
NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

NetFlow Anomaly Detection; �nding
covert channels on the network

Joey Dreijer, student System and

Network Engineering

Abstract: The research focusses on detecting (well-known) Covert Channels and
tunneling software by using NetFlow(v5) data. The research-data originates from
generated known-good, known-bad and corporate Shell network �ows. Based on
the known-good and known-bad comparison, a possible anomaly detection based on
pro�les proof of concept was developed. The tunneling software being used during
this research showed di�erent behaviour compared to normalized data belonging to
the used protocol(s). By using multiple metrics and variables originating from the
NetFlow �elds, abnormal behaviour could be detected and potential false-positives
were able to be �ltered.

Keywords: NetFlow, Covert Channels, Tunneling, Anomalies, OS3, SNE

1. Introduction

NetFlow is a standardized format (commonly used
by Cisco) to gather/sent network �ow data. Net-
Flow services give network administrators insight
in the current network operation. The NetFlow
[8] [1] standard is used in di�erent multi-vendor
switches and routers. NetFlow data can be used to
monitoring the e�ciency of the network, but can
also be used for network security analysis. Di�erent
proprietary tooling exists to analyse NetFlow data
for security purposes. An important sidenote is that
NetFlow version 5 (used during this research) does
not contain any details regarding packet content.
Some example metrics that NetFlow provides are
bytes sent, amount of packets sent and source/des-
tination addresses. This data will be used to detect
possible covert channels / tunnels. This research
will focus on detecting covert channels by using the
limited data the NetFlow v5 standard supplies.

The primary research question is stated as follows::

Can Covert Channels be detected by purely

using NetFlow (v5) data?

1. What NetFlow(v5) metrics can be used for

Covert Channel detection?

2. How can the researched detection method
be implemented in an operational detection
scheme?

1.1. Supervision and dataset

The research was performed at the Shell Cyber Cen-
tre (Rijswijk, the Netherlands). Shell uses several
di�erent monitoring platforms to analyse security
threats. The data being analyzed also includes net-
work �ow data from di�erent segments within the
Shell network. Shell was able to provide a dataset
originating from di�erent un-managed (Guest Net-
work) devices that have an active internet con-
nection available. The data being used during
the research mainly includes self-generated known-
good and known-bad data, where Shell's provided
dataset will be used as reference.

1.2. Ethical considerations

The NetFlow data being used during the research
have the possibility to relate network �ows to a
speci�c user on the network. The data includes
timestamps and destination/source addresses that

University of Amsterdam Page 1 of 11

NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

may provide user-behaviour statistics. User-speci�c
data has not been included in this report. Concrete
examples described have been stripped of any per-
sonlized information.

1.3. Related work

NetFlow security monitoring has been done in the
past. However, the research topics mostly related
to malware detection and 'generic' security analysis
and monitoring. Research done by van Dijkhuisen
and Romao [9] demonstrate a concept to detect
DDoS attacks via NetFlow anomaly detection. Re-
search done by Pao (et al) and Wei [3] show how
'abnormal' tra�c can be e�ciently detected.

2. Background; the Net�ow standard

The term 'NetFlow' speci�es a standard to e�ec-
tively collect and send network (IP-based) tra�c
statistics. NetFlow was originally developed by
Cisco for their routing equipment, but was stan-
dardized by the IETF since version 9 of the pro-
tocol. Using NetFlow, at least 2 di�erent roles are
required to analyse NetFlow data:

1. An exporter (ex. a switch or router)

2. A collector (ex. server)

An exporter is a networking device that sends Net-
Flow packets (ie. the statistics) to a receiving
server (ie. the collector). The collector parses the
NetFlow packets and stores them on either disk
or database. Typically, a network administrator
would con�gure a framework and/or interface to
read the NetFlow data stored on the collector. An
administrator would typically select a 'sample-rate'
to determine the amount of NetFlow samples sent
to a collector. For this research, no sampling was
used on speci�c protocols. Sampling will introduce
di�erent results for detection, this will be discussed
later.

An important factor is that NetFlow data works
with Flows and not Packets. The exporter sends
out NetFlow data for every (or ratio according to
sampling) network �ow passing through the device.
A network �ow consists out of the following char-
acteristics:

• A �nished TCP session (shut down by FIN).

