NetFlow Analysis: Detecting covert channels on the network

Detecting malicious traffic by using NetFlow data
By: Joey Dreijer, Student OS3

5-07-14 1

NetFlow Analysis: Detecting covert channels on the network

Gathering NetFlow data

= Router/Switch sends flow stats to external collector
= Collector receives and stores flow details
= Parser/interface reads flow from collector dump

NetFlow
packet(s)
Switch /

Router :’> Collector

Read NetFlow
dumps

Traffic generated by Console
hosts

Joey Dreijer, student OS3/UvA 5-07-14 2

NetFlow Analysis: Detecting covert channels on the network

NetFlow In short

= NetFlow data not just a 'term'
= NetFlow (v9) specified in RFC3954
= NetFlow commonly used from v5 and up

= NetFlow standardized to sent 'flow' characteristics

= Stats such as bytes, packet number, port, session timer
Implemented in different (multi-vendor) routers/switches
Does not include packet content
Request and response two different flows
Often used for network performance measurement

Joey Dreijer, student OS3/UvA 5-07-14 3

NetFlow Analysis: Detecting covert channels on the network

Data required for research

= NetFlow collector stored the following details (using v5):

= Source Address * (TCP Flags)

» Destination Address ~ * Bytes send

= Source Port = Packets send

= Destination Port = Time
Date flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Packets Bytes Flows
2014-06-30 19:45:39.253 116.103 TCP 10.0.2.15:50494 -> 62.69.166.15:80 46 6442 1
2014-06-30 19:45:39.253 116.103 TCP 62.69.166.15:80 > 10.0.2.15:50494 47 42669 1
2014-06-30 19:45:39.375 115.985 TCP 10.0.2.15:33675 -> 74.125.136.594:80 8 1142 1
2014-06-30 19:45:39.375 115.985 TCP 74.125.136.54:80 > 10.0.2.15:33675 7 640 1
2014-06-30 19:45:39.395 115.961 TCP 10.0.2.15:46931 -> 62.69.166.18:80 11 2230 1

Note: NetFlow v5 is dinosaur old. Use v9 or
IPFIX instead for more stats.

Joey Dreijer, student OS3/UvA 5-07-14 4

NetFlow Analysis: Detecting covert channels on the network

Data required for research

= Combining request/response to get the following data:

Source Address
Destination Address
Source Port
Destination Port
(TCP Flags)

Bytes Incoming
Bytes outgoing
Packets incoming
Packets outgoing
Average session time

Date flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Out Pkt In Pkt Out Byte In Byte Flows
2014-06-30 19:45:39.395 115.961 TCP 10.0.2.15:46931 <-= 62.69.166.18:80 10 11 2550 2230 2
2014-06-30 19:45:39.375 115.985 TCP 10.0.2.15:33675 <-=> 74.125.136.94:80 7 8 640 1142 2
2014-06-30 19:45:39.396 115.961 TCP 10.0.2.15:46932 <-> 62.69.166.18:80 7 8 712 1517 2

Joey Dreijer, student OS3/UvA 5-07-14 5

NetFlow Analysis: Detecting covert channels on the network

Collecting NetFlow data

= SoftFlowd sends NetFlow data to collector (nfcapd). Optional:
Pcap or Interface as input

= NetFlow data stored in binary format

= Format parsed by Python wrapper and nfdump (custom
patched pynfdump_altered)

Converter Collector and Analysis

PCAP A NetFlow
) e S

| 1

SoftFlowd =~ Nfcapd

Joey Dreijer, student OS3/UvA 5-07-14 6

NetFlow Analysis: Detecting covert channels on the network

Initial protocol analysis

= Gathering 'known-good' traffic

= Generating 'known-bad' traffic
= Comparing differences / similarities
= Storing usefull comparison data

" n Bytes | Database
containing:
Out Bytes
For each: y Max/min
Dst. Port =) | In Packets mw) values

Out Packets Averages
Avg Time Standard

. . Deviation

Joey Dreijer, student OS3/UvA 5-07-14 7

NetFlow Analysis: Detecting covert channels on the network

Comparing NetFlow data

= Traffic analysis; comparing 'real-time' binary (nfdump) vs
stored (MySQL)

= 'Anomaly detection' based on selected metrics/profile
= Maximum range via standard deviation
= Note: Only if possible. Not all traffic can be normalized

Metrics

Database

NetFlow
. Dump

Joey Dreijer, student OS3/UvA 5-07-14

—
Statistics ==

8

NetFlow Analysis: Detecting covert channels on the network

Detecting Tunnels | Covert Channels

450

400}

350}

%) W

un (=)

o o
T

)
[=]
o

Number of flows

1501

Example 1: DNS Tunnels

DNS may have 'normal behaviour'
Tunneling via DNS abnormal statistics based on metric x?
Verify differentation per metric

