

Using EVPN to minimize ARP traffic in an IXP environment

Stefan Plug <stefan.plug@os3.nl> Lutz Engels <lutz.engels@os3.nl>

> University of Amsterdam Faculty of Science (FNWI) MSc System and Network Engineering

July 3rd, 2014 Auditorium C0.110, FNWI, Sciencepark 904, Amsterdam

Background

S. Plug & L. Engels — Using EVPN to minimize ARP traffic in an IXP environment

1/40

Internet eXchange Point (IXP)

- Provides a L2 peering network
- Usually distributed over multiple locations
- Acts as a single Ethernet switch
- Members use this L2 peering network to do BGP peering
- Examples: AMS-IX, ECIX, DECIX, LINX

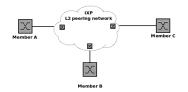


Figure : Simple L2 IXP network

How can IXPs build distributed L2 networks?

Hint: using MPLS/VPLS

MPLS (RFC 3031)

Multi Protocol Label Switching (MPLS)

- 20-bit labels create Label Switched Paths (LSP)s through the network
- MPLS ingress device determines LSP to use
- L3 packet is encapsulated with an MPLS header
- MPLS egress device 'pops' the MPLS header



Figure : (Very) simple MPLS example

Pseudo Wires (RFCs 3985, 4447 and 4448)

Pseudo Wires (PWs)

- MPLS ingress device removes the L2 Frame Checksum Sequence (FCS)
- MPLS ingress device puts the MPLS label in front of L2 frame
- MPLS egress device re-calculates the original FCS

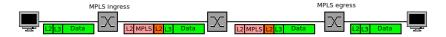


Figure : (Very) simple PW example

VPLS (RFC 4762)

Virtual Private LAN Service (VPLS)

- Creates a full mesh of PWs
- Do you remember how a normal switch learns MAC addresses?
- In VPLS Customer Edge MAC addresses are ascociated with a Pseudo Wire

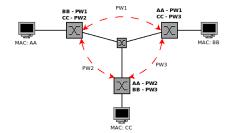


Figure : (Very) simple VPLS example

But all is not well

The ARP problem (theory)

With many members come many ARPs

- 100 members
- 1 member down
- 99 members send an ARP broadcast
- Each member has to process 98 ARP broadcasts
- When no response is received, try again!

The ARP problem (practice)

Making a Cisco Catalyst 3550 sweat

- Normal traffic == (usually) switched on hardware
- ARP traffic == processed by the CPU
- 200 members
- 100 member down
- 10000 ARPs/s

```
2w1d: %SYS-2-MALLOCFAIL: Memory allocation of 1780 bytes
failed from 0x161B38, alignment 0
Pool: I/O Free: 9572 Cause: Memory fragmentation
Alternate Pool: None Free: 0 Cause: No Alternate pool
-Process= "Pool Manager", ipl= 0, pid= 5
-Traceback= 1A57D0 1A6DF4 161B3C 1B2BF0 1B2E38 1C6440
CE-06#show process memory
Total: 54706596, Used: 7290848, Free: 47415748
PID TTY Allocated
                         Freed
                                 Holding
                                             Getbufs
                                                        Retbufs Process
   5
      0 3588357308 12341112
                                  2608820 2551100460 18951784 Pool Manager
   9
      0
                 92 962095304
                                     6940
                                                   0 2595909708 ARP Input
CE-06#show process cpu
CPU utilization for five seconds: 98%/14%; one minute: 47%; five minutes: 15%
PID Runtime(ms)
                  Invoked
                               uSecs
                                       5Sec
                                              1Min
                                                      5Min TTY Process
          124152
                    18789
                                6607 24.57% 11.25% 3.73%
                                                             0 Pool Manager
   9
          526356
                    572797
                                 918 56.16% 26.10% 8.40%
                                                             0 ARP Input
```


