Measuring the Deployment of DNSSEC over the Internet

System & Network Engineering — Research Project

Nicolas Canceill

SNE RP2 Presentations — July 2, 2014

Introduction Methodology Results

Introduction

2 Methodology

Results

What DNSSEC?

DNS

Domain Name System

- Essential foundation of the Internet
- Translates domain names into IP addresses

Problem

DNS is notoriously insecure

Solution: DNSSEC

- Public key cryptography
- Signatures for al resources
- Hierarchical chain of trust

Introduction

- 2 Methodology
- Results

History

DNS Development

1983 DNS specification published

1984 First TLDs defined

1987 DNS becomes IETF standard

DNSSEC Development

1997 DNSSEC specification published

1999 DNSSEC specification revised

2005 DNSSEC final revision

DNSSEC Deployment

2010 Root level deployment

2011 Most TLDs signed

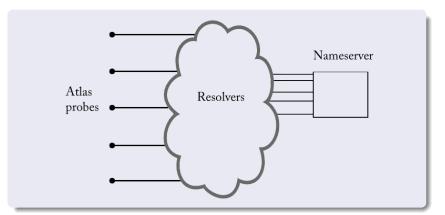
Research scope

Research question

What is the status of DNSSEC deployment over the Internet and how does it impact Internet users?

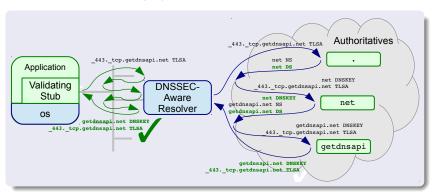
- Which DNS resolvers can be queried from clients?
- What methods can properly assess DNSSEC support?
- How does DNSSEC support influence user experience?

The Atlas network


- 6,200 active probes
- Worldwide mostly Europe

Introduction

2 Methodology


Results

Setup

- Altlas probes: presence in client network
- Controlled nameserver with packet capture

Challenges (1)

- DNSSEC-aware: fetch DS and DNSKEY
- Client gets data for application-level validation

Challenges (2)

Probes-resolvers

- IP address seen by the probe: 8.8.8.8
- IP address seen by the nameserver: 74.125.18.209

Solution: pre-pend probe ID and use wildcards Probe 1234 requests 1234.example.com

Resolving setup

- Probes with multiple resolvers
- Probes using forwarders
- Misconfigured resolvers

Limitations

$\mathsf{Atlas} eq \mathsf{Internet}$

Atlas Top10

Country	Probes		
United States	853		
Germany	819		
Russia	724		
United Kingdom	605		
Netherlands	457		
France	397		
Ukraine	364		
Belgium	184		
Italy	166		
Czech Republic	161		

Internet Top10

Country	Internet users (in 2012)	
China	568,192,066	
United States	254,295,536	
India	151,598,994	
Japan	100,684,474	
Brazil	99,357,737	
Russia	75,926,004	
Germany	68,296,919	
Nigeria	55,930,391	
United Kingdom	54,861,245	
France	54,473,474	

Process

Steps

- List all active probes
- 2 Start packet capture at the nameserver
- 3 Launch measurement on Atlas probes
- Wait for measurement results
- Stop packet capture
- Repeat steps 2-5 until all active probes have been used

Zones

secure insecure badlabel, badrrsigs, norrsigs

Software

Python, atlas, dpkt nsd, ldns Wireshark

Introduction Methodology Results

Introduction

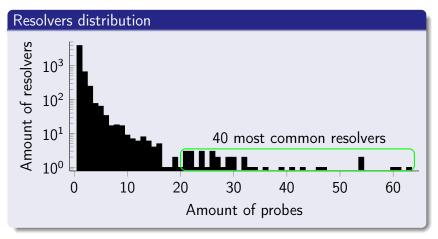
2 Methodology

Results

Resolvers

DO bit support

Requests on TXT record from secure zone with DO bit set


Probes	Resolvers	DO bit	RRSIGs
4673	5139	4534 [88.23%]	3448 [67.09%]

DS type support

Requests on DS record from secure zone with DO bit set

Probes	Answers	AD bit	RRSIGs	No RRSIGs	FORMERR
5602	5323 [95.01%]	1557 [27.79%]	2176 [38.84%]	1590 [28.38%]	268 [4.78%]

DNSSEC-awareness

40 most common resolvers: Google (38), OVH (2)

Validation and protection

norrsigs 5491 3754 [68.37%]

Answer AD bit Zone **Probes** Total RRSIGs+NSEC RRSIGs only Just answer 5457 5160 [94.55%] 1472 [26.97%] 1109 [20.32%] 967 [17.72%] 1612 [20.54%] secure 1613 [30.06%] badlabel 5366 3631 [67.66%] 0.00%] 1014 [18.90%] 1004 [18.71%] badrrsig 5427 3688 [67.95%] 0 [0.00%] 1017 [18.74%] 1034 [19.05%] 1636 [30.15%]

0 [0.00%]

0 [0.00%]

3754 [68.37%]

0.00%]

No answer						
	Zone	Probes	Total	SERVFAIL	FORMERR	Parse Error
	secure	5457	297 [5.44%]	12 [0.22%]	263 [4.82%]	100 [1.83%]
	badlabel	5366	1735 [32.33%]	1410 [26.28%]	302 [5.63%]	81 [1.51%]
	badrrsigs	5427	1739 [32.04%]	1417 [26.11%]	299 [5.51%]	67 [1.23%]
	norrsigs	5491	1737 [31.63%]	1416 [25.79%]	306 [5.57%]	20 [0.36%]

Findings

DNSSEC-awareness

- DO bit indicates 88%... maybe more
- DS type indicates 95%... maybe less

Validation and protection

- AD bit indicates 27% validation
- Bad zones indicate 25-26% protection

Information available

- 88-95% can get DS
- 65% can get RRSIG
- 47% can get RRSIG and wildcard NSEC

Thanks to...

- B. Overeinder, W. Toorop NLnet Labs, Amsterdam
- SNE Master, University of Amsterdam

Questions?