• Inactive tra�c exceeding a speci�ed timeout

• Active but continuous tra�c exceeding a
speci�ed timeout

Since UDP tra�c does not make use of session
states (while TCP does), a single UDP �ow will be
based on the timer and source/destination (port)
addresses. By default, a �ow is considered one-way
tra�c. The request and response and considered
two di�erent �ows. Samples and parsed NetFlow
data will not say anything about the packet con-
tent, but does provide a summary of the amount
of packets and packet sizes. Since NetFlow has
been standardized, other network hardware ven-
dors make use of the NetFlow standard to analyse
tra�c statistics. Both version 5 and version 9 of
the NetFlow speci�cation can often be found on
switches or routers. NetFlow version 5 is a static
speci�cation, meaning that all of the gathered data
has to be send in one speci�c format in the follow-
ing order and size:

University of Amsterdam Page 2 of 11

NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

B Name Description

4 srcaddr Source IP
4 dstaddr Destination IP
4 nexthop IP address of next-hop
4 input and output SNMP index
4 dPkts Packets in �ow
4 dOcters Bytes in �ow
4 First Time start of �ow
4 Last Time stop of �ow
2 srcport Source port
2 dstport Dstination port
2 pad1, tcp�ags TCP �ags
1 prot Protocol type
1 tos Type of service (ToS)
2 srcas, dstas AS Source and dest.
1 srcmask, dstmask Mask bits
1 pad2 Padding unused
An open-source collector and parser such as Nf-

capd/Nfdump [10] (by Ntop) is able to store these
NetFlow packets in a binary format which can be
analysed later on. Based on the basic NetFlow 5
speci�cation, the Nfdump parser will be able to
display data that looks like the format below:

" Sta r t Time" ,"End Time" ," Duration " ,
" Source Address " ," Source App . " ,
"Dest . Address " ," Dest . App . " ,
" In I n t e r f a c e " ,"Out I n t e r f a c e " ,
"TCP f l a g s " ," Packets " , " S i z e "
−−−−
1402704099267 ,1402704099267 ,
0 , "208 .67 . 220 .220" ,"53/UDP (domain)" ,
"10 .141 .174 .7" ,"54817/UDP" ,
"GigabitEthernet1 /1" ," Tunnel3 " , " . . . " ,
133 , ,1 ,

The NetFlow v5 �elds that are relevant for (inter-
net) anomaly detection are the source/destination
addresses, source/destination ports, the start/stop
time of �ows, the packets in �ows and protocol type.
The remainder of the NetFlow metrics will not be
used, since only data being sent over the 'inter-
net' is included in this research. The NetFlow 9
standard makes use of user-de�ned template. This
means that NetFlow 9 can include any form of data,
as long as it's supported by the vendor. However,

NetFlow 9 is not used during this research.

3. Detecting the covert channels

An important assumption is that leaking data out
of the network via a Covert Channel is 'always' pos-
sible. Sending data via covert channel can be done
by using many di�erent protocols, but only a few
are actively used and available to the public. A few
of these covert channels are even available in stan-
dard Linux repositories (such as iodine [12], ptunnel
[5] that were used during this research). The follow-
ing sections will describe what tools and methods
have been used to detect some of the popular covert
channels.

3.1. Tooling

3.1.1. Collecting NetFlow data

The Nfcapd [10] was used to collect and read Net-
Flow data. Shell provided a CSV with network
�ow statistics, but were (unfortunately) not suit-
able for detection since several �ow metrics were
not stored. However, the Shell �ow dump was
used for backwards-reference and comparison. For
this research, known-good and known-bad tra�c
was created using a company (with policies) laptop
that generated mail (imap/smtp) web (http/https),
tunnel (openVPN and IPsec) SSH, DNS and SMB
tra�c. This data was purely used to see how 'nor-
mal' (non-malicious) protocol statistics look like.
Afterwards, covert channels and network scans
were performed to compare the 'malicious' �ows
with the known-good dataset gathered earlier.

The soft�owd [7] package was used to generate
NetFlow data. Soft�owd is able to take a pcap
or network interface as input variable and send
NetFlow data to a collector.

