
MSc. Systems and Networking Engineering

Security assessment on a VXLAN-based
network

Author:

Guido Pineda Reyes

guido.pineda@os3.nl

Supervisors:

Maarten Dammers

maarten.dammers@vancis.nl

Maarthen Kastanja

maarthen.kastanja@vancis.nl

March 11, 2014

Abstract

This project focuses on implementing a VXLAN environment, which
is a technology used in cloud computing deployments to solve scalabilty
problems in large production environments, and later do a security as-
sessment by deploying some of the known VLAN attacks in the VXLAN
environment. Since this is a relatively new technology, no data on secu-
rity tests measurements are available yet. The purpose of this project
is to determine how feasible the known VLAN attacks are in a VXLAN
environment. The �rst approach for this project is building the actual
VXLAN environment and secondly performing the attacks on it. The
research showed that some attacks were feasible in the VXLAN environ-
ment.

1

Contents

1 Introduction 4
1.1 Research . 4

1.1.1 Research question . 4
1.1.2 Scope . 4
1.1.3 Related work . 4

2 Virtual eXtensible LAN 5
2.1 Introduction to VXLAN . 5
2.2 VXLAN Implementation . 5

2.2.1 VXLAN frame encapsulation and forwarding 5
2.2.2 Encapsulation format . 5

2.3 VM to VM communication . 7

3 VLAN vs. VXLAN 8
3.1 Overview . 8
3.2 Security . 8

4 Approach 9

5 Implementation 9
5.1 Building the VXLAN prototype . 9

5.1.1 Con�guring VM to belong to certain VNI 12
5.1.2 Connectivity tests . 13

5.2 Security assessment . 14
5.2.1 MAC Flooding Attack . 15
5.2.2 Double-Encapsulated 802.1Q/Nested VLAN Attack 17
5.2.3 ARP Attack . 20
5.2.4 Tools . 20
5.2.5 UDP Flood Attack . 22
5.2.6 Evaluation of Attacks . 23

5.3 Mitigation and prevention . 24
5.3.1 MAC Flooding Attack . 25
5.3.2 Double-Encapsulated/Nested VLAN Attack 25
5.3.3 ARP Attack . 25
5.3.4 UDP Flood Attack . 25

6 Migration process 26

7 Conclusion 27

8 Further research 28

2

List of Figures

1 Encapsulation headers for a packet leaving a VTEP 6
2 VXLAN simple use case . 7
3 Enabling VXLAN feature on kernel . 11
4 Con�guration of Virtual Machine . 13
5 Connectivity test and VXLAN tra�c veri�cation 13
6 First stage of communication, Multicast Message 14
7 Direct communication using Outer IP Address . 14
8 VXLAN tra�c decoded, from VM3 to VM4 . 14
9 VXLAN tra�c decoded, from VM1 to VM2 . 14
10 MAC �ood attack, attacker in the overlay network 15
11 MAC �ood attack, scenario 1 . 16
12 MAC �ood attack, attacker in the tenant network 16
13 MAC �ood attack, scenario 2 . 17
14 Double Tagging Attack . 17
15 Veri�cation for Scapy, two VMs in the same VXLAN segment 19
16 Scappy attack . 19
17 Double Tagging VLAN format . 20
18 ARP Attack, scenario 1: Attacker on the Overlay Network 21
19 Running arpspoof . 21
20 ICMP packets captured by sni�er, ARP attack . 21
21 ARP attack, scenario 2: Attacker on Tenant Network 22
22 ARP Attack from Tenant Network . 22
23 UDP �ood attack, with perl script . 23
24 UDP �ood attack, captured tra�c . 23
25 Forwarding Table for Hosts 1 and 2 . 24
26 Cloud Migration . 26

List of Tables

1 IP Con�guration for Virtual Machines . 12
2 Evaluation of attacks performed . 24
3 Results of attacks . 25

3

1 Introduction

In current cloud infrastructure of service providers, most of the servers are virtual machines (VMs).
Sometimes VMs need to be migrated from one environment to another. Currently migration
between di�erent environments is done by connecting them on a layer 2 infrastructure with IEEE
standard (802.1Q tags or QinQ). However, there are some limitations, in a VLAN environment,
migration can only be done using Layer 2. VXLAN (Virtual eXtensible Local Area Network)
came as a solution and has been submitted to the IETF for standardization [1]. This protocol can
extend logical networks in di�erent Layer 2 domains via a Layer 3 network. The purpose of this
project is to deploy a security assessment on a VXLAN environment to see if there are di�erences
between a VLAN and a VXLAN-based network.

Security assessments on a VXLAN environment have not yet been fully deployed, even in the
IETF draft where some security considerations are mentioned, indicates that there are still no
data on any security tests measurements [2]. For this project, some known VLAN attacks were
deployed on a VXLAN environment and veri�ed if these attacks were feasible or not.

The VXLAN environment was con�gured using a Linux kernel tunnel device [3].

1.1 Research

This project is the �rst of two projects in the master course "System and Networking Engineering"
in the University of Amsterdam, and is result of four weeks of research.

1.1.1 Research question

The main research question of this research project is:

How feasible are the known VLAN attacks in a VXLAN environment?

This question can be split into di�erent subquestions:

• Of the known VLAN attacks, which attacks were successful?

• What is the di�erence between this attacks in a VLAN and a VXLAN environment?

• Is there any way to mitigate this attacks or how to prevent them?

• How is the process of cloud migration in a VXLAN environment?

1.1.2 Scope

There are a few topics concerning security in the VXLAN technology, but the aim of this project
is limited by deploying the known VLAN attacks in the VXLAN environment and determine how
feasible they are.

To build the VXLAN environment three alternatives are tested, but the one used is the VXLAN
feature on the Linux kernel.

1.1.3 Related work

Security �aws on a VXLAN-based network have not been fully tested or documented, but some
security concerns have been pointed out [4], like session hijacking and other existing network
security issues such as ARP spoo�ng, broadcast storms, and others [5].