Current solution

Current solution: ARP sponge

Currently used solution: ARP sponge

- Counts ARP requests to a specific IP address
- Sends out a (gratious) ARP reply when counter reaches a threshold
- Members are now satisfied and Stop The Frantic Unnesecerities
- In practice it reduced ARP traffic nearly tenfold (ask Niels)

```
<STATE>
TΡ
                            Rate (g/min)
                                            Updated
            State
                   Oueue
10 0 4 101 DEAD
                    600
                            7755 420
                                            2014-06-24@18:42:15
10.0.4.102 DEAD
                   600
                            10622 259
                                            2014-06-24@18:42:14
</STATE>
1819 10.540946 RealtekU a5:01:01 Broadcast ARP 42 Gratuitous ARP for 10.0.4.101 (Request)
                    Sender MAC address: RealtekU a5:01:01 (52:54:00:a5:01:01)
                   Sender IP address: 10.0.4.101 (10.0.4.101)
                    Target MAC address: Broadcast (ff:ff:ff:ff:ff:ff)
                   Target IP address: 10.0.4.101 (10.0.4.101)
1820 10.541152 RealtekU a5:01:01 Broadcast ARP 42 Gratuitous ARP for 10.0.4.102 (Request)
                    Sender MAC address: RealtekU a5:01:01 (52:54:00:a5:01:01)
                    Sender IP address: 10.0.4.102 (10.0.4.102)
                   Target MAC address: Broadcast (ff:ff:ff:ff:ff:ff)
                   Target IP address: 10.0.4.102 (10.0.4.102)
```


But what if we could prevent ARP entirely? Introducing: EVPN

EVPN - requirements (RFC 7209)

EVPN requirements RFC7209 (May 2014)

An EVPN implementation should address the following shortcomings of VPLS:

- Multihoming with all-active forwarding (members can load balance)
- Multipoint-to-multipoint LSP support
- Simpler provisioning
- VLAN-aware bundling
- Network reconfigures time indepedant from MAC addresses learned
- Minimizing of flooding of multi-destination frames
- Support for flexible VPN technologies

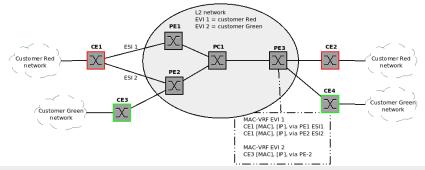
The most Interesting specific rule in regards to ARP is:

(R11b) "... the solution SHOULD minimize the flooding of broadcast frames ..."

EVPN (draft-ietf-l2vpn-evpn-07)

draft-ietf-l2vpn-evpn-07 (May 2014)

- Do NOT learn MAC address from data frames
- Use MP-BGP to learn MAC addresses
- Optionally also send the IP address!
- Act as an ARP proxy!
- But the workload is shifted to the EVPN edge!


Figure : EVPN ARP proxy

EVPN - Terminology

EVPN Terminology

- CE Customer Edge device *
- PE Provider Edge device *
- PC Provider Core device *
- EVI a unique EVPN instance running across the PEs
- Ethernet Tag a VLAN tag within an EVI
- MAC-VRF a Virtual Routing and Forwarding table for an EVI on a PE
- ESI Ethernet Segment Identifier used for multi homing

Building the L2 tunnel Everyone knows MPLS is on layer 1.5, right?

S. Plug & L. Engels - Using EVPN to minimize ARP traffic in an IXP environment

11/40

EVPN - building the L2 tunnel

Where to put the MPLS labels?

- The draft is not as clear as we would like
- L2 MPLS encapsulation might be common (PWs)
- It is NOT standard MPLS (RFC 3031)
- L2 MPLS encapsulation is not properly introduced first mention chap. 6.1 (VLAN Based Service Interface), page 11: "[...] Ethernet frames transported over MPLS/IP network [...]"
- Is this like a Pseudo Wire, i.e. is the FCS dropped?
- Is the entire frame encaplulated including the FCS?

EVPN - MP-BGP MAC/IP update

EVPN MP-BGP MAC/IP Update

44
Route Type (1 octet)
Length (1 octet)
RD (8 octets)
Ethernet Segment Identifier (10 octets)
Ethernet Tag ID (4 octets)
MAC Address Length (1 octet)
MAC Address (6 octets)
IP Address Length (1 octet)
IP Address (0 or 4 or 16 octets)
MPLS Label1 (3 octets)
MPLS Label2 (0 or 3 octets)

+ 1 - Ethernet Auto-Discovery (A-D) route
+ 2 - MAC/IP advertisement route
+ 3 - Inclusive Multicast Ethernet Tag Route
+ 4 - Ethernet Segment Route

