
Master System and Network Engineering

University of Amsterdam

Research Project 2

Android patching
From a Mobile Device Management perspective

Author:
Cedric Van Bockhaven
cedric.vanbockhaven@os3.nl

Supervisor:
Jochem van Kerkwijk
JvanKerkwijk@deloitte.nl

June, 2014

Android patching Abstract

Abstract

Android is currently the most popular smartphone OS in the world.
Many different devices with outdated Android versions and kernels
pose a risk as they become a potential target for attackers, making
enterprises reluctant to allow employees to bring their Android devices
to the workplace.

Fixing vulnerabilities by patching the kernel and Android runtime
in-memory allows leaving the underlying system mostly untouched
while providing protection against emerging threats. The proposed
techniques allow to shift the responsibility of bringing out patches
from the mobile device vendor to the MDM solution.

1

Android patching Acknowledgements

Acknowledgements

I would like to thank the people at Deloitte Risk Services, where I
conducted my research, for their insights and support: my supervi-
sor Jochem van Kerkwijk, Werner Alsemgeest, Joost Kremers, and
Thomas Bosboom. They provided a nice work environment and
Android devices to test my research on.

The Android robot on the title page is modified from work created by
Google and used according to the CC BY 3.0 license. The patch on
the robot is a vector icon by Laura Reen.

2

http://creativecommons.org/licenses/by/3.0/

Android patching Contents

Contents

1 Introduction 5

2 Problem statement 6
2.1 Research question . 7

3 Related research 8

4 Primer 9
4.1 Android architecture . 9

4.1.1 Dalvik runtime . 10
4.1.2 ART runtime . 10
4.1.3 Android kernel . 11

5 Hooking 12
5.1 Runtime hooking . 12

5.1.1 Dalvik hooking . 12
5.1.2 ART hooking . 13

5.2 Kernel hooking . 14
5.2.1 Ksplice, kGraft, kpatch 15
5.2.2 Kprobes . 16
5.2.3 Expatting . 17

5.2.3.1 Kernel symbols 17
5.2.3.2 Read/write access to kernel memory 19
5.2.3.3 Kernel exploiting and patching 20
5.2.3.4 Kernel protections 21

5.3 Boot hooking . 22
5.3.1 Obstacle: dm-verity 22
5.3.2 Approach: broadcast receiver 22
5.3.3 Approach: modifying init files 23
5.3.4 Approach: modifying app process binary 23
5.3.5 Overview . 24

6 Expat MDM 25
6.1 Server component . 26
6.2 Agent component . 26

6.2.1 Information gathering 27
6.2.1.1 Miscellaneous information 27
6.2.1.2 Determining the runtime 27
6.2.1.3 Linux vermagic string 28
6.2.1.4 Status of dm-verity 29

6.2.2 Expatting process . 29
6.3 Expat device life cycle . 30

3

Android patching Contents

6.4 Proof of concept . 32

7 Practical evaluation 33

8 Ethical considerations 34

9 Conclusion 36

10 Future work 37

11 References 38

Appendix A: Code repository 41

Appendix B: Acronyms 41

4

Android patching 1 Introduction

1 Introduction

Enterprises allow employees to bring their own device to the workplace
under a Bring Your Own Device (BYOD) policy. These devices are usually
smartphones and are hooked onto corporate data or corporate infrastruc-
ture. More and more Mobile Device Management (MDM) solutions emerge
that can monitor and control these devices.

Of all smartphone owners in the world, about 80% has an Android device
[1]. In stark contrast to this number stands the Android market share for
enterprise environments where people are allowed to bring their own device,
which is only 26% [2].

The reason for this significant difference can be found in a broad panoply
of different Android devices and versions. These systems often contain out-
dated (vulnerable) Android versions, and do not always receive updates,
which make them an additional security and data leak risk for the company.

Google’s Android relies on the vendors of the devices to push updates. In
many cases, vendors do not bring out updates, do not offer over-the-air
updates, or drop support for the device. It is then up to the user to manually
conduct a firmware update, which is not always in reach for non-technical
people.

In June 2014, Gartner published a comparative report, dubbed the “Magic
Quadrant for Enterprise Mobility Management Suites” in which MDM sys-
tems were evaluated according to the current needs of the business world [3].
The report also stated the importance and ever growing need for Android
support and data loss prevention (DLP) in the MDM world.

This research investigates if it is feasible to patch the Android operating
system through the MDM solution when new security vulnerabilities are
discovered. There is no longer any need to rely upon the vendor to push
updates as this responsibility is shifted to the MDM.

5

Android patching 2 Problem statement

2 Problem statement

One of the reasons why Android has become such a success and has a world
wide adoption, is that other companies, besides Google, can also benefit
from the same technology as the operating system has been open-sourced.
Android has become the operating system of choice for many smartphone
manufacturers. Adapted versions of the Android operating system are being
made by these vendors to support different device models, and usually
include a modified kernel and extra drivers to support the hardware. When-
ever an Android device is released onto the market, it ships with a certain
version of the Android OS.

Even though the Android OS is maintained by Google, the responsibility
of bringing updates to the end-user devices is in the hands of the mobile
device vendors. Google does not push updates to devices of other mobile
device vendors. However, not many other device vendors actually bring out
updates, or offer over-the-air updates. All vendors have a limited support
window in which they bring out updates. This, combined with little update
initiative from the end users, leads to a slow adoption of newer Android
versions and a spectrum of different versions and builds that can be found
in the wild, as illustrated by Figure 1. Android 2.3 Gingerbread, which was
released in December 2010, still accounts for 20% of the Android version
distribution anno 2014.

Figure 1: Android version distribution
Source: Adopted version of Fjkumar’s original, CC BY-SA 3.0

6

http://creativecommons.org/licenses/by-sa/3.0/

Android patching 2.1 Research question

The story is different for iOS, where the maker of the OS and the firmware
is also the vendor of the device. The amount of different devices that have
to be supported is significantly lower. Updates can be easily pushed over-
the-air in this case.

All these different Android devices, firmware builds and kernels are conse-
quently prone to security vulnerabilities when they become outdated. They
may then become the target of malevolent parties that may exploit these
vulnerabilities (either as part of a targeted or non-targeted attack). Risks
include the theft of company secrets, unprivileged access to company equip-
ment, and sensitive data exposure, which may all lead to financial losses.

In an enterprise environment, this may explain why employers are reluctant
to adopt Android devices in their BYOD policies. It is hard to support
all the different devices and many could introduce security risks for the
company, such as data leaks. There is a significant difference in the global
Android market share (80%) and in enterprises (26%) [1, 2].