University of Amsterdam Page 3 of 11

NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

Figure 1: Collecting and storing NetFlow

When the NetFlow data (by soft�owd) was sent
over the network, the nfcapd daemon stored the in-
formation in binary format. This binary format can
be read by nfdump, a tool automatically installed
when nfcapd is used. Ntop designed their own bi-
nary standard for storing NetFlow data. Research
done by the University of Twente [4] shows that the
binary standard and nfdump tool are able to index
and search speci�c data more e�ciently compared
to a MySQL [11] database (as example). Based
on this conclusion, NetFlow data will be read from
the binary format during this research. However,
a MySQL database will also be used to compare
'live' NetFlow dumps with stored known-good pro-
tocol statistics.

3.1.2. Parsing NetFlow data

Di�erent tooling was required to parse and anal-
yse the NetFlow dumps. A Python module called
Pynfdump [2] exists inside the PyPi repositories
on Python.org. Pynfdump is used as a wrapper
for Nfdump to read the collected NetFlow dumps.
However, the wrapper does not support the bi-
directional format that Nfdump supports itself.
The default NetFlow format looks as follows (also
when read by pynfdump):

• Source Address

• Destination Address

• Source Port

• Destination port

• Bytes sent

• Packets sent

• Time

During this research, anomaly detection will be
based on both responses and requests. Nfdump
supports the option to merge the requests and re-
sponses (using a simplistic source/destination com-
parison). Combining the response and requests will
display the following additional data:

• Bytes received

• Bytes sent

• Packets sent

• Packets received

• Flow time

The o�cial Python wrapper does not support the
previously mentioned bi-directional format. A cus-
tom patch was made that enables users to pro-
vide the "multi�ow=True" variable when calling
the pynfdump.read() function. Supplying this vari-
able will return a dictionary with the bidirectional
�ows.

#!/ usr / bin /env python
. . .
readIn = pynfdump .Dumper(nfLocat ion ,

s ou r c e s=SourceL i s t)

readIn . set_where (s t a r t ="2014−06−30
10 :00")

e n t r i e s = ReadIn . search (' ' ,
mu l t i f l ow=True)

. . .

University of Amsterdam Page 4 of 11

NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

3.2. Methods

Previous research done by van Dijk [9] (et al),
demonstrated a working concept of anomaly detec-
tion with NetFlow data. Based on this research,
a similar aproach was researched used to identify
possible covert channels. To perform anomaly de-
tection, di�erent NetFlow samples had to be used.
These were:

1. Known-good

2. Known-bad

3. Flow-dump

The known-good consists out of tra�c generated
by a freshly installed Linux-based virtual machine.
This virtual machine generates tra�c that consists
out of generic browsing, mail tra�c, ssh tra�c
and VPN tra�c. These samples do not contain
any tunneled/covert channel tra�c. The known-
bad sample contains both generic tra�c and known
tunnelled tra�c. And �nally, a �ow-dump provided
by Shell was used for reference and test set.

The generated known-good NetFlow dumps were
stored inside a MySQL database. For each unique
destination port, metrics such as averages and stan-
dard deviations were calculated. This was done for
each NetFlow �eld returned by the parser (such
as bytes, packets etc). Whenever a speci�c Net-
Flow metric can be distributed via standard devia-
tion, possible anomalies can be detected. The data
stored looks like the example below:

Port Packets Out Bytes Out Time ...

53 Avg: 1.5 Avg: 60 Avg: 0.242 ...
Std: 0.5 Std: 30 Std: 0.101 ...

When the 'known-good' data was stored inside the

database, each new �ow will be compared to the
stored averages and deviations. Basic anomalies
can be de�ned according to the rules of default dis-
tribution: Whenever a metric such as the amount of
outgoing packets is higher than (3*Std) + Avg, the
sample belongs to the 0.1% of the outliers. How-
ever, 0.1% of a million �ows is still a large number.

This may detect anomalies, but won't provide con-
crete alerting for covert channel detection. Doing
anomaly detection purely based on the default dis-
tribution rules will result in a high false-positive
rate. Only using the default distribution rules is
not the only problem, another issue occurs when
reporting anomalies based on a single metric.

