNAMIC	Gi1/0/9
Total	Mac Addresses for	this criter	ion: 6012
1	001c.2381.aa2b	DYNAMIC	Gi1/0/11
1	a820.6651.7a15	DYNAMIC	Gi1/0/9
1	b8ac.6f8b.82ac	DYNAMIC	Gi1/0/1
	Doac.orop.62ac	DINAMIC	611/0/1

∃ ► < ∃ ►</p>


MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

Outline

- 1 Introduction
 - Virtual eXtensible LAN
 - Research question
 - Approach
- 2 VXLAN prototype
- 3 Security assessment
 - MAC Flood Attack
 - Double-Encapsulated 802.1Q/Nested VLAN Attack
 - ARP Attack
 - UDP Flood Attack
 - Future research
 - Conclusions
- 4 Q&

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

Double-Encapsulated $802.1 \ensuremath{\text{Q}}\xspace$ VLAN Attack $_{\ensuremath{\text{Scenario}}}$

Guido Pineda Reyes

Security assessment on a VXLAN-based network

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

Double-Encapsulated 802.1Q/Nested VLAN Attack $_{\mbox{Concept}}$

ļ	Outer Ether	Outer IP	UDP (dst.port=8472)	VXLAN (VNI=7777)	VXLAN (VNI=6010)	Inner Ether	Inner IP	Payload	FCS
Victim's VXLAN header									

同 ト イヨ ト イヨ ト

Security assessment Q&A

Double-Encapsulated 802.1Q/Nested VLAN Attack

Double-Encapsulated 802.1Q/Nested VLAN Attack

- Tool: scapy
- Results:
 - Attacker on logical net: Failed

- Frame 3: 92 bytes on wire (736 bits), 92
- Ethernet II, Src: IntelCor_a8:25:8c (60:3)
- Internet Protocol Version 4, Src: 192.168
- User Datagram Protocol, Src Port: menandm Source port: menandmice-dns (1337) Destination port: otv (8472) Length: 58
 - E Checksum: 0x8734 [validation disabled]
- Virtual extensible Local Area Network
- Reserved: 0x000000 VXLAN Network Identifier (VNI): 7777 Reserved: 0
- Ethernet II, Src: 7a:00:08:00:27:82 (7a:0)
 - Destination: 08:00:00:00:00:17 (08:00:0)
 - Source: 7a:00:08:00:27:82 (7a:00:08:00:1) Type: Unknown (0x35ac)
- Data (28 bytes) No double tagging Data: 080027194923080045000014000100004 [Length: 28]

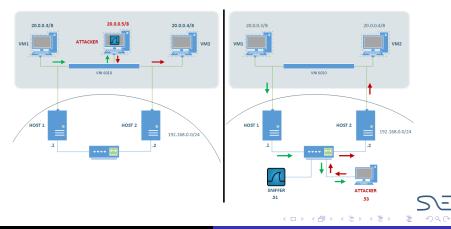
MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack **ARP Attack** UDP Flood Attack Future research Conclusions

Outline

1 Introduction

- Virtual eXtensible LAN
- Research question
- Approach
- 2 VXLAN prototype

3 Security assessment


- MAC Flood Attack
- Double-Encapsulated 802.1Q/Nested VLAN Attack

ARP Attack

- UDP Flood Attack
- Future research
- Conclusions
- 4 Q&/

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack **ARP Attack** UDP Flood Attack Future research Conclusions

ARP Attack

Guido Pineda Reyes Security assessment on a VXLAN-based network

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack **ARP Attack** UDP Flood Attack Future research Conclusions

ARP Attack

- Tool: arpspoof
- Results:
 - Attacker on physical net: Successful
 - Attacker on logical net: Successful
- Mitigation/Prevention:
 - Blocking direct communication between the attacker and the victim.

 Configuring private communication between the hosts at the service provider level.

vm2@\	M2:~\$ pi	ng 20.0.0.3
PING	20.0.0.3	(20.0.0.3) 56(84) bytes of data.
64 by	tes from	20.0.0.3: icmp_req=1 ttl=64 time=0.916 ms
64 by	tes from	20.0.0.3: icmp_req=2 ttl=64 time=0.724 ms
From	20.0.0.5	icmp_seq=3 Redirect Host(New nexthop: 20.0.0.3)
From	20.0.0.5	icmp_seq=3 Redirect Host64 bytes from 20.0.0.3: ic
From	20.0.0.5	icmp_seq=4 Redirect Host(New nexthop: 20.0.0.3)
From	20.0.0.5	<pre>icmp_seq=4 Redirect Host64 bytes from 20.0.0.3: ic</pre>
From	20.0.0.5	icmp_seq=5 Redirect Host(New nexthop: 20.0.0.3)

