Introduction

Implementing Security Control Loops in Security Autonomous Response Networks

Hristo Dimitrov

SNE University of Amsterdam & TNO Supervisors: Marc X. Makkes & Robert J. Meijer

July 3, 2014

Why was this research conducted?

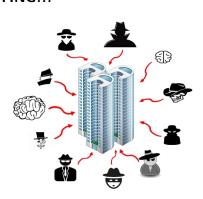
Introduction

Imagine your banking website or application does not work!

Why was this research conducted?

Introduction

Imagine your banking website or application does not work!

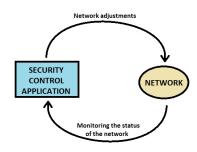

ANNOYING!!!

Introduction

Introduction

Imagine your banking website or application does not work! ANNOYING!!!

- A way for adopting the best countermeasures technologies which are available
- Support for very complex networks
- Easier organizing the security of company networks
- Faster response times


Questions?

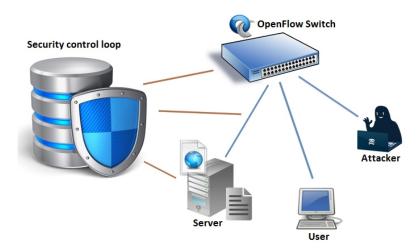
How can we do that?

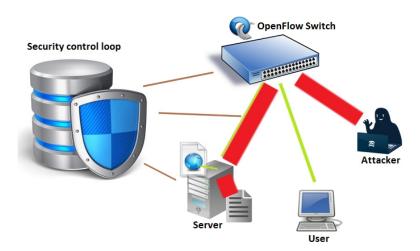
000

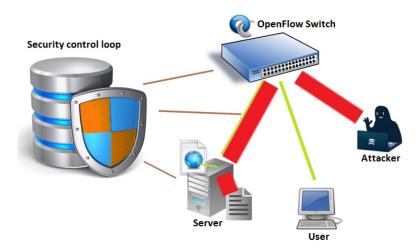
Introduction

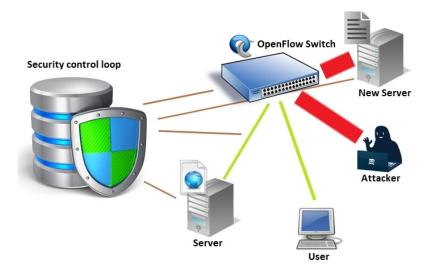
- Software Defined Networks (SDNs) are out there...
- Implementing Security as a Service (SaaS)
- By using control loops
- Share security modules with other companies and organizations

What will be the result?

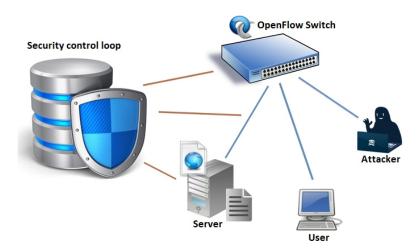

Introduction

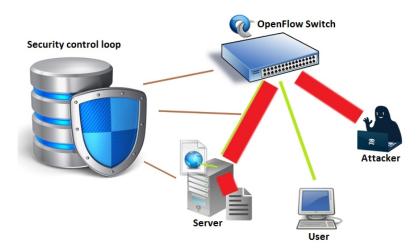

Security Autonomous Response Networks - Software Defined Networks that adjust themselves in order take care of security threats and risks

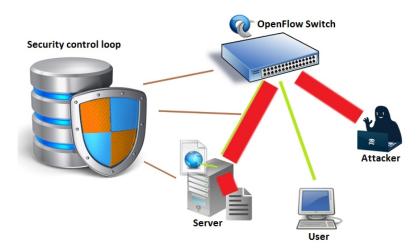

Research Questions

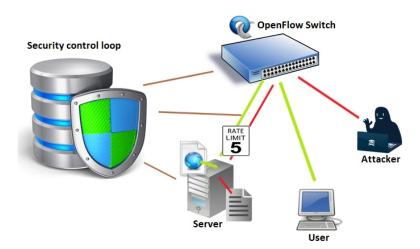

How could a security control loop be implemented as a software solution?

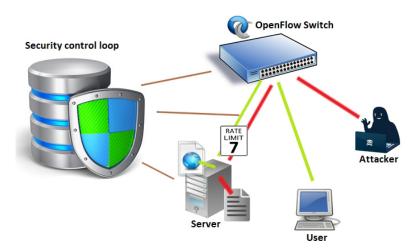
- What properties should the implementation of a Security Autonomous Response Network have, in order to make it beneficial and effective against security threats?
- How can a Security Autonomous Response Network decide on which response will be better to execute in a given situation?