Port: 53
Incoming

sending data yet

'Starting' DNS Tunnel. Not -

of flows

Number

4 6 8 10

Joey Dreijer, student OS3/UvA

12 14

Compared to +- 2 million
DNS Flows

00000000

00000000

0000000

5-07-14

NetFlow Analysis: Detecting covert channels on the network

Detecting Tunnels | Covert Channels

= Previous examples
done via anomaly
detection

= Known-good

database used as
reference ﬂ

* Pre-defined profile
(le. alert only if anomaly = (max difference * standard
packets and time deviation) + average
mismatch by x)

etc

If anomaly is larger than current flow:
If packetAnomaly and timeAnomaly:
Generate Alert

Joey Dreijer, student OS3/UvA 5-07-14 10

NetFlow Analysis: Detecting covert channels on the network

Detecting Tunnels | Covert Channels

Why are multiple metrics important? (and/and policy)

= NetFlow parser shows incorrect flows with much
traffic

= True automated anomaly detection shows many FP's

= Example:
10.10.0.2:50001 - 8.8.8.8:53
Packets: 4, time: 4001 seconds (....?)

= Actually 2 DNS requests on different times

= However, identical source port and destination lets
'nfdump’ think it is the same flow —> results in False
Positive

Joey Dreijer, student OS3/UvA 5-07-14 11

NetFlow Analysis: Detecting covert channels on the network

Detecting Tunnels | Covert Channels

= Comparing with realistic dataset

= 17 million flows from GuestNet
= Literal flow dump, can contain 'malicious’ flows
= Both bad and good traffic?

= 2 million DNS responses
= Results in 0,0005% hits based on combined metrics

= Includes previous 'bug’ with multiple sessions
combined due to identical ports and destinations

= Uncertain if actual tunnels inside dump

Joey Dreijer, student OS3/UvA 5-07-14 12

NetFlow Analysis: Detecting covert channels on the network

Other uses

Example 2: NMAP Scan
Aggregated NetFlow shows requests and response
NetFlow shows flow with no responses for filtered ports

Probability 'x' amount of ports do not reply within 'y' amount
of time based on 'z' amount of retries/packets

2014-07-01 12:42:33.146 0.000 TCP 10.0.2.15:57693 <-> 145.100.104.55:3000 0 1 0 60 1
2014-07-01 12:42:31.408 0.000 TCP 10.0.2.15:36016 <-> 145.100.104.55:9595 0 1 0 60 1
2014-07-01 12:42:33.222 0.000 TCP 10.0.2.15:57954 <-> 145.100.104.55:33 e 1 8 60 1
2014-07-01 12:42:32.474 0.000 TCP 10.0.2.15:57230 <-> 145.100.104.55:1248 e 1 8 60 1
2014-07-01 12:42:30.242 0.000 TCP 10.0.2.15:39538 <-> 145.100.104.55:1655 e 1 8 60 1
2014-07-01 12:42:33.220 0.000 TCP 10.0.2.15:60249 <-> 145.100.104.55:1075 0 1 8 60 1
2014-07-01 12:42:32.207 0.000 TCP 10.0.2.15:39512 <-> 145.100.104.55:1044 0 1 0 60 1
2014-67-01 12:42:32.763 0.000 TCP 10.0.2.15:59968 <-> 145,100.104.55:255 0 1 0 60 1

Joey Dreijer, student OS3/UvA 5-07-14 13

NetFlow Analysis: Detecting covert channels on the network

Other uses

= Small problem with portscans....

= Nfcapd holds a default 5 minute NetFlow cache

= Not all flows stored after cache timer
= Waits for finished sessions before storing flow
= Half open TCP sessions will be cached untill timeout
= Timeout can last 20 minutes depending on config

Joey Dreijer, student OS3/UvA 5-07-14 14

NetFlow Analysis: Detecting covert channels on the network

DEMO

Joey Dreijer, student OS3/UvA 5-07-14 15

NetFlow Analysis: Detecting covert channels on the network

Conclusion

= NetFlow only sends limited amount of information
= Does not say anything about packet contents

= Fairly easy to detect 'well-know' and publicly available
tunnels and scans

= Covert Channels / tunnels always possible; attacker has all
the time in the world.

= Craft pingtunnel to send fixed size packets every second to
conform the 'default’ behaviour.

Joey Dreijer, student OS3/UvA 5-07-14 16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