Moreover, Android devices with vulnerabilities can often be rooted to obtain
unrestricted access to the lowest device levels. This makes the devices unpre-
dictable as it is no longer possible to warrant the integrity of the device.
Using privileged root access, security measures can be easily disabled or
circumvented. The integrity and confidentiality of the MDM and company
data can no longer be warranted from that moment on.

All of the above demonstrates the need for an out-of-band update mecha-
nism that no longer relies on the vendor. The MDM solution could provide
security updates for the device in order to maintain a protected environment.
An Android agent application that is installed on the user’s device could be
created that performs patches, regardless of the underlying hardware and
OS version.

2.1 Research question

Given the arguments in the previous section, an out-of-band update mecha-
nism for mobile devices is desired. The main research question is therefore:

− In an environment where outdated devices have to be considered, such
as workplaces with a BYOD policy; is it possible to patch security
vulnerabilities in Android devices through the MDM?

Subquestions that arise during the conduction of the research are:

− How can patches be created (and applied) for the different system
architectures in an easy fashion?

7

Android patching 3 Related research

3 Related research

The most relevant research on patching Android devices was conducted by
Mulliner et al. [4] in 2013. Their solution, PatchDroid, describes in-memory
patching of both native and managed code. However, kernel-level vulnera-
bilities were not considered in this paper.

In 2010, Enck et al. [5] published a paper on TaintDroid, an information-
flow tracking system for Android by using variable-level tracking within the
Dalvik VM. This research was followed up by Sarwar et al. [6], who prove
that the effectiveness of TaintDroid is not airtight. A similar system was
developed by Egele et al. [7] for iOS, called PiOS.

In March 2014, Ho et al. [8] presented the Practial Root Exploit Contain-
ment (PREC) framework. PREC can dynamically identify system calls from
high-risk components such as third-party native libraries, and execute those
system calls within isolated threads. Hence, PREC can detect and stop root
exploits.

In May 2014, Joost Kremers [2] completed his master’s thesis on Mobile
Device Management with relation to the Android OS. He provides a frame-
work that allows to perform an evaluation of the implementation of the
MDM system. This framework is based on Keunwoo Rhee’s research and is
therefore dubbed the “Extension of Rhee’s framework” (ERF) [9, 10].

8

Android patching 4 Primer

4 Primer

In the current section, the architecture of the Android OS will be discussed
as an introduction to patching the components that the OS consists of.

4.1 Android architecture

Figure 2: Android architecture
Source: Selva Kumar, http://goo.gl/k44A5j

In the highest layer of the Android architecture, everyday Android applica-
tions can be found such as the ones that can be obtained from the Google
Play store. Applications then hook into application framework functions.
These API functions can for instance be used to obtain the current Wi-Fi
status or send text messages.

The applications and application framework are programmed in Java and
subsequently translated into an intermediary bytecode at compile-time that
can then be interpreted by the runtime.

At the moment, the Dalvik VM is the default runtime, which is soon to be
replaced by the Android Runtime (ART). ART mainly features ahead-of-
time compilation, but is still in development and only available in Android
4.4 KitKat.

9

http://goo.gl/k44A5j

Android patching 4.1 Android architecture

4.1.1 Dalvik runtime

Dalvik is a process virtual machine in which Android applications run. The
Dalvik VM runs executables in DEX (Dalvik Executable) format. The DEX
format is designed for systems that are constrained in terms of memory and
processor speed. Dalvik was originally authored by Bornstein [11] and is
open-source.

Android applications are mostly written in Java. The bytecode that is gen-
erated by the Java compiler has to be converted to Dalvik bytecode. The
Dalvik bytecode is stored in DEX and/or ODEX (Optimized DEX) format.
Since Android 2.2, Dalvik has a just-in-time (JIT) compiler [12].

Zygote is the Dalvik VM master process. Zygote is responsible for starting
and managing application processes. It preloads the shared libraries and
forks off the application processes.

The Dalvik VM does not sandbox the applications: any application can run
native code by embedding native libraries into the APK. The individual
capabilities/permissions of the application are enforced by the Linux kernel
[13].

4.1.2 ART runtime

In Android 4.4, a new experimental runtime was introduced that will even-
tually replace Dalvik: the Android RunTime (ART).

ART features ahead-of-time (AOT) compilation. When an application is
installed on a device running ART, it is compiled on the system itself. It
generates native code from the Dalvik bytecode (DEX).

This way, ART can profit of instructions that are specific for the CPU, and
ultimately gain performance wins. Disadvantages may include the need for
more storage space and a longer installation time.

10

Android patching 4.1 Android architecture

4.1.3 Android kernel

The Android kernel is largely based on the Linux kernel. It has architectural
changes that are implemented by Google outside the typical Linux kernel
development cycle, such as the inclusion of components like Binder, ashmem,
pmem, logger, and wakelocks [14].

Operating systems provide different levels of access to resources, which are
also referred to as privilege rings. The privileges are generally hardware-
enforced by the CPU at hardware or microcode level. Rings are arranged
in a hierarchy from most privileged (ring 0) to least privileged. On Android
(and Linux) systems, ring 0 refers to the kernel, whereas ring 3 refers to
user space applications. In between, device drivers can be found that may
have more privileges than user space applications, but are more restricted
than the kernel. [15]

Figure 3: Privilege rings
Source: Hertzsprung, CC BY-SA 3.0

11

http://creativecommons.org/licenses/by-sa/3.0/

Android patching 5 Hooking

5 Hooking

Android device owners are generally not given root access to the operating
system by the vendor. However, root access can be obtained by exploiting
security flaws in Android, which is used frequently by the open-source com-
munity to enhance the capabilities of their devices, but also by malicious
parties to install malware [16]. In certain cases, vendors allow rooting of
their devices and offer the methods to do so [17].

Framework and kernel vulnerabilities may exist for Android devices, and
methods will be described to patch vulnerabilities for both. This is usually
done by hooking the original functions and replacing them with a patched
version.

5.1 Runtime hooking

Framework vulnerabilities can usually be patched by hooking into the vul-
nerable functions through the runtime. This is why the terms “runtime
hooking” and “framework hooking” will be used interchangeably. The two
earlier described runtimes, Dalvik and ART, are the only ones in use on
Android at this moment. Hooking techniques for both will be discussed in
this section.

5.1.1 Dalvik hooking

Solutions are already available that hook into the Dalvik VM, open-source
as well as closed-source. Since Dalvik hooking has been researched in the
past, only an overview of the available solutions is given:

PatchDroid: DDI & ADBI

The Dalvik Dynamic Instrumentation (DDI) toolkit, which imple-
ments the concepts found in the PatchDroid paper [4], can hook
dynamically into the Dalvik VM and patch framework functions.

The Android Dynamic Binary Instrumentation (ADBI) toolkit is
based on library injection and hooking function entry points (in-line
hooking). It heavily relies on ptrace.

