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Introduction 

 

Hardware Fault Injection 

Induce faults to hardware through side channels: 

 Clock 

 Power supply 

 Electromagnetic radiation 

 Light 

 Temperature 

 

Goals 

 Change behavior 

 Change data 
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ElectroMagnetic Fault Injection 
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For inducing a significant voltage spike, distance d < D 

Source: Riscure 



EMFI vs VCC & Optical FI 

 

No preparation needed for the target 

VCC FI : Need to work with capacitors to glitch 

the core voltage line 

Optical FI : Decapsulation of the chip 

 

Countermeasures for: 

VCC FI: Glitch sensors 

Optical FI: Light sensors 
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Picture: 

Decapsulated chip 



EMFI in action 

http://www.youtube.com/watch?v=dew0KD_-ypw 
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Research question 
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What are the effects of ElectroMagnetic 

Fault Injection (EMFI) on embedded chips? 



Setup 
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Setup 
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Target 

Wandboard 

SOLO 

Freescale i.MX6 Solo Processor 

Using an ARM Cortex-A9 Single Core 

Specifications: 

• 32-bit processor 

• ARMv7 architecture based on RISC 

• Clock speed of  792 MHz: 

   1,26 ns/cycle 

•  Pipeline 

• Dual-issue superscalar 

• Out-of-order 

• Speculative execution 

• 8-stage 
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Dual-issue superscalar Pipeline 

Example: 
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http://en.wikipedia.org/wiki/File:Superscalarpipeline.svg 

IF: Instruction Fetch 

ID: Instruction Decode 

EX: Execute 

MEM: Memory access 

WB: Write Back 



ARM Cortex-A9 Pipeline 
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http://www.arm.com/images/A9-Pipeline-hres.jpg 



Code instrumentation 

Initialize registers to known values 

Trigger ON 

Critical area code 

Trigger OFF 

Print results 

 

 

Code was written in ARM assembly to avoid 

C compiler’s optimization 
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Critical area code 

R0 initialized to 0xFFFFFFFF 

R1 initialized to 0x00000001 

Unrolled loop of 32 pairs of instructions: 

Logical operation 

Shift R1 1-bit to the left 

 

Logical operations: 

BIC (BIt Clear) 

EOR (Exclusive OR) 
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Visualization of fault injection 
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Blue line: Trigger signal 

Red  line: Coil current 



Correct Output 

BIC version 
R0: 00000000    R1: 80000000    R2: FFFFFFFF    R3: 020B4000 

R4: A54444A5   R5: A55555A5    R6: A56666A5  ……. 

 

 

EOR version 
R0: 00000000    R1: 80000000    R2: FFFFFFFF    R3: 020B4000 

R4: A54444A5   R5: A55555A5    R6: A56666A5  ……. 
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Full chip detailed scan 
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Die detailed scan 
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Glitches with desired results 
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Glitch results 

Logical operation not executed 

 

Suspects: 
 Instruction Fetch 

 Instruction Execution 

Write back 

 

Expected result: 

 R0: 00000000    R1: 80000000 

Glitched result: 

 R0: 00000001    R1: 80000000 
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Glitch results 

Logical shift not executed 

 

Suspects: 
 Instruction Fetch 

 Instruction Execution 

Write back 

 

Expected result: 

 R0: 00000000    R1: 80000000 

Glitched result: 

 R0: 80000000    R1: 40000000 
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Glitch results 

Logical operation and Logical shift not executed 

 

Suspects: 
 Instruction Fetch 

 Instruction Execution 

Write back 

 

Expected result: 

 R0: 00000000    R1: 80000000 

Glitched result: 

 R0: 80000001    R1: 40000000 
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Glitch results 

Data abort exception due to unaligned 

access 

 

Suspects: 

PC register glitched 

Stack corrupted 
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Glitch results 

Prefetch abort exception due to non-existing 

memory regions 

 

Suspects: 

PC register glitched 

Stack corrupted 
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Conclusion 

Edges of the chip more sensitive than the top of 

the die 

 

No unused register corruptions 

 

Difficult to constantly have the same results with 

EMFI 
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Future work 

Comparison of full area scans of the package 

between ALU and memory instructions 

 

Research the impact of EMFI on jump 

commands 
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Thank you 

Questions? 
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