4

2 Virtual eXtensible LAN

2.1 Introduction to VXLAN

In the cloud environment, customer demand has increased in recent years, and because of this,
the actual physical infrastructure of data centers is required to support large numbers of virtual
machines hosted on physical servers. Each virtual machine has its own MAC address and IP
address and hosts are grouped in their according VLAN, but in a large production scenario, one
might need to group thousands of hosts in one single VLAN. The limitation of VLAN identi�ers
is 4096.

Another requirement for a large production scenario, where multiple tenants exist, is to isolate
them completely from each others tra�c, and this is not optimal to implement over a shared
network infrastructure.

Another requirement for virtualized environments is to have a Layer 2 network scale across
the entire data center.

To address these requirements pointed out above and other requirements, Virtual eXtensible
LAN provides an encapsulation scheme, which uses an overlay network to carry the MAC tra�c
from the individual Virtual Machines in an encapsulated format over a logical tunnel [6].

2.2 VXLAN Implementation

Network devices process VXLAN tra�c transparently, that is, encapsulating tra�c and routing
it as IP tra�c. VXLAN gateways, also called Virtual Tunnel End Points (VTEP), provide the
encapsulation/de-encapsulation function. VTEP can be bridges in the hypervisor, VXLAN aware
VM applications or VXLAN capable switches hardware.

Each VXLAN network segment is associated with a unique 24-bit VXLAN Network Identi-
�er (VNI). The 24-bit address space allows scaling virtual networks beyond the 4096 available
with 802.1Q to 16.7 million possible virtual networks. However, multicast and network hardware
limitations reduce the real usable number of virtual networks.

Virtual machines on a VXLAN segment, do not require any special con�guration, since all the
encapsulation/de-encapsulation process takes part on the VTEP.

2.2.1 VXLAN frame encapsulation and forwarding

These following forwarding rules are applied in the VTEP:

• If two virtual machines try to communicate, and both reside on the same host, tra�c is
locally switched and no VXLAN encapsulation/de-encapsulation is performed.

• If two virtual machines try to communicate, and they reside on di�erent hosts, all tra�c is
encapsulated/de-encapsulated with the appropriate VXLAN header in the built in VTEP
and forwarded to the destination VTEP based on its local table, also called Forwarding
Data Base (FDB), the destination VTEP will de-encapsulate the packet and deliver it to
the recipient virtual machine.

• For unknown tra�c or broadcast/multicast tra�c, the local VTEP encapsulates the packet
in a VXLAN header and multicasts the encapsulated frame to the VNI multicast address
that is assigned to the VNI. The recipient VTEP sees the packet and processes it as normal
unicast tra�c.

2.2.2 Encapsulation format

For a packet leaving the VTEP, the encapsulation is as follows, see Figure: 1.
And adding to this headers, there is the original payload and lastly the Frame Checksum

Sequence (FCS) for the Outer Ethernet Frame.
VXLAN tra�c is encapsulated in a UDP packet, with the following overhead on each packet:

Outer Ethernet header (14) + UDP header (8) + IPv4 header (20) + VXLAN header (8) = 50 bytes

5

Outer Ethernet Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Outer Destination MAC Address

Outer Destination MAC Address Outer Source MAC Address

Outer Source MAC Address

OptnlEthtype = C-Tag 802.1Q Outer VLAN Tag Information

Ethertype = 0x0800

Outer IPv4 Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL Type of Service Total Length

Identi�cation Flags Fragment O�set

Time to Live Protocol=17(UDP) Checksum

Outer Source IPv4 Address

Outer Destination IPv4 Address

Outer UDP Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port = xxxx Dest. Port =4789/8472

UDP Length UDP Checksum

VXLAN Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R R R R I R R R Reserved

VXLAN Network Identi�er Reserved

Inner Ethernet Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Inner Destination MAC Address

Inner Destination MAC Address Inner Source MAC Address

Inner Source MAC Address

OptnlEthtype = C-Tag 802.1Q Inner VLAN Tag Information

Ethertype = 0x0800

Figure 1: Encapsulation headers for a packet leaving a VTEP

Since all network devices need to handle 50 bytes greater than maximum transmission unit (MTU)
size for the expected frame, the MTU must be adjusted for all devices that will carry VXLAN
tra�c. This includes the core network devices such as switches, routers and the VTEP device [7].

6

2.3 VM to VM communication

The basic use for VXLAN is to connect two virtual machines and make them look like they are in
they are attached in the same layer two domain, even if the underlying network is not the same
for each virtual machine, see Figure 2.

Figure 2: VXLAN simple use case

When two virtual machines try to communicate, they need to know each others MAC address,
and the process of communication is as follows:

• VM1 sends an ARP packet requesting the MAC address associated with VM2.

• The ARP request is encapsulated by VTEP1 into a multicast packet to the multicast group
associated with VNI.

• All VTEPs in the network see this multicast packet and the association of VTEP1 and VM1
to its VXLAN table (Forwarding Data Base).

• VTEP2 receive the multicast packet and de-encapsulates it, and sends the original ARP
packet to the port group associated with the intended VNI .

• When VM2 sees the ARP packet, replies back with its MAC address.

• VTEP2 encapsulates the response in a unicast IP packet and sends it back to VTEP1.

• VTEP1 de-encapsulates the packet and passes it on to VM1

7

3 VLAN vs. VXLAN

In this chapter, a smal discussion is made about the conceptual di�erences between VLAN and
VXLAN techniques and the hypotheses about the expected results for this research project.

3.1 Overview

VLAN is a technique to create independent logical networks within the same physical network,
this technique uses the IEEE 802.1Q protocol to tag packets to identify tra�c comming from a
particular VLAN. It runs directly over the Ethernet frame with an Ethertype of value 0x8100. It
allows to have up to 4096 virtual network identi�ers (VNI).

