
ElectroMagnetic

Fault Injection

Characterization

on ARM Cortex-A9

George Thessalonikefs

George.Thessalonikefs@os3.nl

University of Amsterdam

February 5, 2014

Introduction

Hardware Fault Injection

Induce faults to hardware through side channels:

 Clock

 Power supply

 Electromagnetic radiation

 Light

 Temperature

Goals

 Change behavior

 Change data

2

ElectroMagnetic Fault Injection

3

For inducing a significant voltage spike, distance d < D

Source: Riscure

EMFI vs VCC & Optical FI

No preparation needed for the target

VCC FI : Need to work with capacitors to glitch

the core voltage line

Optical FI : Decapsulation of the chip

Countermeasures for:

VCC FI: Glitch sensors

Optical FI: Light sensors

4

Picture:

Decapsulated chip

EMFI in action

http://www.youtube.com/watch?v=dew0KD_-ypw
5

Research question

6

What are the effects of ElectroMagnetic

Fault Injection (EMFI) on embedded chips?

Setup

7

Setup

8

Target

Wandboard

SOLO

Freescale i.MX6 Solo Processor

Using an ARM Cortex-A9 Single Core

Specifications:

• 32-bit processor

• ARMv7 architecture based on RISC

• Clock speed of 792 MHz:

 1,26 ns/cycle

• Pipeline

• Dual-issue superscalar

• Out-of-order

• Speculative execution

• 8-stage

9

Dual-issue superscalar Pipeline

Example:

10

http://en.wikipedia.org/wiki/File:Superscalarpipeline.svg

IF: Instruction Fetch

ID: Instruction Decode

EX: Execute

MEM: Memory access

WB: Write Back

ARM Cortex-A9 Pipeline

11

http://www.arm.com/images/A9-Pipeline-hres.jpg

Code instrumentation

Initialize registers to known values

Trigger ON

Critical area code

Trigger OFF

Print results

Code was written in ARM assembly to avoid

C compiler’s optimization

12

Critical area code

R0 initialized to 0xFFFFFFFF

R1 initialized to 0x00000001

Unrolled loop of 32 pairs of instructions:

Logical operation

Shift R1 1-bit to the left

Logical operations:

BIC (BIt Clear)

EOR (Exclusive OR)

13

Visualization of fault injection

14

Blue line: Trigger signal

Red line: Coil current

Correct Output

BIC version
R0: 00000000 R1: 80000000 R2: FFFFFFFF R3: 020B4000

R4: A54444A5 R5: A55555A5 R6: A56666A5 …….

EOR version
R0: 00000000 R1: 80000000 R2: FFFFFFFF R3: 020B4000

R4: A54444A5 R5: A55555A5 R6: A56666A5 …….

15

Full chip detailed scan

16

Die detailed scan

17

Glitches with desired results

18

Glitch results

Logical operation not executed

Suspects:
 Instruction Fetch

 Instruction Execution

Write back

Expected result:

 R0: 00000000 R1: 80000000

Glitched result:

 R0: 00000001 R1: 80000000
 19

Glitch results

Logical shift not executed

Suspects:
 Instruction Fetch

 Instruction Execution

Write back

Expected result:

 R0: 00000000 R1: 80000000

Glitched result:

 R0: 80000000 R1: 40000000

 20

Glitch results

Logical operation and Logical shift not executed

Suspects:
 Instruction Fetch

 Instruction Execution

Write back

Expected result:

 R0: 00000000 R1: 80000000

Glitched result:

 R0: 80000001 R1: 40000000
21

Glitch results

Data abort exception due to unaligned

access

Suspects:

PC register glitched

Stack corrupted

22

Glitch results

Prefetch abort exception due to non-existing

memory regions

Suspects:

PC register glitched

Stack corrupted

23

Conclusion

Edges of the chip more sensitive than the top of

the die

No unused register corruptions

Difficult to constantly have the same results with

EMFI

24

Future work

Comparison of full area scans of the package

between ALU and memory instructions

Research the impact of EMFI on jump

commands

25

Thank you

Questions?

26