PatchDroid consists of a daemon, patchd, which is launched at system
startup. It monitors the system for new processes in order to apply
any necessary patches prior to process execution. Syscalls as well as
framework functions can be hooked using the PatchDroid toolkits.
Both are open-source.

12

Android patching 5.1 Runtime hooking

Xposed framework

The Xposed framework [18] modifies the /system/bin/app process

executable on Android to load a JAR file on application startup. The
classes in that JAR file will be loaded into every application process,
allowing to extend and override methods from the base framework.
Xposed is open-source.

Cydia Substrate

Cydia Substrate, developed by saurik, allows modifying and hook-
ing framework functions by preloading itself into all of the spawned
Android application processes, much like the Xposed framework does.
Substrate is closed-source.

As a proof of concept for the PatchDroid paper [4], Rekey is an Android
application that was developed to fix the Master Key vulnerability. The
Master Key vulnerability exploited a bug in the ZipFile class which could
be used to bypass signature verification of APK files, eventually leading to
root access [19].

5.1.2 ART hooking

ART is a new runtime for which no hooking system currently exists. ART
is experimental and currently completely undocumented.

On devices with ART support, the dex2oat application compiles the DEX
code found in APKs to native code. After enabling ART, a file boot.oat

containing the framework classes, will be compiled upon reboot. Just like
the Dalvik VM preloads the framework jars, this file is preloaded in all
Android applications under ART.

Hooking into ART could involve patching the framework code in-memory, or
preloading another library before boot.oat that hooks into the framework
functions. Binary patching the boot.oat file, or recompiling with changed
framework classes is a more permanent solution.

13

Android patching 5.2 Kernel hooking

In the compilation command we can find all framework libraries as they
would be found in the BOOTCLASSPATH of the Dalvik VM:

/system/bin/dex2oat

--image=/data/dalvik-cache/system@framework@boot.art

--runtime-arg -Xms64m --runtime-arg -Xmx64m

--dex-file=/system/framework/core-libart.jar

--dex-file=/system/framework/conscrypt.jar

--dex-file=/system/framework/okhttp.jar

--dex-file=/system/framework/core-junit.jar

--dex-file=/system/framework/bouncycastle.jar

--dex-file=/system/framework/ext.jar

--dex-file=/system/framework/framework.jar

--dex-file=/system/framework/framework2.jar

--dex-file=/system/framework/telephony-common.jar

--dex-file=/system/framework/voip-common.jar

--dex-file=/system/framework/mms-common.jar

--dex-file=/system/framework/android.policy.jar

--dex-file=/system/framework/services.jar

--dex-file=/system/framework/apache-xml.jar

--dex-file=/system/framework/webviewchromium.jar

--oat-file=/data/dalvik-cache/system@framework@boot.oat

--runtimearg -implicit-checks:none --instruction-set=arm

--instruction-set-features=default --base=0x70000000

--image-classes-zip=/system/framework/framework.jar

Efforts are being made by the Xposed developer rovox89 [20] to make the
Xposed framework compatible with ART. Since ART is a work in progress,
and only a preview is available to developers, Xposed will be updated once
there is a stable codebase.

5.2 Kernel hooking

Occasionally, security vulnerabilities are found in the Linux kernel. Since the
Android kernel is largely based off the Linux kernel, the same vulnerabilities
are also introduced on Android. These weaknesses can be abused to gain
illicit privileged access to the system, such as root and even ring 0 access.
Among the exploitable bugs that can be observed, overflow vulnerabilities,
race conditions, dereference vulnerabilities, and buggy drivers can be found.
Popular solutions that provide live patching of kernel vulnerabilities often
rely on the use of a Linux kernel module (LKM), as explained in the following
sections.

14

Android patching 5.2 Kernel hooking

The following solutions could be used to patch kernel vulnerabilities:

− Binary in-memory kernel vulnerability patches such as with Ksplice
using an LKM (section 5.2.1).

− Hooking addresses of variables and functions that reside in kernel space
such as with Kprobes using an LKM (section 5.2.2).

− An approach will also be introduced to dynamically patch functions in-
memory by exploiting the same vulnerabilities as the ones that have to
be patched. This approach, dubbed expatting, aims to provide device-
independent patching without the need for an LKM (section 5.2.3).

This section will discuss each solution and their viability.

5.2.1 Ksplice, kGraft, kpatch

Ksplice, kGraft and kpatch are all live kernel patching solutions. They allow
to apply security patches to a running kernel without needing to reboot the
system.

Ksplice
Ksplice (Oracle) takes as input a unified diff and the original kernel
source code, and it updates the running kernel in-memory. Ksplice
determines what code within the kernel has been changed by the source
code patch. Ksplice performs this analysis at the Executable and
Linkable Format (ELF) object code layer, rather than at the C source
code layer. The result is a loadable kernel module that performs the
patching. [21]

kGraft
The kGraft (SUSE) technology allows runtime patching of the Linux
kernel by offering tools to create patch modules. The patch module is
again a kernel module and fully relies on the in-kernel module loader
to link the new code with the kernel. This again requires the original
source code to compile against. [22]

kpatch
Kpatch (Red Hat) offers a collection of tools which convert a source
diff patch to a patch module, much like Ksplice. They work by compil-
ing the kernel both with and without the source patch, comparing the
binaries, and generating a patch module which includes new binary
versions of the functions to be replaced. The patch module is a kernel
module (.ko file) which includes the replacement functions and meta-
data about the original functions which can then be applied to the
system. [23]

15

Android patching 5.2 Kernel hooking

All of the solutions require access to the original source code to create unified
diffs. Sadly, a lot of smartphone vendors do not release their kernel sources,
even though this is in violation of the GPL [24]. When the source code is
available, a device-specific kernel module can be made. Still, it remains a
lot of work to create modules for each different device.

Some changes would have to be made to make these solutions work for the
Android kernel. Moreover, Kpatch is only supported on Linux kernels with
version 3.7 and above. On top of that, some smartphone manufacturers
disable module loading or use kernel module signature verification (e.g. the
AT&T Samsung Galaxy S4 [25]) so that third-party modules cannot be
loaded. Even if it could be made to work, it is an inflexible approach.

5.2.2 Kprobes

Kprobes is a a debugging mechanism for the Linux kernel that can be used
to dynamically hook any kernel routine and collect debugging and perfor-
mance information non-disruptively. Almost any kernel code address can
be trapped, specifying a handler routine to be invoked when the address is
called [26].

To use Kprobes, a kernel module can be built that sets traps on the func-
tions that need patching, while handling them with a patched version of the
routine. The advantage is that full kernel sources are not needed, and an
out-of-tree kernel module can be built. When building an out-of-tree LKM,
only the kernel header files are needed instead of the full sources. There
must also be a copy available of the matching module version information
and version magic before building.