VXLAN provides the same service to End Systems as a VLAN, this technology allows to have
up to 16 million logical networks by using a VXLAN header with a virtual network identi�er of
24 bits. Layer 2 segments generated by the virtual hosts are encapsulated in VXLAN/UDP/IP
headers and are sent as regular IP packets over a regular layer 3 network.

VXLAN as in VLAN, has no control plane, that means that it still uses the same layer 2
mechanism to communicate (dynamic MAC learning). In a VXLAN environment, layer 2 �ooding
mechanisms, that is broadcast and multicast, use multicasting techniques between the communi-
cating hosts in the overlay network, ideally a dedicated multicast group per VNI, so that only those
hosts, that run virtual machines in that particular segment get the multicast. This is achieved by
using ARP in a VLAN based network.

In a VLAN environment, communication between two hosts is done by using the same VNI,
or by using trunking ports to carry multiple VLAN tags. For a VXLAN based network, all
communication between hosts uses IP, therefore there is no requirement to use trunk ports to
communicate two hosts. This translates to no more per tenant VLAN trunking on server ports,
which is an issue in large scale cloud environments, where there are multiple tenants.

3.2 Security

Concerning to security, all layer 2 VLAN attacks are known to be successful when the proper
security guidelines are not followed. In this research project the following attacks are about to be
assessed:

• MAC Flooding attacks

• Double Encapsulation attacks

• ARP Attack

• UDP Flood Attack

The MAC Flooding attack in a VLAN environment is an exploit of a limitation of the way the
switches and bridges work. There is a limit of addresses that can be learned in the memory of
the switch, therefore, an attacker may �ood the network with random MAC addresses and make
the switch act as a hub, redirecting all tra�c to addresses that cannot be learned anymore. The
hypothesis for the outcome of this attack in a VXLAN environment is that, since the communi-
cation between virtual machines is encapsulated within UDP packets, the switch will not see this
tra�c and it will be discarded.

The Double Encapsulated attack has the main goal to send tra�c to a host that belongs to
a di�erent VLAN by adding an additional 802.1Q header to the original frame. In a VXLAN
environment, the goal is to add an additional VXLAN header to the original packet, and see how
the packet is processed by the core network devices, in this case, the switch that communicates
the two hypervisors.

The ARP attack has the goal to fool the switch into forwarding packets to a malicious device
that claims to be the legitimate destination. In a VXLAN environment, the attacker may be either
on the overlay network, and on the VXLAN segment of the two communicating virtual machines,
and for both scenarios the tra�c should be intercepted by the attacker. For the scenario where
the attacker is on the overlay network, that is the physical network, where the hypervisors are

8

located, all tra�c coming from the virtual machines should be intercepted, knowing beforehand
that the communication is encapsulated. With the attacker in the logical network, that is the
same VXLAN segment where the virtual machines are communicating, the communication should
be redirected to the attacker with no problem.

The UDP Flood attack has as main goal to �ood the network with UDP packets and then
cause a Denial of Service between two hosts that are trying to communicate. It is known that in a
VLAN environment, the target host will become unreachable for other hosts in the network. In a
VXLAN environment, this attack should behave as it does on a VLAN environment, taking into
account that all communication is encapsulated in UDP packets.

In a layered scheme as is present in the OSI model, if one layer is victim of an attack, then
all communications may be compromised without other layers being aware of the problem. In a
VXLAN-based network, this behaviour should not be di�erent from a VLAN-based environment.

4 Approach

The approach of this project is mainly trying to answer the research questions proposed in the
Introduction. In order to do this, the following procedure is going to take place:

• Build the VXLAN prototype

• Deploy the security assessment on the prototype

• Focus on the most successful attacks

• Understand how this attacks work to give a solution on how to mitigate or prevent them.

5 Implementation

5.1 Building the VXLAN prototype

To build the VXLAN prototype, the following design was used, see Figure 2, where Host A and
Host B, represent two clusters on di�erent data centers, physically connected and both are in the
same network, for the purpose of the prototype, this network is 192.168.0.0/24.

Two Virtual Machines reside on each host, and each Virtual Machine is in a di�erent VXLAN
segment (VNI), that is 6010 and 7777. Virtual Machines that are in the same VXLAN segment
can communicate with each other.

The VXLAN segment with ID 6010 is associated with the multicast group 239.1.1.1, and every
Virtual Machine is in network 20.0.0.0/8.

The VXLAN segment with ID 7777 is associated with the multicast group 239.2.2.2, and every
Virtual Machine is in network 10.0.0.0/8.

Available options to deploy a VXLAN environment

There are a few options to con�gure VXLAN, and for the purpose of the project the following
options were tested:

• VMware vSphere products

• VMware vSphere with Cisco Nexus 1000V

• Linux Kernel modi�cation to support VXLAN

To build the VXLAN environment, the Linux option was used, and the con�guration is as
follows:

9

Virtual Tunnel End Point implementation (VTEP)

VXLAN is supported in at least kernel's version 3.7.0, for this purpose, to implement the VTEP,
the kernel version that was used is version 3.12.8. The kernel used for this purpose was modi�ed to
enable VXLAN features, as well as the latest version of iproute2 (3.12.0) which supports VXLAN
commands needs to be installed. The latest version of Debian (Debian 7.3.0) as the Operating
System was used.

Compiling the kernel

In order to enable the VXLAN feature, which by default is disabled, the kernel has to be modi�ed
and later re-compiled. The following steps need to be followed:

• Before installing a new kernel, the following packages need to be installed: bzip2, fakeroot,

kernel-packages, ncurses-dev

• Download the latest version of kernel, in this case the latest version at the moment is linux-
13.12.8 [8].

• Decompress the �le.

� tar -xJf linux-3.12.8.tar.xz

• Under the /usr/src/ directory, create a soft link, which will contain all the uncompressed
�les.