EVPN - MP-BGP MAC/IP update

EVPN MP-BGP MAC/IP Update

++
Route Type (1 octet)
Length (1 octet)
RD (8 octets)
Ethernet Segment Identifier (10 octets)
Ethernet Tag ID (4 octets)
MAC Address Length (1 octet)
MAC Address (6 octets)
IP Address Length (1 octet)
IP Address (0 or 4 or 16 octets)
MPLS Label1 (3 octets)
MPLS Label2 (0 or 3 octets)

- Route Distinguisher
- Identifies the EVI of this update

Logical setup

S. Plug & L. Engels — Using EVPN to minimize ARP traffic in an IXP environment

14/40

Logical network design

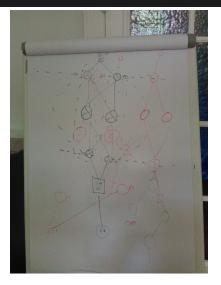


Figure : Logical network layout

Logical network design

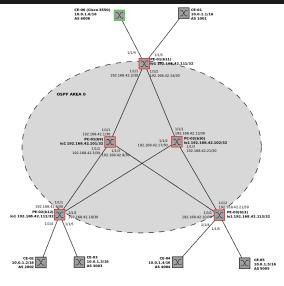


Figure : Logical network layout

Physical setup

S. Plug & L. Engels - Using EVPN to minimize ARP traffic in an IXP environment

16/40

SROS-VM based Router Reflectors (vRRs)

SROS-VM based Router Reflectors (vRRs)

- Alcatel-Lucent (ALU)
- VM of i386 hardware control processor module for 7750 Service Router
- 5 Matching licences
- Internal only pre-release
- Used with kvm/qemu

Performance of VMs

Performance of VMs

- Router VMs traffic solely processed by virtual CPU(s)
- Hardware routers utilize e.g. ASICs for the forwarding (linespeed)
- No direct relation of performance possible

..but

- Comparing VPLS and EVPN ARP proxy within the same VM might show interesting differences in CPU usage
- We ASSUME that ARP proxying might be done in CPU anyway

Physical network design

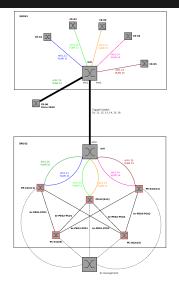


Figure : Overview of the physical network layout

Physical network design - top

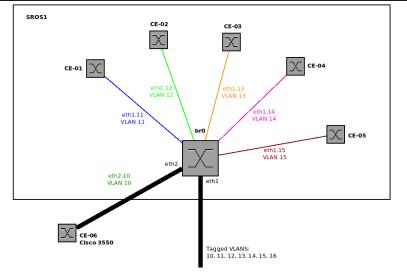


Figure : Bottom part of the physical network layout

Physical network design - bottom

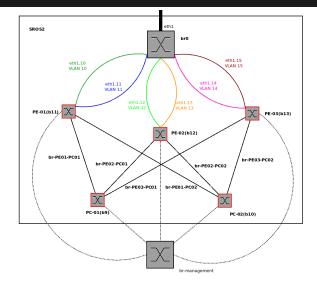


Figure : Bottom part of the physical network layout

Interconnections sros1

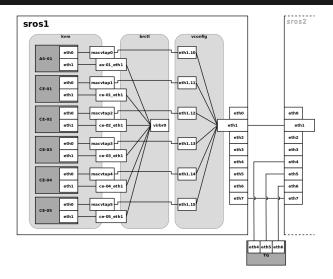


Figure : Interconnections of (virtual) interfaces on sros1

Interconnections sros2

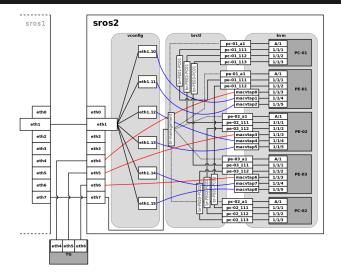


Figure : Interconnections of (virtual) interfaces on sros2

Getting the vRRs to boot

Getting the vRRs to boot

- Little to no documentation available
- Configuration files contained options to provide license file
- ... but those were not respected.
- It took about two weeks to get the vRRs to boot in our setup

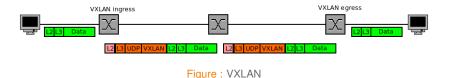
Test scenarios

Test scenarios

Simulating an IXP with 100 clients behind each PE-router, where a 4th router becomes unreachable.

