Introduction	Approach	Results	Conclusion	Questions
0000	000			

Search Optimization for JPEG Quantization Tables

using a Decision Tree Learning Approach

Sharon Gieske 6167667

Supervisors: Zeno Geradts (NFI)

Master System and Network Engineering University of Amsterdam

2014-07-02

э

・ロン ・回と ・ヨン ・ ヨン

Introduction	Approach	Results	Conclusion	Questions
0000	000			

Table of Contents

Introduction

Motivation Decision tree learning algorithm Research Question

Approach

Overview Data Preprocessing and Training Evaluation

Results

Conclusion

Questions

3

・ロン ・回と ・ヨン ・ ヨン

Introduction •••••	Approach 000	Results	Conclusion	Questions
Motivation				

- Growing popularity for taking pictures
- Digital images often recovered in forensic investigations
- Identify origin of images to a specific camera or common source
- Large sets of images are retrieved

Camera Identification:

- Intrinsic features of camera hardware give more reliable results[2]
- Sensor Imperfections, CFA Interpolation, Image Features

ヘロン 人間 とくほ とくほう

Introduction O●○○	Approach 000	Results	Conclusion	Questions
Motivation				

JPEG quantization tables

JPEG compression:

- RGB to Luminance-Chrominance colour space
- Splitting into two 8×8 blocks
- ▶ Discrete Cosine Transform (spatial domain → frequency domain)
- Compression ratio
- Correlated to camera make/model

'..is reasonably effective at narrowing the source of an image to a single camera make and model or to a small set of possible cameras.'[1]

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Introduction ○○●○	Approach 000	Results	Conclusion	Questions
Decision tree learning algorithm				

Decision tree learning algorithm

Camera identification problem \rightarrow pattern recognition problem:

map feature set to corresponding label

Decision tree learning algorithm:

- Rule based, generates best splits
- Simple to interpret / human readable

Introduction	Approach 000	Results	Conclusion	Questions
Research Question				

Research Question

Can searching through JPEG quantization tables be optimized with the use of decision tree learning?

Subquestions:

- 1. Can identifiable parameters be found in JPEG quantization tables?
- 2. What is the performance of decision tree learning with JPEG quantization tables?

通 と く ヨ と く ヨ と

Introduction 0000	Approach ●○○	Results	Conclusion	Questions
Overview				

- 1. Extract quantization tables from images
- 2. Generate feature set
- 3. Train decision tree classifier (make/model)
- 4. Evaluate classifications
- 5. Compare against method using hash database

э

・ロン ・四 と ・ ヨ と ・ ヨ と …

Introduction 0000	Approach ○●○	Results	Conclusion	Questions
Data Preprocessing and Training				

Data Preprocessing and Training

1. Extract quantization tables from images

Unix command: djpeg

2. Generate feature set

- > Add features: sum, min, max, mean, median, var, std
- Run feature selection

3. Train decision tree classifier

CART: combines classification and regression trees

Introduction 0000	Approach ○○●	Results	Conclusion	Questions
Evaluation				

Evaluation

- 4. Evaluate with weighted F_{β} -score
 - ▶ Recall is more important: $\beta = 2$

$$egin{aligned} \mathcal{F}_eta &= 1 + eta^2 * rac{ extsf{precision} * extsf{recall}}{(eta^2 * extsf{precision}) + extsf{recall}} \end{aligned}$$

5. Compare against method using hash database

- Database of hashed quantization tables
 - ► 1→1 mapping
 - ► 1→n mapping
- Use same training and validation data

▲御▶ ▲臣▶ ★臣▶

(1)

0000 000		

Results

Dataset:

- 45,666 images (NFI & Dresden Image Database)
- 41 camera models
- 19 camera makes
- 1,016 unique quantization tables

Identifiable parameters: 50 out of 128 603 nodes, depth of 26

Figure: Partial Decision Tree

3

Introduction	Approach	Results	Conclusion	Questions
0000	000			

Zoom in: F2-score for camera make

Make	F2	Make	F2
Kodak	99 %	Praktica	43 %
Ricoh	94 %	Nikon	86 %
Panasonic	79 %	Casio	99 %
PS	100 %	Canon	98 %
Olympus	64 %	Logitech	100 %
Sony	58 %	Motorola	100 %
Agfa	78 %	Epson	100 %
Rollei	84 %	BlackBerry	100 %
Samsung	67 %	Pentax	80 %
FujiFilm	96 %		

Table: F2-score for camera make

2

Introduction	Approach	Results	Conclusion	Questions
0000	000			

Decision tree vs Hash databases

- 5-Fold Stratified Cross Validation
- 80 % Train set, 20 % Validation set

Algorithm	Precision	Recall	F2-score
Hash (1-1)	79 %	68 %	68 %
Hash (1-n)	50 %	99 %	83 %
Decision tree	90 %	89 %	89 %

Table: Camera Make Identification

Algorithm	Precision	Recall	F2-score
Hash (1-1)	54 %	39 %	37 %
Hash (1-n)	50 %	98 %	83 %
Decision tree	78 %	82 %	80 %

Table: Camera Model Identification

э

Introduction	Approach	Results	Conclusion	Questions
0000	000			

- Both methods are prone for overfitting
- Hash database holds larger search space
- Training hash database is quicker

э

<ロ> <同> <同> < 回> < 回>

Introduction 0000	Approach 000	Results	Conclusion	Questions

Conclusions

- Parameters can be reduced to 50
- Decision tree classifier gains better F2-score of 89% (make)
- ▶ $1 \rightarrow N$ hash database gains better F2-score of 83% (model)
- \blacktriangleright Decision tree classifier is more flexible, reduces search space, but harder to train than 1 ${\rightarrow}N$ hash database

Future work:

- Compare to other learning algorithms
 - Naive Bayes
- Extend feature set

3

Introduction	Approach	Results	Conclusion	Questions
0000	000			

Questions?

Search Optimization for JPEG Quantization Tables

2

・ロン ・回と ・ヨン ・ ヨン

Introduction	Approach	Results	Conclusion	Questions
0000	000			

References I

Hany Farid.

Digital image ballistics from jpeg quantization.

Technical report, Dartmouth College, Department of Computer Science, 2006.

Tran Van Lanh, Kai-Sen Chong, Sabu Emmanuel, and Mohan S Kankanhalli.

A survey on digital camera image forensic methods. In *Multimedia and Expo, 2007 IEEE International Conference on,* pages 16–19. IEEE, 2007.