Module version information is stored in a file named Module.symvers, which
is created during the kernel build. It lists all exported symbols from vmlinux

and all modules. It also lists the CRC if CONFIG MODVERSIONS is enabled
[27]. Since an out-of-tree LKM build does not involve building the actual
kernel, Module.symvers is generally not available. However, it can be (par-
tially) rebuilt if there is access to the kernel symbols (section 5.2.3.1) or the
system’s zImage [28]. Once this information is available for a certain device,
it can be reused on other devices with the same kernel.

The kernel version magic (vermagic) is also needed. When compiling the
kernel from source, the version magic information may be found in the
include/generated/utsrelease.h file. It contains parameters that are
specific to the system, and is added to every kernel module. When loading

16

Android patching 5.2 Kernel hooking

a kernel module onto a system, a check is performed to see if the LKM’s
vermagic matches the system’s. This is an extra measure to prevent incom-
patibilities. More information can also be found in section 6.2.1.3.

The module would have to be compiled for every different device, but the
approach has less dependencies since no full sources are needed. Support for
Kprobes can be enabled at compile-time with the CONFIG KPROBES kernel
configuration variable. This means that Kprobes is not necessarily available
on every device, which makes this approach once again unreliable.

5.2.3 Expatting

After observing the kernel patching solutions in the previous sections, two
disadvantages stand out: often kernel sources are not at hand, and the
created patches (in the form of loadable kernel modules) would be specific
to the device. A universal solution is needed that works in either situation.

Another way of getting ring 0 access other than through a kernel module,
is by exploiting a security vulnerability. These can be the exact same vul-
nerabilities as the ones that have to be patched later on. The approach of
exploiting followed by patching will be referred to as expatting. This is a
newly proposed term and is not used outside out of this report.

Through means of a kernel vulnerability, it may be possible to gain
read/write access to kernel memory in some circumstances. The vul-
nerable kernel functions or variables (symbols) can then be patched by
overwriting the associated memory with new object code. The addresses
or locations of these symbols are different for each kernel and are therefore
device-dependent. Consequently, these addresses have to be determined at
runtime.

5.2.3.1 Kernel symbols

User space applications (and also the kernel) do not use symbol names like
OpenFile(). Variable or function names are known by an address such as
0x34cf8000, where they can be accessed in memory.

Address space layout randomization (ASLR) may make the exact location of
where symbols can be found unpredictable. In order to prevent an attacker
from reliably jumping to a particular exploited function in memory, ASLR

17

Android patching 5.2 Kernel hooking

can randomly rearrange the positions of key data areas of a program, includ-
ing the base of the executable and the positions of the stack, heap, and
libraries, in a process’s address space. In March 2014, support for address
space randomization for the Linux kernel itself, which randomizes where the
kernel code is placed at boot time, was merged into the kernel mainline of
version 3.14 [29].

Android has had ASLR for user space applications since version 4.0. At
this moment, with the release of version 4.4.4, ASLR is not being applied on
kernel level, and symbol addresses are still being determined at compile-time
[30].

At runtime, the addresses of kernel symbols can sometimes be found in the
/proc/kallsyms (or /proc/ksyms) file. The output of /proc/kallsyms can
be seen in Table 1. However, this file may be unavailable depending on the
CONFIG KALLSYMS kernel configuration variable. The System.map file also
holds the kernel symbols, but is contained on the /boot partition, which is
likely inaccessible.

Moreover, a new sysctl1 kptr restrict was added to the kernel source tree
by Dan Rosenberg, which may hide the addresses of kernel symbols. In
his commit, the formatting string to print the kernel symbols changed from
%p %c %s to %pK %c %s. Quoting Rosenberg, the %pK format specifier is
designed to hide exposed kernel pointers, specifically via /proc interfaces.
Exposing these pointers provides an easy target for kernel write vulner-
abilities, since they reveal the locations of writable structures containing
easily triggerable function pointers. The behavior of %pK depends on the
kptr restrict sysctl [31]:

− kptr restrict = 0: no deviation from the standard %p behavior
occurs and addresses are visible by everyone.

− kptr restrict = 1: only root can view the kernel symbols, while
others see the kernel pointers printed as zeros.

− kptr restrict = 2: kernel pointers using %pK are printed as zeros
regardless of privileges (except in kernel space). This is the standard
in Android.

Another way to get the symbol locations is through any kind of memory dis-
closure or memory device and subsequently searching for the symbol table.
Getting read/write access to the kernel memory will be addressed in the
next section.

1sysctl: an interface that is used to modify kernel parameters at runtime.

18

Android patching 5.2 Kernel hooking

Table 1 Example output of unrestricted and restricted /proc/kallsyms

Unrestricted: kptr restrict = 0 Restricted: kptr restrict = 2

c0008000 T stext 00000000 T stext

c0008000 T text 00000000 T text

c000804c t create page tables 00000000 t create page tables

c0008100 t turn mmu on loc 00000000 t turn mmu on loc

c000810c T secondary startup 00000000 T secondary startup

c0008148 T secondary switched 00000000 T secondary switched

c0008154 t secondary data 00000000 t secondary data

c0008160 t enable mmu 00000000 t enable mmu

c0008180 t vet atags 00000000 t vet atags

c00081c0 T asm do IRQ 00000000 T asm do IRQ

On Samsung Galaxy S2, S3, Note 2 and some other smartphones, a char-
acter device file /dev/exynos-mem was available which gave access to all
physical memory, and was read/write for all users. A public root exploit for
this vulnerability searched for the format string %pK %c %s in memory and
replaced %pK by %p to force the display of kernel symbol pointers [32].

5.2.3.2 Read/write access to kernel memory

Several device files exist that may lend themselves for kernel memory reading
and writing.

The character device file /dev/mem is an image of the main memory. It may
be used to examine (and even patch) the system. Byte addresses are inter-
preted as physical memory addresses [33]. If the kernel configuration variable
CONFIG STRICT DEVMEM is set to enabled, user space access to /dev/mem will
be limited to memory mapped peripherals [34]. Moreover, some smartphone
vendors have patched the source code to completely remove the /dev/mem

device file.

The file /dev/kmem is the same as /dev/mem, except that the kernel virtual
memory rather than the physical memory is accessed. It is possible that the
kernel has been configured with CONFIG DEVKMEM disabled, in which case this
device will not be accessible.

When CONFIG PROC KCORE is enabled, the system will have a /proc/kcore

device file which corresponds to the system’s physical memory. It returns
data in the core dump file format. It does not provide an interface to write
to kernel memory, and can only be used for reading memory.

19

Android patching 5.2 Kernel hooking

In case none of these character devices are available, it is still possible to
resort to a kernel vulnerability that may leak kernel memory (e.g. CVE-
2013-6282 [35]).