� ln -s linux-3.12.8 linux

• A patch to support a TTL more than 1 for multicast packets needs to be applied [9].

� pwd: /src/usr/linux/drivers/net/

� patch -p1 < vxlan-allow-a-user-to-set-TTL-value.patch, specify the vxlan.c �le

• Prepare the compiling process.

� make clean & make mrproper

• Copy the running con�guration of the boot �le

� cp /boot/config-`uname -r` ./.config

• Enable the VXLAN feature in the con�guration command

� make menuconfig, see Figure 3.

� To enable the VXLAN feature: Device Drivers >Network device support >Virtual
eXtensible Local Area Network (VXLAN), mark with <Y>key.

• After every modi�cation has been made, the following command has to be run:

� make-kpkg clean

� fakeroot make-kpkg �initrd �append-to-version=-vxlan_customized kernel_image kernel_headers

10

Figure 3: Enabling VXLAN feature on kernel

Building the kernel

The �les created, have to be installed to build the new customized kernel:

1. linux-image-3.12.8-vxlan_3.12.8-vxlan_customized-10.00.Custom_amd64.deb

2. linux-headers-3.12.8-vxlan_3.12.8-vxlan_customized-10.00.Custom_amd64.deb

This following command will install the new modi�ed kernel with all features previously en-
abled:

• dpkg -i linux-image-3.12.8-vxlan_3.12.8-vxlan_customized-10.00.Custom_amd64.deb

• dpkg -i linux-image-3.12.8-vxlan_3.12.8-vxlan_customized-10.00.Custom_amd64.deb

Installing iproute2

VXLAN features are available on the new version of iproute, to install iproute, the following pack-
ages must be installed �rst:
pkg-config, iptables-dev, bison, flex, db4.8-util, libgdbm-dev, libperl-dev, libsasl2-dev

To install iproute2:

• apt-get install pkg-config iptables-dev bison flex db4.8-util libgdbm-dev libperl-dev

libsasl2-dev libdb*-dev

• ./configure

• make

• make install

Creating VXLAN interface (VTEP)

To create a new VTEP, the following commands have to be run:

For Host A, VNI 6010:

• ip link add vxlan0 type vxlan id 6010 group 239.1.1.1 ttl 4 dev eth0

• ip addr add 20.0.0.1/8 dev vxlan0

11

• ip link set up vxlan0

For Host A, VNI 7777:

• ip link add vxlan0 type vxlan id 7777 group 239.2.2.2 ttl 3 dev eth0

• ip addr add 10.0.0.1/8 dev vxlan0

• ip link set up vxlan1

For Host B, VNI 6010:

• ip link add vxlan0 type vxlan id 6010 group 239.1.1.1 ttl 4 dev eth0

• ip addr add 20.0.0.2/8 dev vxlan0

• ip link set up vxlan0

For Host B, VNI 7777:

• ip link add vxlan0 type vxlan id 7777 group 239.2.2.2 ttl 3 dev eth0

• ip addr add 10.0.0.2/8 dev vxlan1

• ip link set up vxlan1

Creation and con�guration of Virtual Machines

On each host (Host A and Host B), two virtual machines, in total four, were installed using Virtual
Box software. The purpose is to verify connection between the Virtual Machines that belong to
the same VNI.

The con�guration of the IP addresses for each Virtual Machine is as follows, see Table 1:

Host Virtual Machine IP address Net mask Gateway VTEP

Host A
VM1 20.0.0.3 255.0.0.0 20.0.0.1 vxlan0
VM3 10.0.0.3 255.0.0.0 10.0.0.1 vxlan1

Host B
VM2 20.0.0.4 255.0.0.0 20.0.0.2 vxlan0
VM4 10.0.0.4 255.0.0.0 10.0.0.2 vxlan1

Table 1: IP Con�guration for Virtual Machines

5.1.1 Con�guring VM to belong to certain VNI

To con�gure a VM to belong to a certain VNI, the con�guration has to be done on the hypervisor,
that is, the Virtual Box software, where the virtual NIC for the virtual machine must be bridged
with the VXLAN interfaces previously created (vxlan0, vxlan1), see Figure 4.

12

Figure 4: Con�guration of Virtual Machine

5.1.2 Connectivity tests

The connectivity tests were successful, the communication of Virtual Machines in the same VNI
can communicate with each other.

To verify if the environment is working, a sni�er is placed in the overlay network (i.e. 192.168.0.0/24),
see Figure 5.

Figure 5: Connectivity test and VXLAN tra�c veri�cation

The result of the sni�ng process was successful, in Figure 6, which shows the �rst stage of the
VXLAN communication, in which a multicast message is sent to all the VTEPS in the network.

13

Figure 6: First stage of communication, Multicast Message

And after that, all communication is sent directly using the Outer IP Address, see Figure 7.

Figure 7: Direct communication using Outer IP Address

As seen before, in both Figures 6 and 7, the destination port is "otv", the reason is because
the Linux implementation of VXLAN uses the same port as the OTV (Overlay Transport Virtu-
alization) protocol [10], which is a proprietary protocol from Cisco.

In order to see the actual VXLAN tra�c, the decoding feature in the sni�er needs to be
enabled, after that, the VXLAN tra�c communication can be veri�ed, being able to see all the
headers for a VXLAN packet, see Figures 8 and 9.

Figure 8: VXLAN tra�c decoded, from VM3 to VM4

Figure 9: VXLAN tra�c decoded, from VM1 to VM2

5.2 Security assessment

The security assessment on this VXLAN environment has the following scope: Deploy the known
VLAN attacks, and see how feasible they are.

This project focuses on the following attacks [11]:

• MAC Flooding Attack

• Double-Encapsulated 802.1Q/Nested VLAN Attack

• ARP Attack

• UDP Flood Attack

14

For some attacks, two scenarios were considered, one with the attacker on the VXLAN segment
or in the Tenant Network, and one with the attacker in the Overlay Network or in the Service
Provider Network.