- **Pure VPLS**: Test without any measure against unwanted ARP traffic. Baseline measurement.
- **2 ARP SPONGE**: Test with the ARP sponge enabled and the threshold set to 600.
- **EVPN**: Test with EVPNs ARP proxy feature enabled.

Oh, look mommy! We got VXLAN!


VXLAN (draft-sd-l2vpn-evpn-overlay-03)

VXLAN

- We always assumed that we would be working with MPLS-based EVPN
- But we got to know that it actually is VXLAN-based
- However in regard to the ARP proxy functionality, both work the same
- e.g. the MAC/IP UPDATE looks exactly the same

Note: performance SHOULD not be influenced (No ARP should be VXLANned)

Results

High packet drop rate @ 10 Mbps

🕽 🗐 🗊 Ostinato					
ile Help					
orts and Streams					6
 Port Group 0: [127.0.0 Port 0: eth0 [0.0.0. Port 1: eth4 [0.0.0. Port 2: eth5 [0.0.0. 	0] () 0] () 0] ()			C Avg pps 14.880,9524 C Avg bps 10.000.000 10 M	Apply 1bps
 Port 3: eth6 [0.0.0. Port 4: any [0.0.0. Port 5: lo [0.0.0.]] (Pseudo-device	that captures on	all interfa	Name Goto Ø AP 10.0.4.10 Next Ø AP 10.0.4.10 Next Ø AP 10.0.4.103 Next Ø Ø AP 10.0.4.104 Next Ø Ø AP 10.0.4.105 Next Ø Ø AP 10.0.4.106 Next Ø Ø AP 10.0.4.106 Next	<u>م</u> ب
atistics					e
	Port 0-1 *	Port 0-2 *	Port 0-3 *		<u>+</u>
Link State	Up	Up	Up		
Transmit State	Off Off	Off Off	Off		
Capture State	820		808	🔪 10000 frames sent	
Frames Received	820	10000		only ~800 received	
Frames Sent Frame Send Rate (fps)	0	0000			
Frame Send Rate (fps) Frame Receive Rate (fps)	0	0	(
Bytes Received	39640	0	37168		
bytes neceived	0	680000	5/100		
Putor Cont		000000			
Bytes Sent Byte Send Rate (Bps)	0	0	(

Figure : 10 Mbps - high packet droprate

Still high drop rate @ 1 Mbps

Figure : 1 Mbps - still high droprate

File Help Ports and

Statistics

Link Sta Transmit Capture Frames Frames Frame S Frame R Bytes Re Bytes Se Byte Ser

No drops drops @ 100 Kbps

					کل ک
🗢 🗊 Ostinato					
Help					
s and Streams					Ð
 Port Group 0: [127.0.0 Port 0: eth0 [0.0.0. Port 1: eth4 [0.0.0. Port 2: eth5 [0.0.0 	0] () 0] () 0] ()			C Avg pps 148.8095 C Avg bps 100.000 100 Kbps	Apply
 Port 3: eth6 [0.0.0. Port 4: any [0.0.0.0 		that captures or	all interfa	Name Goto	<u>*</u>
 Port 5: lo [0.0.0.0] 				1	
			ŀ	3 🔅 🗹 ARP 10.0.4.103 Next	
			ŀ	4 🐼 🗹 ARP 10.0.4.104 Next	
			H	5 2 ARP 10.0.4.105 Next 6 2 ARP 10.0.4.106 Next	-1
			J	6 W ARP 10.0.4.106 Next	
istics					Ð
	<u>_</u>				
	Port 0-1 *	Port 0-2 *	Port 0-3 *		-
nk State	Up	Up	Up	-	
ansmit State	Off	Off	Off		
apture State	Off	Off	Off	10000 frames sent	
ames Received	10000		10000	10000 frames received	
ames Sent	0	(10000		10000 frames received	
ame Send Rate (fps)	0	U	0		
ame Receive Rate (fps)	0	0	0		
rtes Received	460000	0	460000		
rtes Sent	0	680000	0		
rte Send Rate (Bps)	0	0	0		-1
ito Rocoivo Rato (Rnc)	1 0	0	0	1	<u> </u>

Figure : 100 Kbps - no drops!