5.2.3.3 Kernel exploiting and patching

To exploit and patch kernel vulnerabilities, techniques of rootkits can be
used. Most rootkits traditionally perform system call hooking by swapping
out function pointers in the system call table [36]. Not coincidentally, this
same technique can be used for replacing vulnerable functions with a patched
version.

Once there is write access to kernel memory, privilege escalation can be
accomplished using the common technique of overwriting and triggering a
kernel function pointer with the address of a payload in userspace. A root
shell can then be spawned to fix framework vulnerabilities from.

Despite an effort to make all possible function pointers in the kernel read-
only, certain design patterns still leave ample opportunity for exploitation.
For example, by overwriting a function pointer within the ptmx fops struct
(which is not in read-only memory) associated with /dev/ptmx, it is possible
to subsequently trigger the pointer with a call to fsync [37].

To achieve privilege escalation, the struct cred is the basic unit of ”cre-
dentials” that the kernel uses to keep track of what permissions a process
has. What user it is running as, what groups it is in, etc. The syscall
prepare kernel cred will allocate and return such a struct with full privi-
leges, intended for use by in-kernel daemons. Using commit cred, the pro-
vided credentials can then be applied to the current process, thereby giving
full permissions [38].

To determine the addresses of commit creds, prepare kernel cred and
ptmx fops, these symbols have to be resolved. This process was described
in section 5.2.3.1.

A few kernel exploiting frameworks exist that may make the exploiting step
easier. Most notably spender ’s (Brad Spengler) Enlightenment framework
[39], and the Android rooting tools by hiikezoe (Hiroyuki Ikezoe) and fi01.

Patching the kernel can be done the same way as exploiting: swapping out
the function pointer in the system call table, or by overwriting the vulnerable
routine in-memory.

20

Android patching 5.2 Kernel hooking

5.2.3.4 Kernel protections

In some cases, additional security measures have been taken that make the
exploiting step tougher.

In Android 4.3, Security-Enhanced Linux (SELinux) was introduced to
enforce Mandatory Access Control (MAC) over all processes [40]. SELinux
can operate in one of two global modes: permissive mode, in which per-
mission denials are logged but not enforced, and enforcing mode, in which
permission denials are both logged and enforced. In Android 4.3, SELinux
was fully permissive. In Android 4.4, SELinux was set to enforcing mode
for several root processes: installd, netd, vold and zygote. All other
processes, including all regular Android applications, remain in permissive
mode to allow further evaluation of SELinux.

Some initiatives have looked into Android kernel hardening with grsecurity,
such as AniDroid-Hardened [41]. Grsecurity consist of a set of patches for
the Linux kernel that offer role-based access control, can frustrate and log
exploit attempts, restrict access to certain syscalls, and hide information
from /proc. Its PaX component can also provide ASLR for both user and
kernel space, advanced bounds checking, memory erasure on free, and pre-
venting execution of writable memory [42].

On x86 systems, there is a write protection bit that can be applied to kernel
memory pages. Attempting to overwrite these read-only marked pages will
result in a kernel oops2.

However, most Android devices are based on the ARM architecture and do
not enforce read-only kernel page permissions. On the other hand, one point
of interest is that ARM CPUs utilize a data cache and instruction cache for
performance benefits. Modifying code in-place may cause the instruction
cache to become incoherent with the actual instructions in the memory.
The solution is to flush the instruction cache whenever a modification to
kernel code is made, which is accomplished by a call to the kernel routine
flush icache range [36].

The NX bit, which stands for No-eXecute, is a technology used in CPUs to
segregate areas of memory for use by either storage of processor instructions
or for storage of data. This feature is in use on both x86 (as the XD-bit) and
ARM version 6 and onwards (as the XN-bit) [43]. On Android, when the
NX bit is supported, the syscall vmalloc exec can be used to get a memory
block with full access, or to adjust the access. For processors or operating
systems that do not support the NX bit, execution of code is implicitly
allowed [44].

2Kernel oops: a problem that arises in the kernel. In case one leads to a kernel crash,
the term “kernel panic” is used.

21

Android patching 5.3 Boot hooking

5.3 Boot hooking

Since the proposed expatting techniques fix vulnerabilities in-memory, the
patches will not persist after a system reboot. In this section, several strate-
gies will be discussed on how to apply patches on boot, leaving the base
system as intact as possible. Exploits and patches should be saved locally
on the device so that there is no need to download them on every boot.

There are a few obstacles that have to be overcome, and each approach has
its own advantages and disadvantages.

5.3.1 Obstacle: dm-verity

An example of an obstacle is device-mapper-verity (dm-verity). Android
4.4 supports verified boot through the optional dm-verity kernel feature.
Device-mapper is a Linux kernel framework that provides a generic way to
implement virtual block devices. It is used to implement volume manage-
ment (LVM), full-disk encryption (dm-crypt), and in this case: transparent
block device integrity checking (dm-verity). [45, 46]

The dm-verity feature looks at the block device, the underlying storage layer
of the file system, and determines if it matches its expected configuration.
It does this using a cryptographic hash tree. For every block (typically
4k), there is a SHA256 hash. This way, dm-verity may help to protect
against persistent rootkits that can hold onto root privileges and compromise
devices.

On Android, dm-verity is applied to the /system partition, which makes it
impossible to make persistent system changes. Since it is no longer possible
to write to e.g. the /system/bin/app process binary, it becomes harder to
hook into the runtime or onto the system boot.

5.3.2 Approach: broadcast receiver

Android applications can hook into the BOOT COMPLETED broadcast. It
is a non-ordered broadcast, meaning that it is sent to applications asyn-
chronously in an undefined order. This broadcast is sent right after the sys-
tem has started, and can be caught by implementing a BroadcastReceiver

in the Android application. The Expat MDM agent can then proceed by
patching the vulnerabilities. Since other applications can also hook into
this broadcast, a race condition exists in which a malicious application can
misuse a vulnerability right before the Expat MDM agent gets to action.

The current Rekey implementation, as discussed in section 5.1.1, also listens
to the BOOT COMPLETED broadcast, and is consequently vulnerable for this
race condition.

22

Android patching 5.3 Boot hooking

5.3.3 Approach: modifying init files

A key component of the Android bootup sequence is the init program,
which initializes elements of the Android system. It is different from regular
Linux distributions which usually use some combination of /etc/inittab

and SysV init levels [47].

The init process examines two files, init.rc and init.$device.rc, and
executes the commands it finds in them. The first file is used for generic
initialization instructions, while the latter is intended to provide device-
specific initialization instructions.