The NetFlow parser used during this research (Nf-
dump) tries to correlate average session times for
network �ows. The collector stored the dumps ev-
ery 5 minutes. A simple DNS requests will take
around 0,2 seconds to get a valid reply. If by pure
coincidence another DNS request occurs while us-
ing the same source/destination values, the Nfdump
parser assumes that these two requests are part of
the same �ow. If each DNS �ow would send 2 pack-
ets. Nfdump will display a single �ow consisting
out of 4 outgoing packets with an average session
time of (time of �rst request) + (time of second
request). Depending on the interval when Nfdump
stores the NetFlow data, a single �ow could look
like the below example:

Source:10.10.0.2:50001 - Destination:8.8.8.8:53
Packets: 4, Time: 4001 seconds

This �ow may actually consists out of two DNS
requests each only lasting 0,2 seconds and sending
2 packets each. When performing anomaly detec-
tion only based on the 'time' metric (as example),
alerts would have been generated and resulting in
false-positives.

A proposed detection method is by manually cre-
ating pro�les and maximum o�sets for each unique
protocol to be analyzed.

University of Amsterdam Page 5 of 11

NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

The image shown above demonstrates a brief exam-
ple how the proof-of-concept detection works. By
combining multiple metrics possible false-positives
can be limited. An NetFlow analist would specify
that a violation of both the time and packet num-
ber exceeds the allowed width of the standard devi-
ation (using the Std) should result in an alert. The
code snippet below demonstrates how an anomaly
(based on a single metric) is detected. The example
fetches the average, standard deviation and allowed
'anomaly size' (ie. width of standard deviation)
from the MySQL database that holds the known-
good data for each unique protocol. If the 'allowe-
dRange' value is larger (or smaller, not applicable
in this case) than the current protocol statistics, an
alert is generated.

#!/ usr / bin /env python
. . .
i f s t r (r e s u l tMe t r i c [2]) == "packets_out " :
maxDiff = f l o a t (r e s u l tMe t r i c [3])
avgPackOut = f l o a t (resu l tAvg [1 1])
medPackOut = f l o a t (resu l tAvg [2 6])
allowedRange = (maxDiff ∗ medPackOut)

+ avgPackOut

i f f l o a t (entry [' out_packets ']) > aRange :
genAlert (data , metr ic)

. . .

The next section will demonstrate how this example
can be used to detect DNS and ICMP tunnels.

3.3. Examples; DNS and ICMP

The known-good and known-bad tra�c used dur-
ing the research contains valid and tunnelled DNS
requests. To apply anomaly detection based on the
methods explained in the previous sub-section, spe-
ci�c NetFlow metrics will have to be chosen that
contain a 'most' commonly used value. A clear
example of a NetFlow metric that can be used is
the outgoing/incoming packet amount for DNS and
ICMP.

Figure 2 shows personal known-good and known-
bad DNS requests displayed in a histogram. In
this dataset, the majority of each 'DNS' �ow uses
2 incoming packets to fully complete the request.
A smaller amount uses 1 single packet and even
less for the other numbers. It is important that a
clear majority and minority of �ows can be seen
per metric to create a proper histogram. After
generating the known-good tra�c, a DNS tunnel
was started. The red arrow on the graph shows the
amount of packets the tunnel required to initialize
the connection (the blue bar isn't visible). Around
14 packets are sent out in a single DNS �ow with-
out any user-data actually being transferred. If the
user starts using the tunnel, the amount of packets
and session time in a single DNS �ow will start to
increase.

Figure 2: Packet for most common packet count (in
whole packets)

University of Amsterdam Page 6 of 11

NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

Figure 3: Nfdump displaying ICMP tra�c

Figure 3 shows the distribution of total session
times for a DNS request. The time includes the
total �ow length combining both the request and
response. The histogram rounds the session timers
to 0,10 seconds. Most of the DNS �ows take be-
tween 0,0-0,10 seconds to complete. The DNS
tunnel was inactive during the time of use and is
displayed far outside (to the right) the histogram
shown above.The combination of longer session
time and amount of packets sent may indicate an
anomaly compared to the normalized DNS tra�c
statistics stored earlier.