5.2.1 MAC Flooding Attack

In this attack, the target is the core switch that connects all hosts in the network. The purpose
of this attack is �ooding the switch with random MAC Addresses, and thus the switch acts as a
hub where all tra�c is directed to all hosts in the same VLAN.

Tools

To deploy the attacks, the tool macof was used. This tool �oods the network with random MAC
Address.

Scenario 1: Attacker in the Overlay Network

For this attack, the attacker lays in the overlay network, see Figure 10.

Figure 10: MAC �ood attack, attacker in the overlay network

The MAC Address Table capacity of the switch is 6K, see Figure 11a.
Before the attack, the switch's MAC Address table shows a total of 24 MAC Addresses, see

Figure 11b.
The attack is run:

• macof -i eth0 -n 1000000000

After the attack, the switch's MAC Address Table shows a total of 6012 MAC Addresses see,
Figure 11c.

15

(a) CAM capacity (b) Before MAC �ood attack

(c) After MAC �ood attack

Figure 11: MAC �ood attack, scenario 1

Scenario 2: Attacker in the Tenant Network

For this attack, the attacker is in the Tenant Network, see Figure 12.

Figure 12: MAC �ood attack, attacker in the tenant network

Before the attack, the MAC table shows 3 dynamic MAC Addresses, this MAC Addresses
correspond to Host 1 and Host 2, and other hosts connected in the overlay network for testing,
see Figure 13a

After the attack, running macof on a host on the tenant network, that is the VXLAN segment,
the MAC table in the switch shows the same output as it was before the attack with the MAC
Addresses of Hosts 1 and 2, see Figure 13b. The attack was not successful because all tra�c is
encapsulated in UDP packets and is not seen as ARP tra�c at the level of the physical network

16

(a) Before MAC �ood attack

(b) After MAC �ood attack

Figure 13: MAC �ood attack, scenario 2

5.2.2 Double-Encapsulated 802.1Q/Nested VLAN Attack

This attack refers to sending 802.1Q double encapsulated frames. In the case of VXLAN the goal
is to test if a VM in a di�erent VXLAN segment is able to communicate with a host on a di�erent
VXLAN segment.

The only possible scenario is to have the attacker on a di�erent VXLAN segment than the
target, see Figure 12.

Figure 14: Double Tagging Attack

17

Tools

The tool used for this attack was Scapy. This tools allows to forge packets, and send them to the
speci�ed target. To use this tool, the VXLAN packet needs to be created. The following code
needs to be inserted, while running Scapy in order to de�ne the VXLAN packet [12]:

class ThreeBytesFie ld (X3BytesField , ByteFie ld) :
def i 2 r e p r (s e l f , pkt , x) :

return ByteFie ld . i 2 r e p r (s e l f , pkt , x)

class VXLAN(Packet) :
name = "VXLAN"
f i e l d s_de s c = [F lag sF i e ld (" f l a g s " , 0x08 , 8 , ['R ' , 'R ' , 'R ' , ' I ' , 'R ' , 'R ' , 'R ' , 'R ']) ,

X3BytesField (" r e s e rved1 " , 0x000000) ,
ThreeBytesFie ld (" vni " , 0) ,
XByteField (" r e s e rved2 " , 0x00)]

def mysummary(s e l f) :
return s e l f . s p r i n t f ("VXLAN (vni=%VXLAN. vni%)")

bind_layers (UDP, VXLAN, dport=8472)
bind_layers (VXLAN, Ether)

Deploying the attack

For a VXLAN environment, a double VXLAN packet was formed, by adding �rst a VXLAN
header for the attacker, that is VNI 7777 , and then adding a header which belongs to the target,
in this case, the target is VM1 and the VNI is 6010.

To run Scapy, the forged packet needs to be created, in order to do this, we need to specify
the parameters for all headers:

OuterMAC = Ether ()
OuterMAC. dst = "b8 : ac : 6 f : 8 b : 8 2 : ab"
OuterMAC. s r c = "b8 : ac : 6 f : 8 b : 7 d : 4 f "

OuterIP = IP ()
OuterIP . dst = " 192 . 1 6 8 . 0 . 2 "
OuterIP . s r c = " 192 . 1 6 8 . 0 . 1 "

InnerMAC = Ether ()
InnerMAC . dst = " 0 8 : 0 0 : 2 7 : 8 2 : 3 5 : ac"
InnerMAC . s r c = " 0 8 : 0 0 : 2 7 : 1 9 : 4 9 : 2 3 "

InnerIP = IP ()
InnerIP . dst = " 2 0 . 0 . 0 . 3 "
InnerIP . s r c = " 2 0 . 0 . 0 . 9 9 "

p = OuterMAC/OuterIP/UDP(spor t =1337 , dport=8472)/VXLAN(vni=6010)/InnerMAC/ InnerIP/ICMP()

To verify that Scapy is working, a test packet was sent, and successfully capturing a packet from
two VMs in the same VXLAN, see Figure 15a and Figure 15b .

18

(a) Scapy veri�cation

(b) Scapy veri�cation, VXLAN encapsulation

Figure 15: Veri�cation for Scapy, two VMs in the same VXLAN segment

To test the attack, the attacker is on a di�erent VXLAN segment, that is 7777, and a new tag
(VNI 6010) is added in the packet.

p = OuterMAC/OuterIP/UDP(spor t =1337 , dport=8472)/VXLAN(vni=7777)/VXLAN(vni=6010)/InnerMAC/ InnerIP /ICMP()

For this attack, a sni�er was placed in the VXLAN segment 6010, to capture an ICMP packet
coming from a di�erent VXLAN segment (VNI 7777). Also, a sni�er was placed in the generating
packet VXLAN segment, to capture the outgoing tra�c.

The test was not successful, and by looking at the packet generated, it is not well formed, and
the double tagging can not be veri�ed, see Figure 16.