Modifying the init.rc files is not straight-forward. They are part of the
ramdisk and not the system partition. This means that at boot, the init.rc
file stored in the ramdisk will be used, and whatever changes are made to
init.rc will not be reflected as the file is overwritten. Making changes to
the init.rc file requires unpacking the boot image, unpacking the ramdisk,
editing the init.rc file, repacking the ramdisk, and repacking the boot
image.

However, many manufacturers and ROM makers call their own init scripts
from init.rc. These may execute scripts that are found in the /etc/init.d
or /etc/rc.d directory. These init script may lend themselves for boot
hooking, as commands can be appended to them. There is no guarantee that
own init scripts are actually used, which makes this approach unreliable.

5.3.4 Approach: modifying app process binary

The earlier discussed init.rc file starts the Zygote daemon via the
/system/bin/app process binary. As explained in section 4.1.1, Zygote is
responsible for starting and managing application processes. Since Zygote
preloads the Android application framework, it is a good hooking point.
The Zygote process runs as root, and can therefore also be used to launch
other boot hooks from.

The Xposed framework uses the app process binary to hook into the run-
time and override or extend framework functionality. For this, the orig-
inal source code has to be modified and recompiled with the necessary
changes. The Zygote daemon could for instance always give priority to
the BOOT COMPLETED broadcast receiver of the Expat MDM agent, which
solves the race condition in section 5.3.2.

23

Android patching 5.3 Boot hooking

The downside is that the implementation of the app process binary may
change over time, and different versions for each Android version and archi-
tecture have to be compiled (but not for every different device).

To modify files on the /system partition, the partition has to be remounted
with read-write rights. Furthermore, this approach cannot be used when dm-
verity is enabled, as the binary is contained in the /system/bin directory.
Verification of the /system partition will fail in this case.

5.3.5 Overview

A combination of the three boot hooking techniques could be used to add a
boot hook that is both safe (no race conditions) and reliable. Table 2 gives
an overview of the up- and downsides of the discussed approaches.

On devices with dm-verity enabled, init scripts could still offer a way to hook
onto the system boot. If dm-verity is disabled, the most reliable way would
be to modify the app process binary. At all times, a broadcast receiver
should be used that hooks onto the BOOT COMPLETED broadcast. In case the
init script or the Zygote binary failed to call the boot hook, there is always
a backup solution. The broadcast receiver can also pick up on this failure
(by checking if the other boot hook was executed) and subsequently try a
different hooking strategy or init file to hook into.

Table 2 Boot hook strategy comparison

Strategy Pros Cons

init script + cross-platform − init.rc overwritten on boot
− init scripts not necessarily

available

app process
binary

+ always in the
same place

− dm-verity
− architecture specific

broadcast
receiver

+ cleanest − allows race condition

24

Android patching 6 Expat MDM

6 Expat MDM

In general for MDM solutions, there is a central server that issues commands
and receives status messages. The mobile device has an agent application
installed that listens and acts on the received commands. The agent appli-
cation can for instance enforce policy settings and report events.

When an MDM solution is capable of using the aforementioned exploit tech-
niques to apply patches, it will be referred to as an expat(-capable) MDM
solution in this section.

The structure of a typical Expat MDM setup is shown in Figure 4. Just like
in a regular MDM setup, the MDM server and MDM agent can be found, but
get complemented by extra functionality for expatting. The agent reports
system information to the server and receives a set of patches that should
be applied, along with the needed exploits to do so.

Figure 4: Agent-server Expat MDM setup

Details will be given on both components and what the device life cycle of
an Expat MDM solution in the enterprise would look like, concluding with
a proof of concept implementation of these ideas.

25

Android patching 6.1 Server component

6.1 Server component

The Expat MDM server component receives status messages and system
information that is submitted by the agent application. The set of patches
that should be applied can then be determined for that device, along with
the exploits that are likely to work.

The database that powers the Expat MDM server, as found in Figure 4,
contains details about exploits and patches, such as:

− The exploit or patch type: e.g. code execution, information disclosure.
− The exploit or patch target: either the runtime or the kernel.
− Affected versions: version of the application framework or kernel.
− Affected architectures: in case of a kernel exploit, it may be specific

to a certain system architecture, e.g. ARM.
− A link to the exploit or patch as compiled native binary object.

The business logic contained in the server component uses this data to deter-
mine which exploits and patches are suitable for the device that it is cur-
rently connected to. Priority should be given to exploits that are likely to
succeed and unlikely to cause kernel panics. For example, some exploits may
require a race condition that only occurs under certain circumstances. Suc-
cessful exploitation may depend on the hardware or the compile-time kernel
settings. Moreover, an exploit may overwrite parts of kernel memory while
it is in use by another process, leading to undefined behavior or a crash.
These are situations that should be avoided altogether by choosing correct
priorities for available exploits. It may be acceptable to allow exploits that
can lead to crashes by listening to kernel messages, and only disabling them
if they actually cause problems (section 6.2.2).

6.2 Agent component

The agent component is an Android application that is installed onto the
user’s device and communicates with the server. It gathers all kinds of
system information that are of interest to the expatting process, and submits
this to the MDM server.

This information only has to be gathered once for the system. In case
when ROM updates are pushed, the information gathering process should
be done over. A caching mechanism should be in place that remembers
this information, while saving the downloaded patches and exploits to a
local directory. The patches can then be applied on boot without having to
contact the MDM server first.

The proof of concept Expat MDM agent implementation, addressed in sec-
tion 6.4, also provides code for the server communication and information
gathering that is dealt with in the following sections.

26

Android patching 6.2 Agent component

6.2.1 Information gathering

The MDM agent will gather system information such as the kernel version
and which runtime is in use. Note that there are no additional application
permissions needed for the agent to discover this information, or any of the
information in the following sections.

Determining if security measures such as SELinux, grsecurity or LKM sign-
ing are in use, may also be of interest, but is currently out of the scope of
this paper.

6.2.1.1 Miscellaneous information

The most important relevant information can be easily queried using the
built-in Java system property functions. Information that can be gathered
through the System.getProperty function includes, but is not limited to:
the Linux kernel version, the Android OS version, the architecture, and the
device make and model (see Table 3).

Table 3 Android system properties

Property Description Example

android.release The Android OS version 4.2.1
android.sdk The SDK version of the framework 17
os.arch The system architecture armv7l
os.version The Linux kernel version 2.6.32
build.brand The consumer-visible brand JIAYU
build.manufacturer The device manufacturer JYT
build.model The device model JY-G5

6.2.1.2 Determining the runtime

Knowing which runtime is in use is important for determining how frame-
work vulnerabilities should be patched. The process of patching framework
vulnerabilities is different under Dalvik than it is under ART, as they are
fixed by hooking into the runtime.

Reading the system property java.vm.name currently returns “Dalvik”
regardless of which runtime is in use. It is possible that this behavior will
change once ART is no longer in its infancy.