Figure 4: Packet for most common �ow times (per
0.10 seconds)

A similar aproach can be done via possible ICMP
tunnels. Statistics of ICMP tra�c can be moni-
tored for possible anomalies based on several di�er-

ent Metrics. However, having a low false-positive
rate depend on nature of the known-good tra�c
(same applies for DNS tunnels). Simple ping re-
quests can be very common at IT-departments to
check for uptime or test connectivity. When no
variables are altered, a ping is sent every second
with a �xed amount of bytes using a single ICMP
packet. Both the request and response should con-
tain (somewhat) identical data.

'True' automized anomaly detection is very di�cult
to perform due to the dynamic nature of networks.
The sample (reference) data received from Shell
contains 2 million DNS requests. When performing
a query that checks for DNS �ows with more than
12 packets outgoing in a single �ow (the aprox.
amount required to set up a tunnel), 0,0005% of
the two million records came back as a possible
alert. However, the �ow time was quite long as well
(several minutes, even tens of minutes). The exact
nature is still unknown, since it is not known if the
tra�c was 'bad' or not. The question still remains
if these 'anomalies' are the cause of a �ow-parsing
bug (as explained on page 5) or if a long-lasting
DNS �ow was legitimately performed.

3.4. Examples; Other uses

Using NetFlow data can also be used to detect other
types of malicious tra�c; such as DDoS attacks
or portscans. Both portscans and (tra�c-based)
DDoS attacks can be detected by means of anomaly
detection. Alerts can be generated whenever a large

University of Amsterdam Page 7 of 11

NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

amount of tra�c is detected to many unique (previ-
ously un-used) ports or when an 'abnormal' amount
of tra�c is detected to an active service. However,
in the case of portscans another detection method
can be implemented. Whenever an attacker at-
tempts to detect open ports on a system with a
�ltering �rewall, the bi-directional NetFlow dump
will display non-responsive requests as seen in Fig-
ure 5. Note: As explained in the 'Background'

section, the NetFlow collector being used tries to
wait for �nished or timed-out TCP sessions. When
performing a half-open portscan (only checking if
a SYN is received), the actual portscan �ows will
be stored when the time-out expires. This means
realtime portscan detection is not possible with the
con�guration used during this research. During this
research, the portscan was seen 20 minutes later.

Figure 5: NetFlow dump snippet of a portscan

4. Conclusion

Is it possibe to detect Covert Channels via

NetFlow (v5) data?

It is indeed possible to detect some of the popu-
lar covert channel / tunnelling packages available.
However, NetFlow v5 only provides limited data
and detection purely relies on �ow metrics. If a
malicious user manages to craft a covert channel
that 'behaves' (ie. taking time and packet numbers
into account), it will be much harder to detect.

What metrics can be used to detect Covert

Channels?

The two examples mentioned in this report make
use of the packet numbers and session time. Of
the two examples mentioned, DNS is the most
variable protocol; packet sizes and count di�er fre-
quently depending on the DNS requests. Abnormal
ping behaviour could possibly be easier to detect.
On all modern platforms (Windows/Linux/Mac)
a standard ping is sent out with an interval of a
single second per packet. In some cases, the ex-

act amount of bytes stay the same. In short; to
detect tunnels via these non-http protocols, the
time/session length metric is most important, since
the amount of packets and bytes sent in relation to
the total time may indicate possible tunnel activity.

Can these detection methods be imple-

mented in a function monitoring scheme?

Proprietary tooling already exists to detect abnor-
mal activity on the network. ArcSight is able to
analyse NetFlow for possible malicious behaviour.
However, anomaly detection can be seen in it's
broadest form; detecting sudden peaks in tra�c,
machines not receiving tra�c at all, (D)DoS at-
tacks etc. For this research a proof-of-concept de-
tection tool was developed. The proof-of-concept
compares known-good example data with recent
network �ows received by a NetFlow collector. For
each unique protocol, di�erent metrics were se-
lected that are analysed for anomalies. Whenever
all these metrics (ex. both time and packets) exceed
the allowed border value compared to the known-

University of Amsterdam Page 8 of 11

NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

good, an alert is raised. In practice, this method
is very di�cult to perform. The PoC assumes that
the �ows are not sampled (as is often the case with
NetFlow). Limiting the amount sample rate may
introduce missed alerts. Next to that, depending
on the NetFlow collector and parser, false-positives
may be generated by aggregated �ows.