(a) Scapy attack

(b) Scapy attack, no double tagging

Figure 16: Scappy attack

To compare with a normal VLAN attack, a packet is forged using Scapy, and a double tagging
should look like Figure 17.

• sendp(Ether()/Dot1Q(vlan=1)/Dot1Q(vlan=10)/IP()/ICMP())

19

Figure 17: Double Tagging VLAN format

The attack was not successful because the packet can not be processed as a double tagged
frame. This attack also shows that this attack is not feasible on a VXLAN environment as it is
on a VLAN-based network.

5.2.3 ARP Attack

An ARP attack exploits weaknesses on the ARP implementation, where any device in the network
can claim that its MAC address is associated to any IP address. There is no veri�cation mech-
anism of the correctness of the identities of these devices. The ARP attack fools the switch into
forwarding packets to a device in the same VLAN, in this case, the tra�c should be forwarded to
devices in the same VXLAN segment.

For this attack there are two scenarios, in which the attacker is in the same VXLAN segment,
and in the second scenario, the attacker is in the overlay network. The purpose of this attack is
to perform a Man in the Middle attack and capture packets that communicate VM1 and VM2.

A sni�er is located in the overlay network, and in the same VXLAN segment as the virtual
machines, to capture the network tra�c.

5.2.4 Tools

The tool used to perform this attack is arpspoof, which is a tool to deploy ARP Spoo�ng attacks.

Scenario 1: Attacker in the Overlay Network

For this attack, the attacker is in the Overlay Network, where he �oods the network with ARP
packets, to redirect alll tra�c coming from Host 1 to the attacker, see Figure 18.

20

Figure 18: ARP Attack, scenario 1: Attacker on the Overlay Network

Before running the attack, the forwarding feature on the attacker has to be enabled, otherwise,
a Denegation of Service (DoS) attack can be deployed, which is another alternative of attack.

• echo 1 > /proc/sys/net/ipv4/ip_forward

The goal is to tell Host 1 and Host 2 that their default gateway is the attacker's MAC address.
The attack is performed by running the following commands on the attacker, see Figure 19:

• arpspoof -i eth0 192.168.0.1 192.168.0.2

• arpspoof -i eth0 192.168.0.2 192.168.0.1

Figure 19: Running arpspoof

While running the attack, VM1 is sending echo replies (ICMP packets) to VM2.
After deploying successfully the attack, al tra�c is redirected to the attacker, and the ICMP

packets that were supposed to be encapsulated were captured by the sni�er, see Figure 20.

Figure 20: ICMP packets captured by sni�er, ARP attack

21

Scenario 2: Attacker in the Tenant Network

For this scenario, the attacker is in the Tenant Network, speci�cally in VXLAN 6010, where VM1
and VM2 reside, see Figure 21.

Figure 21: ARP attack, scenario 2: Attacker on Tenant Network

The result of this attack is successful when trying to deploy a Man in the Middle Attack,
since all tra�c was captured from the source VM1 and redirected to the destination VM2, see
Figure 22b. Also, when sending echo requests messages, the "Redirected" message appears, see
Figure 22a.

(a) Tra�c redirected from the attacker

(b) Tra�c captured

Figure 22: ARP Attack from Tenant Network

The result shows that it is feasible to launch this attack from within any network, that is from
a VXLAN segment, or from the physical network, and all the tra�c is redirected to the attacker.

5.2.5 UDP Flood Attack

UDP �ood attack is a kind of DoS attack using the User Datagram Protocol. The goal of this
attack �ood the network with UDP packets, to possibly force the victim to be unreachable by
other hosts in the network.

Tools

The tool used for this attack is a Perl script, [13]. This tool speci�es a target, a UDP port to
attack and the size of the packets to be sent.

22

The attacker should be on the Overlay Network, since there is where UDP packets �ow.
In this case, the victim is Host 2, with IP Address 192.168.0.2/24.
The attack is run by the following command, also, see Figure 23.

• perl flood.pl �port 8472 �size 1024 �time 3600 �bandwith 1024 �delay 3 192.168.0.2

Figure 23: UDP �ood attack, with perl script

After the attack is performed while VM1 is sending echo requests to VM2, the network is
�ooded with UDP packets, the attack runs for 3600 seconds, but the virtual machines can com-
municate normally, which means the attack using this tool is not very e�ective.

All packets were captured during the attack by a sni�er in the Overlay Network, and shows
the amount of UDP tra�c captured, which is very high, but the communication in the Tenant
Network is still working, see Figure 24.

Figure 24: UDP �ood attack, captured tra�c

The possible failure of this attack, would be by not running for enough time the script, since
this is a proven attack, it should have worked in the only possible scenario where the attacker is
on the physical network. The known e�ect of this attack is that it causes a Denial of Service,
bringing down the access to other network resources.

5.2.6 Evaluation of Attacks

The evaluation of all the attacks performed on the VXLAN environment is summarized in the
Table 2:

23

Attack
Results: Scenario on

Tools
Overlay Network Tenant Network

MAC Flooding Attack Successful Failed macof

Double-Encapsulated/Nested VLAN Attack N/A Failed scapy

ARP Attack Successful Successful arpspoof

UDP Flood Attack Failed N/A flood.pl

Table 2: Evaluation of attacks performed

In a VXLAN environment, communication between virtual machines is done by learning and
creating a Forwarding Table Entries. The learning process is based on packets received. The
VTEP learns based on the inner and outer header of the packets received.

This tables show the routes for outgoing packets. For Host 1, the Forwarding Table shows the
MAC address of the device VXLAN interface (VTEP: vxlan0 and vxlan1) on Host 2, and also
shows the MAC address of Virtual Machine 1 and 6 (VM1, VM6), which are on Host 2 as well.
For Host2, it shows the same information, the VXLAN interface (vxlan0 and vxlan1) on Host1,
and the MAC addresses of Virtual Machines 2 and 5 (VM2, VM5), which are on Host 1. See,
Figure 25.