27

Android patching 6.2 Agent component

As a workaround, the class android.os.SystemProperties provides an
interface similar to System.getProperty, which reveals a property called
persist.sys.dalvik.vm.lib. It returns libdvm.so for the Dalvik VM or
libart(d).so for ART, and is currently the most reliable way of determin-
ing the used runtime. The class is not being exported as part of the public
SDK, but can still be accessed using Java Reflection.

6.2.1.3 Linux vermagic string

If the kernel supports module loading, a Linux kernel module (LKM) may
be loaded to gain access to kernel memory. The downside is that LKMs are
system specific.

As briefly mentioned in section 5.2.2, one of the complications in building
an out-of-tree kernel module is that the vermagic string contained in the
kernel object file must match the system’s version magic.

The vermagic string contained in a Linux kernel module may look as follows:

3.4.5 SMP preempt mod unload ARMv7

This string means that the kernel was compiled for ARM devices against
the codebase of version 3.4.5 with support for Symmetric Multi Process-
ing (SMP), preemptive multitasking (PREEMPT), and module unloading
(mod unload).

The command uname -a may inform on version information of which the
output will look as follows:

Linux localhost 3.4.5 #1 SMP PREEMPT Thu Oct 31 16:13:14 CST

2013 armv7l GNU/Linux

However, this string is incomplete (e.g. mod unload is not supplied) and
does not report the exact vermagic as the LKM would expect it to find.

The /system/lib/modules directory on Android devices usually contains
kernel modules, and is also readable by Android applications. Since the
vermagic string can be found inside the kernel object files (.ko), it suffices
to scan the directory for files ending in this extension, and to locate the
vermagic string in one of them.

28

Android patching 6.2 Agent component

6.2.1.4 Status of dm-verity

Kernels that are compiled with dm-verity will not allow changes to the
/system directory. This complicates boot hooking in a reliable way (section
5.3).

Among the steps to enable the verified boot process, developers are required
to add a verify flag to the device’s fstab file in order to enable block
integrity verification for the system partition.

A line in the fstab file would look like as follows to support dm-verity:

/dev/block/platform/msm sdcc.1/by-name/system /system ext4

ro, barrier=1 wait,verify

Reading the fstab file and checking for the verify flag could thus be a way
to detect whether dm-verity is enabled.

For Android 4.2.2 and earlier, the device-specific vold.fstab configuration
file defines mappings from sysfs devices to filesystem mount points. For
Android releases 4.3 and later, the various fstab files used by init, vold
and recovery were unified in the /fstab.$device file [48]. The following
locations could be searched for readable fstab files:

− /fstab.$device

− /fstab.$device.rc

− /etc/vold.conf

− /etc/vold.fstab

− /etc/fstab

Besides locating the fstab file, the veritysetup binary may be found in the
PATH. The veritysetup command is used to configure dm-verity managed
device-mapper mappings. The availability of this command could indicate
that dm-verity is enabled.

6.2.2 Expatting process

The exploits and patches that the MDM agent receives from the server are
in a binary format that is specific to the architecture. These binary objects
can either be in the form of a shared libray or native executable. The objects
are downloaded and saved to the application’s files directory.

29

Android patching 6.3 Expat device life cycle

In case the object is a shared library, it should contain JNI bindings to be
able to talk to the Android Java application. Using a shared object has as
downside that JNI exported functions should be defined beforehand in the
Java application. This can be circumvented by using a wrapper library with
predefined JNI exports that loads other shared libraries using dlopen. A
major downside is that if a shared object causes an error, it will cause the
whole Android application to crash.

Using a native executable may therefore be a better choice than a shared
library. As an extra step, the read/execute bits for the binary should be
set with the chmod utility. The binary can then be executed using the
Runtime.getRuntime().exec() function. In this case, the process is forked
off from the main Android application. This provides an extra layer of
resilience against errors, and will not cause the whole Android application
to crash if the forked process crashes.

Since applications cannot write outside their folder except for the SD card,
and the SD card is mounted with the noexec flag, only the application’s
files directory should be used to save native executables.

When exploiting is successful, a list of kernel symbols can be extracted from
memory. This list should be saved, as it can speed up subsequent expatting
after a reboot. It is also of interest for use on other devices with the same
kernel.

Patches should be applied in a fault tolerant way. If exploits or patches are
poorly programmed, they make cause kernel oopses and even kernel panics.
For this reason, the procfile /proc/kmsg should be closely monitored, which
is where kernel events will show up. In case of a kernel panic, messages from
the previous boot can be found in /proc/last kmsg. When a kernel panic
is detected, the exploit or patch that led to the crash can be disabled.

6.3 Expat device life cycle

This section describes the life cycle of a device if it would be used in an Expat
MDM environment. The focus is on use within the enterprise, although the
same concepts can be applied on any MDM solution that exists outside a
work environment.

30

Android patching 6.3 Expat device life cycle

Figure 5: MDM device life cycle

The following device states can be distinguished when considering the life
cycle of an Expat MDM device:

Enroll
An employee would like to use an own device for company purposes.
The user chooses to agree with the enrollment and monitoring proce-
dures. Enrollment steps are taken to allow the device onto the com-
pany network. This includes examining the smartphone if it meets all
requirements. E.g. the device is not rooted and contains no malware.

Configure
The Expat MDM agent is installed onto the device. It enrolls itself
with the MDM server, gathers device details, and sends these to the
server. Initial exploiting and patching occurs, and a boot hooking
strategy is determined.

Monitor
The device is being monitored for new threats, either by periodically
checking with the MDM server or by pushing new updates to the
device. Policy updates and security patches are applied as they come
in.

Retire
The device is taken out of the MDM monitoring cycle. The agent
is removed and any possible boot hooks or system modifications are
reverted. The device can now be repurposed for use outside of the
enterprise environment.

In regard to the Evard machine life cycle [49], an additional Unknown state
could be added to the Expat MDM life cycle. For instance, having a rooted
device can have implications on the integrity and workings of the MDM
agent and its monitoring cycle. Rooted devices cause a certain entropy (e.g.

31

Android patching 6.4 Proof of concept

unreliable status information) that results in an Unknown device state. If
the device is rooted even before the enrollment process, there is always
additional entropy that has to be taken into account.

When the user decides to perform a manual firmware update, or when the
manufacturer pushes an OTA update, the device goes back to the Configure
state. Device details are gathered anew after which the correct exploiting,
patching, and boot hooking strategies are determined, as they may have
changed after the update.

6.4 Proof of concept

The expatting techniques introduced in this paper were consolidated into
a proof of concept Expat MDM solution. The proof of concept consists
of a server and agent component, and demonstrates how an Expat MDM
solution would be used in real-world situations. The agent application is
able to download exploits and patches from a central MDM server and apply
them.