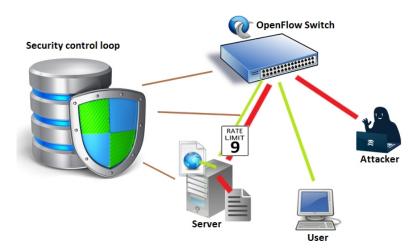


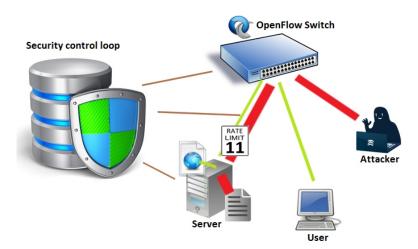


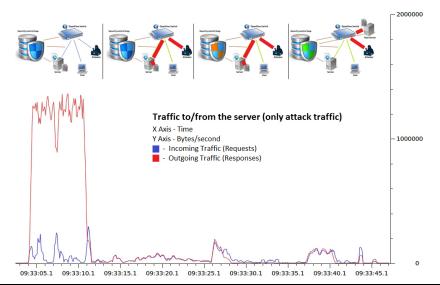

- Creating topology
- Testing the Network
- Start Services
- Start Control Loop
 - Collect TCP Connections Statistics
 - Check Number Of Connections
 - (Determine Potential Attacks)
 - (Create New Server)
 - (Redirect Traffic To It)


```
#check for attacks
if dos == True :
    #Define attributes
   counter +=1
   print "Counter:", counter
   hosts[counter] = "nh%s" % counter
   print "Host:", hosts[counter]
   hostips[hosts[counter]] = "10.0.0.%s" % (n+counter)
   print "IP:", hostips[hosts[counter]]
   hostints[hosts[counter]] = "%s-eth0" % hosts[counter]
   print "Host interface: ", hostints[hosts[counter]]
   switchints[hosts[counter]] = "s1-eth%s" % (n+counter)
   print "Switch interface", switchints[hosts[counter]]
   #Create new host and redirect the old one
   print h1.cmd( "kill -9", fileserverpid)
   h = net.addHost( hosts[counter] , cpu=1/8 )
   time.sleep(2)
   net.addLink( h, s1, **distrlinkopts )
   sl.attach(switchints[hosts[counter]])
   print h.cmd( "ifconfig", hostints[hosts[counter]]
               , hostips[hosts[counter]] )
   print "Redirecting now..."
   print h1.cmd( "~/mininet/examples/redirect.py %s &"
               % hostips[hosts[counter]] )
   print "Redirected!"
   print h.cmd( 'cd ~/fileserver/')
   print h.cmd( 'python -m SimpleHTTPServer 8000 > /dev/null 2>&1 &')
   #Test the newly created host
   print h2.cmd( 'cd ~')
   print "h2 wget http://%s:8000/test 10K.img" % (h1.IP())
   print "h2 time curl http://%s:8001/index.html" % (h1.IP())
```

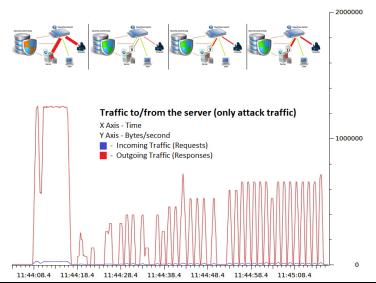

Moving resources to new server







- Creating topology
- Testing the Network
- Start Services
- Start Control Loop
 - Collect TCP Connections Statistics
 - Check Number Of Connections
 - (Determine Potential Attacks)
 - (Collect Bandwidth Statistics)
 - (Adjust Rate Limits)
 - (Implement New Rate Limits)


```
print "Determining potential attack vectors..."
attsrcip = ""
attdstipport = ""
attsrcips = {}
attdstipports = {}
if ncon > 10 :
    for i in range(1, (ncon+1)):
        if results[i].split()[2] == "tcp" :
            attdstipport = results[i].split()[3]
            attsrcip = results[i].split()[5].split(":")[0]
            if attsrcips.has key(attsrcip):
                attsrcips[attsrcip] += 1
            else:
                attsrcips[attsrcip] = 1
            if attdstipports.has key(attdstipport):
                attdstipports[attdstipport] += 1
            else:
                attdstipports[attdstipport] = 1
    print "Destinations:", attdstipports
    print "Sources:", attsrcips
    asi = attsrcips.kevs()
    attsrcip = asi[0]
    for i in range (1, len(asi)):
        if attsrcips[asi[i]] > attsrcips[attsrcip]:
            attsrcip = asi[i]
    adip = attdstipports.keys()
    attdstipport = adip[0]
    for i in range (1, len (adip)):
        if attdstipports[adip[i]] > attdstipports[attdstipport]:
            attdstipport = adip[i]
```

Determine potential attacks vectors

Attack Isolation Results

Attack Limiting Results

Conclusions

(What properties should the implementation of a Security Autonomous Response Network have, in order to make it beneficial and effective against security threats?)

- Software Modularity Scalability, Reusable and pluggable modules
- Company Infrastructure Modularity Flexibility, More options for responses to security threats

Conclusions

(How can a Security Autonomous Response Network decide on which response will be better to execute in a given situation?)

Responses to security threats should be:

- Classified based on which problems they can solve
- Rated based on their effectiveness

Questions

Please ask your questions now, thank you!