5. Future work

During this research, no NetFlow sampling was
used. Future research should test the e�ectivity
of similar detection methods when NetFlow sam-
pling is in place. Furthermore, many anomaly de-
tection tools are already available. FlowMatrix [6]
is one of the few open-source tools out there but
is very outdated (2010). Future research could test
the e�ectivity of other (proprietary) NetFlow anal-
ysis tools and see if they can detect popular covert
channels without verifying packet content or using
static signatures. Furthermore, the Shell sample-
data used during this research was not veri�ed (ie.
know whether malicious tra�c took place or not)
and the known-good and known-bad data was gen-
erated based on limited network tra�c. Future re-
search could implement similar detection methods
on a larger (and veri�ed) dataset.

University of Amsterdam Page 9 of 11

NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

6. Annex

6.1. Proof-of-concept

To e�ectively test the dataset, a proof-of-concept
web-interface was developed. The web-interface
makes use of the functionality as explained in the

anomaly detection section. The statistics page
shows the averages, standard deviations and vari-
able width of deviation for each unique protocol. A
combination of multiple metrics (for alerting) can
be selected here.

Figure 6: Screenshot of statistic page

Whenever an anomaly is detected based on the val-
ues seen in the statistics page, the Python module

would push an alert to the database.

Figure 7: Screenshot of alerts page

University of Amsterdam Page 10 of 11

NetFlow Anomaly Detection; �nding covert channels on the network Research Project 1

References

[1] Various authors. Net�ow. http://en.

wikipedia.org/wiki/NetFlow, 2014.

[2] Justin Azo�. Net�ow based intrusion de-
tection system. https://pythonhosted.org/

pynfdump/, 2009.

[3] Pao et al. Net�ow based intrusion detection
system. http://ieeexplore.ieee.org/xpl/

login.jsp?tp=&arnumber=1297037, 2004.

[4] Rick Hofstede. The network data
handling war: Mysql vs. nfdump.
http://eprints.eemcs.utwente.nl/18060/

01/fulltext-1.pdf.

[5] Kryo. iodine dns tunnel. http://code.kryo.
se/iodine/.

[6] AKMA Labs. Flowmatrix; network behavior
analysis system. http://www.akmalabs.com/

home.php, 2010.

[7] Damien Miller. Soft�owd. http://www.

mindrot.org/projects/softflowd/, 2011.

[8] N/A. Net�ow v5 documentation. http://

netflowv5.com, 2014.

[9] Daniel Romao Niels van Dijkhuizen. Ddos de-
tection and alerting. http://delaat.net/rp/
2013-2014/p47/report.pdf, 2014.

[10] Ntop. Net�ow parser/collector. http://

nfdump.sourceforge.net, 2013.

[11] Oracle. Mysql server. http://www.mysql.com,
2014.

[12] Daniel Stodle. Ping tunnel. http://www.cs.

uit.no/~daniels/PingTunnel/, 2011.

University of Amsterdam Page 11 of 11

http://en.wikipedia.org/wiki/NetFlow
http://en.wikipedia.org/wiki/NetFlow
https://pythonhosted.org/pynfdump/
https://pythonhosted.org/pynfdump/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1297037
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1297037
http://eprints.eemcs.utwente.nl/18060/01/fulltext-1.pdf
http://eprints.eemcs.utwente.nl/18060/01/fulltext-1.pdf
http://code.kryo.se/iodine/
http://code.kryo.se/iodine/
http://www.akmalabs.com/home.php
http://www.akmalabs.com/home.php
http://www.mindrot.org/projects/softflowd/
http://www.mindrot.org/projects/softflowd/
http://netflowv5.com
http://netflowv5.com
http://delaat.net/rp/2013-2014/p47/report.pdf
http://delaat.net/rp/2013-2014/p47/report.pdf
http://nfdump.sourceforge.net
http://nfdump.sourceforge.net
http://www.mysql.com
http://www.cs.uit.no/~daniels/PingTunnel/
http://www.cs.uit.no/~daniels/PingTunnel/

	Introduction
	Supervision and dataset
	Ethical considerations
	Related work

	Background; the Netflow standard
	Detecting the covert channels
	Tooling
	Collecting NetFlow data
	Parsing NetFlow data

	Methods
	Examples; DNS and ICMP
	Examples; Other uses

	Conclusion
	Future work
	Annex
	Proof-of-concept