High drop rate - confirmed

[My colleague] was so kind to check with our R&D. It is in fact a result of you using a genuine vSIM license, which is intentionally limited to low data plane throughput [...] and is primarily targeted at simple lab and (self-)educational use.¹

S. Plug & L. Engels - Using EVPN to minimize ARP traffic in an IXP environment

¹At this time we were offered to test on a hardware setup, but due to time restraints we had to decline.

Restricting to one CPU

Restricting to one CPU

- Low data plane throughput == low CPU usage
- Restricted the vRR VMs to one 1 VCPU each

```
$ sudo grep cpuset P*.xml
PC-01.xml: <vcpu current='1' cpuset='0'>1</vcpu>
PC-02.xml: <vcpu current='1' cpuset='6'>1</vcpu>
PE-01.xml: <vcpu current='1' cpuset='12'>1</vcpu>
PE-03.xml: <vcpu current='1' cpuset='23'>1</vcpu>
PE-03.xml: <vcpu current='1' cpuset='23'>1</vcpu>
```

Lutz Lots-o-data

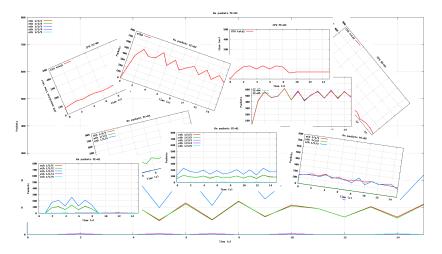


Figure : In an automated fashion data was gathered and graphed.

Performing the tests

- Measurements for VPLS scenario
- Measurements for ARP sponge scenario
- Measurements for EVPN....Wait...What?

EVPN - What is wrong?

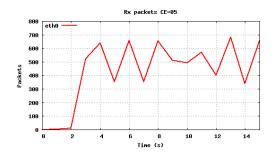


Figure : EVPN - What is wrong?

ARP proxy not working

EVPN MAC/IP UPDATE

25 7.903084 192.168.42.113 192.168.42.111 BGP 338 UPDATE Message, UPDATE Message Type Code: MP REACH NLRI (14) Length: 114 Address family: Layer-2 VPN (25) Subsequent address family identifier: EVPN (70) Next hop network address (4 bytes) Subnetwork points of attachment: 0 AFI: MAC Advertisement Route (2) Length: 33 Route Distinguisher: 0000fde8000000c8 (65000:200) ESI: 0000000000000000000000 Ethernet Tag ID: 200 MAC Address Length: 48 MAC Address: DavicomS 78:18:2b (00:60:6e:78:18:2b) IP Address Length: 0 IP Address: NOT INCLUDED MPLS Label Stack: 0 (bottom)

ARP proxy not working - confirmed

I cross-checked with my PLM folks, and up to now, we indeed don't do ARP snooping yet (R13.0 feature)², but given we also can't add static entries as of now, I am a bit unsure what the "official" way to get combined MAC/IP routes into an EVPN instance is. I was suggested some workarounds, but at least I couldn't get the easier one of both working.

²We were conducting our research on R12.0

S. Plug & L. Engels - Using EVPN to minimize ARP traffic in an IXP environment

Handcrafted packet


```
9 4.674060 192.168.42.113 192.168.42.111 BGP 260 UPDATE Message, UPDATE Message
        Type Code: MP_REACH_NLRI (14)
       Length: 48
        Address family: Layer-2 VPN (25)
        Subsequent address family identifier: EVPN (70)
        Next hop network address (4 bytes)
        Subnetwork points of attachment: 0
            AFI: MAC Advertisement Route (2)
            Length: 37
            Route Distinguisher: 0000fde8000000c8 (65000:200)
            ESI: 0000000000000000000000
            Ethernet Tag ID: 200
            MAC Address Length: 48
            MAC Address: RealtekU ce:05:01 (52:54:00:ce:05:01)
            IP Address Length: 32
            IPv4 address: 10.0.1.5 (10.0.1.5)
       MPLS Label Stack: 0 (bottom)
```