(a) FDB on Host 1

(b) FDB on Host 2

Figure 25: Forwarding Table for Hosts 1 and 2

A possible attack to the Forwarding Table, would be changing it, in order to redirect all tra�c
to the attacker that should understand VXLAN tra�c. This attack seems like the ARP Attack,
where the goal of the attacker is to redirect all the tra�c to itself. This attack should be referred
as a further research and it is out of the scope of this research project.

All this attacks are proven to be successful in a VLAN environment. In a VXLAN environment,
this are the results, see Table 3:

5.3 Mitigation and prevention

The mitigation and prevention techniques for known VLAN attacks are based on security best
practices on network devices.

Here are the attacks, and how to prevent or mitigate them.

24

Attack
VXLAN (Obtained results)

Attacker on physical network Attacker on logical network
MAC Flood Attack Successful attack. The CAM Table is �lled with random

MAC Addresses
Failed attack. The CAM Table is not a�ected by this at-
tack.

Double Encapsulated
802.1Q/Nested VLAN Attack

N/A Failed attack. The packets seems like is not well formed
when adding the additional VXLAN header.

ARP Attack Successful attack. The attacker is able to eavesdrop com-
munication from the logical network.

Successful attack. The result is similar to the VLAN envi-
ronment.

UDP Flood Attack Failed attack. The communication between the virtual ma-
chines is still reliable.

N/A

Table 3: Results of attacks

5.3.1 MAC Flooding Attack

The alternatives to prevent and mitigate these attacks are:

• Enable a mechanism that restricts the number of MAC Addresses allowed to connect to a
switch port.

• Specify statically the MAC Address of the Host that connects to the speci�c port.

• By using an Intrusion Detection System, to detect unusual ARP tra�c.

5.3.2 Double-Encapsulated/Nested VLAN Attack

This attack was not successful on the VXLAN environment, but in a VLAN environment, the
mitigation mechanisms for this attack are:

• Not using the native VLAN in any port by forcing all tra�c on trunk to always carry a tag.

5.3.3 ARP Attack

This attack can be prevented by blocking the direct communication between the attacker and the
victim. That can be achieved by con�guring private VLANs, or private communication at the
level of the Service Provider network, between the hosts.

5.3.4 UDP Flood Attack

This attack was not successful on the VXLAN environment. But to mitigate it, an Intrusion
Detection System should be able to detect unusual UDP tra�c.

25

6 Migration process

Cloud migration, is the process of moving data, applications or other busines elements from an
organization's on site computers to the cloud, or moving them from one environment to another
[14].

The process of migration in a VXLAN environment, where usually physical hosts are located
in di�erent networks, need the following requirements, to move applications from one host to
another, see Figure 26.

• Multicast enabled in physical networking devices to carry multicast tra�c using the IP
multicast groups, this is to minimize �ooding frames to VTEPs that do not need them.

• Multicast routing enabled, to carry multicast tra�c across networks.

� IGMP (Internet Group Management Protocol), used between hosts and routers on a
LAN to track the multicast groups of which hosts are members.

� PIM (Protocol Independent Multicast), used between routers to track multicast packets
that are forwarded to each other and to their connected LANs.

Figure 26: Cloud Migration

There are some reasons to migrate elements in a cloud environment, here are the most impor-
tant:

• Move virtual machines to balance load of hosts.

• Move virtual machines temporally for maintenance.

• To allow scalability in tenant's applications.

26

7 Conclusion

In this section, the conclusions for this research project are made.
VXLAN is a new technique that allows to extend logical networks over an overlay network

by encapsulating/de-encapsulating tra�c from and to virtual machines that reside on a physical
host. This technology has some vulnerabilities that are also applicable in a VLAN environment.

The security assessment showed that some known VLAN attacks are feasible in a VXLAN
environment, the predicted outcome for this project is as expected. During the development of
these research project, some attacks such as Private VLAN and Spanning Tree Protocol attacks,
turned out to be irrelevant in a VXLAN environment and thus they were not considered during
this evaluation.

The MAC �ood attack, showed that an attacker in the overlay network, that is the service
provider's or the physical network, can a�ect the core network devices �ooding them with random
MAC addresses and making the switch act as a hub redirecting tra�c to every host connected to
it. On the other hand, if the attacker is in the VXLAN segment, this attack has no e�ect, since
all the packets are encapsulated and have no destination, this also proves that hosts in a VXLAN
segment remain isolated from other networks.

The Double-Encapsulation 802.1Q/Nested VLAN attack showed that the attack is not feasible
on a VXLAN environment using the tool Scapy, the reason is because the forged packets are not
processed by the core network devices. By capturing packets with a sni�er, shows that the packet
is not well formed. This attack failure shows that VXLAN segments are isolated from each other,
and virtual machines that belong to a certain VXLAN segment cannot communicate with virtual
machines that belong to a di�erent VXLAN segment unless they are connected through a routing
device.

The ARP attack showed that both scenarios, where the attacker is in the overlay network, and
where the attacker is in the VXLAN segment, it is feasible to redirect all tra�c to the attacker
and perform a Man in the Middle Attack or even a DoS attack.

The UDP Flood attack showed that even if the network was �ooded with UDP packets, the
communication remains stable between virtual hosts. Unlike in a VLAN environment, where it is
known that this attack causes a Denial of Service between the communicating hosts, in a VXLAN
environment, this attack did not behave as expected in the hypotheses.

The found vulnerabilities may be reduced by following best practices and correctly con�gure
the core network devices, although for this research project, these techniques that are used to
reduce or mitigate these attacks were not implemented in a practical way due to limited time.
The mitigation and prevention techniques are the same as in the VLAN environment, that is by
correctly con�guring the network devices and also by implementing mechanisms such as Intrusion
Detection Systems to detect malicious and unusual tra�c.