伺 ト く ヨ ト く ヨ ト

Attacker IP Address

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack **ARP Attack** UDP Flood Attack Future research Conclusions

ARP Attack

25 9.546994000	20.0.0.5	20.0.0.3	ICMP	126 Redirect
26 9.547013000	20.0.0.3	20.0.0.4	ICMP	98 Echo (ping) reply
27 10.001877000	CadmusCo_c1:09:db	CadmusCo_82:35:ae	ARP	42 20.0.0.4 is at 08:00
28 10.547709000	20.0.0.4	20.0.0.3	ICMP	98 Echo (ping) request
29 10. 54774 5000	20.0.0.5	20.0.0.4	ICMP	126 Redirect

<ロ> <同> <同> < 同> < 同>

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack **UDP Flood Attack** Future research Conclusions

Outline

1 Introduction

- Virtual eXtensible LAN
- Research question
- Approach
- 2 VXLAN prototype

3 Security assessment

- MAC Flood Attack
- Double-Encapsulated 802.1Q/Nested VLAN Attack
- ARP Attack

UDP Flood Attack

- Future research
- Conclusions
- 4 Q&/

UDP Flood Attack

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

- Tool: flood.pl
- Results:
 - Attacker on physical net: Failed
- Mitigation/Prevention:
 - IDS to detect unusual UDP traffic

Wireshark: Protocol Hierarchy Statistics						
	Display filter: none					
Protocol	% Packets	Packets	% Bytes			
Frame	100,00 %	3973088	100,00 %			
Ethernet	100,00 %	3973088	100,00 %			
Internet Protocol Version 4	99,85 %	3967318	99,93 %			
Transmission Control Protocol	0,04 %	1623	0,01 %			
User Datagram Protocol	99,80 %	3965013	99,92 %			
Internet Control Message Protocol	0,02 %	672	0,00 %			
Internet Group Management Protocol	0,00 %	10	0,00 %			

* E > * E >

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

Outline

1 Introduction

- Virtual eXtensible LAN
- Research question
- Approach
- 2 VXLAN prototype

3 Security assessment

- MAC Flood Attack
- Double-Encapsulated 802.1Q/Nested VLAN Attack
- ARP Attack
- UDP Flood Attack

Future research

Conclusions

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

Further research Possible vulnerability

root@vtep1:~# bridge fdb show dev vxlan0
00:00:00:00:00:00 dst 239.1.1.1 via eth0 self permanent
ee:02:f4:3c:37:86 dst 192.168.0.2 self 🖾 🖒 vxlan0-Host 2
08:00:27:19:49:23 dst 192.168.0.2 self 🛛 🖙 VM2-Host2
root@vtep1:~# bridge fdb show dev vxlan1
00:00:00:00:00:00 dst 239.2.2.2 via eth0 self permanent
08:00:27:07:5b:82 dst 192.168.0.2 self 🖒 VM6-Host2
96:59:4e:9e:3c:02 dst 192.168.0.2 self 🔁 🖒 vxlan1-Host2

Trying to modify the FDB and redirect all traffic to the attacker.

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

Outline

1 Introduction

- Virtual eXtensible LAN
- Research question
- Approach
- 2 VXLAN prototype

3 Security assessment

- MAC Flood Attack
- Double-Encapsulated 802.1Q/Nested VLAN Attack
- ARP Attack
- UDP Flood Attack
- Future research

Conclusions

MAC Flood Attack Double-Encapsulated 802.1Q/Nested VLAN Attack ARP Attack UDP Flood Attack Future research Conclusions

Conclusions

Most relevant points

Attack	Results: S	Tools	
Attack	Overlay Network	Tenant Network	10018
MAC Flooding Attack	Successful	Failed	macof
Double-Encapsulated/Nested VLAN Attack	N/A	Failed	scapy
ARP Attack	Successful	Successful	arpspoof
UDP Flood Attack	Failed	N/A	flood.pl

- Building the prototype is not trivial
- Some attacks are feasible
- Double-Encapsulation attack and MAC flooding attacks failures show that VXLAN segments are isolated from each other.
- ARP attacks show that Man in the Middle Attacks or DoS are possible from within any network (physical & logical).

Questions?

Guido Pineda Reyes Security assessment on a VXLAN-based network