Injected Mac Route

Lege	nd -		Local AS:6	
		ised, s - suppressed, h - 1 IGP, e - EGP, ? - incomplet		
3GP E	VPN Mac Routes			
===== Flag	Route Dist.	ESI NextHop	Tag	MacAddr IpAddr Mac Mobility
1*>i	65000:200	0:0:0:0:0:0:0:0:0:0:0 192.168.42.112	200	00:77:77:77:77:77 77.77.77.77 Static
	65000:200	0:0:0:0:0:0:0:0:0:0:0 192.168.42.113	200	52:54:00:ce:05:01 10.0.1.5

ARP proxy working

© C		ethoocap [Wiresh	ark 1.11.4+svn201404			i (Git Rev Unk Clear Ap		
No.	Time	Source	Destination	Protocol	Length	Info		
2	0.000611	-	RealtekU_ce:01:01	\smile	60		at 52:54	:00:ce:05:01
4	0.002578	10.0.1.1 10.0.1.5 10.0.1.1	10.0.1.5 10.0.1.1 10.0.1.5	ICMP ICMP ICMP	98	Echo (ping)	reply	id=0x42fb, s id=0x42fb, s id=0x42fb, s
6	1.003190		10.0.1.1 10.0.1.5	ICMP ICMP	98	Echo (ping)	reply	id=0x42fb, s id=0x42fb, s
<pre>Frame 3: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) Ethernet II, Src: RealtekU_ce:01:01 (52:54:00:ce:01:01), Dst: RealtekU_ce:05:01 (52:54:00:ce:05:01) Internet Protocol Version 4, Src: 10.0.1.1 (10.0.1.1), Dst: 10.0.1.5 (10.0.1.5) Internet Control Message Protocol</pre>								
Co	de: 0	ho (ping) request) x292a [correct]						
Id	entifier	(BE): 17147 (0x42f (LE): 64322 (0xfb4	2)					
Sec [R Ti	quence nu esponse f mestamp f	rom icmp data: Jul						
	ta (48 by							

Figure : ARP proxy capture on CE-01 eth0

ARP proxy working

😣 🖨 🗊 😋 e-05	eth0.cap [Wiresh	ark 1.11.4+svn20140	420104827~(d0489f2a	(Git	Rev Unl	known fro	m unknown)]
Filter: Expression Clear Apply Save								
No. Time	Source	Destination	Protocol	Lengtł	Info			
1 0.00000	10.0.1.1	10.0.1.5	ICMP	98	Echo	(ping)	request	id=0x42fb, s
2 0.000132	10.0.1.5	10.0.1.1	ICMP	98	Echo	(ping)	reply	id=0x42fb, s
3 1.000525	10.0.1.1	10.0.1.5	ICMP	98	Echo	(ping)	request	id=0x42fb, s
4 1.000690	10.0.1.5	10.0.1.1	ICMP	98	Echo	(ping)	reply	id=0x42fb, s
5 2.002082	10.0.1.1	10.0.1.5	ICMP	98	Echo	(ping)	request	id=0x42fb, s
6 2.002247	10.0.1.5	10.0.1.1	ICMP	98	Echo	(ping)	reply	id=0x42fb, s
7 3.003639	10.0.1.1	10.0.1.5	ICMP	98	Echo	(ping)	request	id=0x42fb, s
▼Internet Control Message Protocol Type: 8 (Echo (ping) request) Code: 0 Checksum: 0x292a [correct] Identifier (BE): 17147 (0x42fb) District (BE): 17147 (0x42fb)								
Identifier (LE): 64322 (Axfb42)								
Sequence number (LE): 256 (0x0100) <u>[Response frame: 2]</u> Timestamp from icmp data: Jul 1, 2014 23:15:19.000000000 CEST [Timestamp from icmp data (relative): -2.861048000 seconds]								
▶Data (48 bytes)								

Figure : ARP proxy capture on CE-05 eth0

Conclusion

S. Plug & L. Engels — Using EVPN to minimize ARP traffic in an IXP environment

Findings

Problems identified and confirmed

- ARP Proxy not working yet, due to combination of a lack of ARP Snooping and no means to manipulate the bindings manually
- draft-ietf-l2vpn-evpn-07 not clear as to which L2 tunneling technique is used

... but still

- We think EVPN is a VERY interesting and promising technology for IXPs
- We would love to test this on hardware
- We would love to see a performance comparison on PEs between VPLS and EVPN with ARP Proxy
- We would love to dive into the multi-homing aspect

Abschlussprojektspräsentationsabrundungsfragenzeit!

Thank You!