A VXLAN technology is used to scale capacity in a service provider data center, where there are
thousands of tenants. In such environments it is required to have multicast capabilities enabled,
this is to route multicast tra�c across networks, where there are multiple VTEPs in place, and to
minimize �ooding frames to VTEPs that do not need them.

27

8 Further research

This research project was deployed using some features available in Linux kernel, but many more
options are available to deploy a VXLAN environment, and some of the options are:

• VMware vSphere products

• Cisco Nexus 1000V

Due to limited time, and lack of experience with other options to deploy a VXLAN environment,
such as VMware and Cisco Nexus 1000v, other types of weakness might be spotted and reviewed.

The way VTEPs communicate is by learning and creating forwarding tables entries, one pos-
sible attack would be by trying to modify this table entry and to redirect all tra�c to an attacker
in the overlay network.

VXLAN makes use of multicasting to carry tra�c across networks by using protocols such as
IGMP and PIM, another security assessment should be made by trying to exploit these protocols'
weaknesses.

Because of time constraints, the prevention and mitigation techniques are just theoretical, for
future a research, this techniques could be applied in a practical way in the VXLAN environment.

28

References

[1] VXLAN: A framework for overlaying virtualized layer 2 networks over layer 3 networks.
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-07.

[2] Security considerations: VXLAN, a framework for overlaying virtualized
layer 2 networks over layer 3 networks. http://tools.ietf.org/html/

draft-mahalingam-dutt-dcops-vxlan-07#section-7.

[3] Virtual extensible local area networking documentation. https://www.kernel.org/doc/

Documentation/networking/vxlan.txt.

[4] Encapsulation risk and VXLAN. http://www.flyingpenguin.com/?p=13702.

[5] What is VXLAN? http://securitytheatre.tumblr.com/post/11682956200/

all-about-the-path.

[6] Introduction: VXLAN, a framework for overlaying virtualized layer 2 networks over layer
3 networks. http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-07#

section-1.

[7] Encapsulation: Deploying the VXLAN feature in cisco nexus 1000v series switches.
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/guide_

c07-702975.html.

[8] The linux kernel archives. https://www.kernel.org/.

[9] Patchwork vxlan: allow a user to set TTL value. http://patchwork.ozlabs.org/patch/

195622/.

[10] VXLAN: Virtual extensible local area network, source code. https://github.com/

torvalds/linux/blob/master/drivers/net/vxlan.c.

[11] What are the possible attacks in a VLAN-based network? http://www.cisco.com/

en/US/products/hw/switches/ps708/products_white_paper09186a008013159f.shtml#

wp39042.

[12] Layer for vxlan using scapy. http://bb.secdev.org/scapy/pull-request/26/

added-a-layer-for-vxlan/diff#chg-scapy/contrib/vxlan.py.

[13] UDP �ood in perl. http://wiki.nil.com/UDP_flood_in_Perl.

[14] De�nition: Cloud migration. http://searchcloudapplications.techtarget.com/

definition/cloud-migration.

[15] Vmware VXLAN deployment guide. http://www.vmware.com/files/pdf/techpaper/

VMware-VXLAN-Deployment-Guide.pdf.

29

http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-07
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-07#section-7
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-07#section-7
https://www.kernel.org/doc/Documentation/networking/vxlan.txt
https://www.kernel.org/doc/Documentation/networking/vxlan.txt
http://www.flyingpenguin.com/?p=13702
http://securitytheatre.tumblr.com/post/11682956200/all-about-the-path
http://securitytheatre.tumblr.com/post/11682956200/all-about-the-path
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-07#section-1
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-07#section-1
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/guide_c07-702975.html
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9902/guide_c07-702975.html
https://www.kernel.org/
http://patchwork.ozlabs.org/patch/195622/
http://patchwork.ozlabs.org/patch/195622/
https://github.com/torvalds/linux/blob/master/drivers/net/vxlan.c
https://github.com/torvalds/linux/blob/master/drivers/net/vxlan.c
http://www.cisco.com/en/US/products/hw/switches/ps708/products_white_paper09186a008013159f.shtml#wp39042
http://www.cisco.com/en/US/products/hw/switches/ps708/products_white_paper09186a008013159f.shtml#wp39042
http://www.cisco.com/en/US/products/hw/switches/ps708/products_white_paper09186a008013159f.shtml#wp39042
http://bb.secdev.org/scapy/pull-request/26/added-a-layer-for-vxlan/diff#chg-scapy/contrib/vxlan.py
http://bb.secdev.org/scapy/pull-request/26/added-a-layer-for-vxlan/diff#chg-scapy/contrib/vxlan.py
http://wiki.nil.com/UDP_flood_in_Perl
http://searchcloudapplications.techtarget.com/definition/cloud-migration
http://searchcloudapplications.techtarget.com/definition/cloud-migration
http://www.vmware.com/files/pdf/techpaper/VMware-VXLAN-Deployment-Guide.pdf
http://www.vmware.com/files/pdf/techpaper/VMware-VXLAN-Deployment-Guide.pdf

	Introduction
	Research
	Research question
	Scope
	Related work

	Virtual eXtensible LAN
	Introduction to VXLAN
	VXLAN Implementation
	VXLAN frame encapsulation and forwarding
	Encapsulation format

	VM to VM communication

	VLAN vs. VXLAN
	Overview
	Security

	Approach
	Implementation
	Building the VXLAN prototype
	Configuring VM to belong to certain VNI
	Connectivity tests

	Security assessment
	MAC Flooding Attack
	Double-Encapsulated 802.1Q/Nested VLAN Attack
	ARP Attack
	Tools
	UDP Flood Attack
	Evaluation of Attacks

	Mitigation and prevention
	MAC Flooding Attack
	Double-Encapsulated/Nested VLAN Attack
	ARP Attack
	UDP Flood Attack

	Migration process
	Conclusion
	Further research