The server component for this proof of concept was written in NodeJS. It
uses the Express web application framework to serve API requests. The
Expat DB is an in-memory SQLite database that is accessed from the main
app through the Sequelize ORM as extra abstraction layer.

The MDM agent is an Android application that gathers system information
as described in section 6.2.1.

The POC contains a sample exploit and patch for CVE-2013-6282. It is
compiled as a shared object from C code with JNI bindings. The exploit
description, as originally reported by Catalin Marinas [35]:

The (1) get user and (2) put user API functions in the Linux kernel before 3.5.5
on the v6k and v7 ARM platforms do not validate certain addresses, which allows
attackers to read or modify the contents of arbitrary kernel memory locations
via a crafted application, as exploited in the wild against Android devices in
October and November 2013.

The demo code can be found in an online code repository (Appendix A).

32

Android patching 7 Practical evaluation

7 Practical evaluation

The discussed techniques can be combined to create a device-independent
vulnerability exploit-patching framework. There is no need to load a device-
specific kernel module.

During the creation of a patch, assembly code is often used to perform in-
memory code replacement. This means that although the patch can work
regardless of the kernel compile-time symbols, the code may still have to
be adapted for other architectures. Most Android devices are running on
ARM, but this may change in the future.

The low-level character of the exploits and patches may cause kernel pan-
ics when offsets in memory are not carefully chosen. There is a need for
fault tolerance: patches should be applied very carefully in order not to
disturb the normal functioning of the system. The patches should contain
verification routines to check if the patch has been applied correctly.

The in-memory patching nature of expatting is by default non-permanent,
and if things go wrong, a reboot is enough to revert to a clean system.
However, when using boot hooks, persistent changes can be made to the
system to increase the reliability of expatting.

Some kernel vulnerabilities are race conditions that may take a while to gain
kernel-level access. If the proposed techniques were to be applied on boot,
this may make the startup time significantly longer.

33

Android patching 8 Ethical considerations

8 Ethical considerations

Some of the proposed techniques can also be found in malicious software
such as rootkits that have the intention to gain unwanted privileged access
to devices. As always “with great power comes great responsibility” applies:
a malicious Android application could obtain the same elevated privileges
as the MDM agent without needing additional user intervention (through
means of an exploit). That application could then misuse the privileges (e.g.
destroy or steal data) whereas the Expat MDM agent can patch these exact
vulnerabilities that led to the exploit.

In a BYOD setting, employees would first have to sign a consent form that
states their awareness of the implications of having the MDM agent installed
onto their devices. The techniques proposed in this paper make it possible to
obtain privileged access (and thus also access to private data). These same
techniques shall not be used for anything other than is needed to protect
the device from the predefined or emerging vulnerabilities/threats.

An Android application that exploits/patches security vulnerabilities such
as the proposed Expat MDM agent is not necessarily an enterprise solution,
but can also be offered to individuals. In this case, the developer/vendor of
the application should clearly state the earlier concerns. It is then up to the
end user to trust the vendor to not abuse the obtained privileges.

Lastly, an application that implements the proposed expatting techniques
can possibly not be released onto the Google Play store. X-Ray3, a vul-
nerability scanner for Android, was disallowed from the Play store for not
complying with the content policy.

The Expat MDM agent could be classified under the Dangerous Products or
System Interference section of the Google Play content policy4. Especially
the following items cause concern:

− Don’t transmit or link to viruses, worms, defects, trojan horses, mal-
ware, or any other items that may introduce security vulnerabilities
to or harm user devices, apps, or personal data.

→ The Expat MDM agent retrieves exploits and patches from a cen-
tralized server, which makes it incompatible with the Google Play
content policy.

3http://www.xray.io
4https://play.google.com/about/developer-content-policy

34

Android patching 8 Ethical considerations

− An app downloaded from Google Play may not modify, replace or
update its own APK binary code using any method other than Google
Play’s update mechanism.

→ The exploits and patches that are received from the central server
are binary object files that will be executed. It is unclear whether this
would be an actual problem.

− An app downloaded from Google Play (or its components or derivative
elements) must not make changes to the user’s device outside of the
app without the user’s knowledge and consent.

→ As long as the user consents to the expatting process, this condition
is complied with.

The agent can still be pushed to devices in a BYOD environment that uses
an in-house application store. There are also alternative application markets
that may not impose the same restrictions and allow the Expat MDM agent
without further concerns.

35

Android patching 9 Conclusion

9 Conclusion

Runtime and kernel hooking techniques (section 5) can be used to patch
vulnerabilities in Android devices. Hooking solutions for the Dalvik run-
time already exist (section 5.1). Several approaches are discussed to hook
vulnerable functions in the kernel (section 5.2).

The proposed expatting techniques for the kernel can leverage weaknesses
in the system to gain privileged access to the device and subsequently patch
vulnerabilities in-memory (section 5.2). Hooking of vulnerable functions is
possible by resolving kernel symbols at runtime (section 5.2.3.1). The oper-
ating system can then be patched from user space by using vulnerabilities
or character device files that lend access to kernel memory (section 5.2.3.2).
This device-independent method no longer requires the explicit need for the
original kernel sources, or the loading of kernel modules. Because vulnera-
bilities are patched in-memory, patches have to be applied on each system
boot (section 5.3).

Thanks to expatting, the vendor can be cut out, and the responsibility of
bringing out patches can be transferred to the MDM solution (section 6).
It offers a way to bring outdated Android devices up-to-date with the latest
security fixes. The MDM agent gathers system details (section 6.2.1) that
can be used by the MDM server to determine which patches should be
applied on the device (section 6.1). An overview is given on what the life
cycle of a device would look like as part of an expat-capable MDM solution
(section 6.3).

There are a few difficulties that have to be overcome such as possible secu-
rity measures (section 5.2.3.4), reliable boot hooking (section 5.3.5) and
resilience against kernel panics (section 6.2.2). By carefully creating the
exploits and patches, the latter can in most cases be overcome (section 7).

The implementation of the Expat MDM application (section 6.4) proves that
the concept of expatting is feasible: it uses the same security vulnerability
to exploit and subsequently patch the system. It also offers a basis for the
creation of MDMs that employ the same expatting techniques.

36

Android patching 10 Future work

10 Future work

This paper was mostly focused around kernel vulnerability patching. Since
ART is poised to become the new default Android runtime, vulnerability
research and hooking techniques to bring out patches for ART will be needed.
Other kernel exploiting techniques are out there and may also be interesting
to add to the ones mentioned.

Furthermore, researchers will have to observe how the use of security mea-
sures on Android, such as SELinux, dm-verity and ASLR, will affect expat-
ting in the future.

Lastly, no database of security vulnerability exploits and patches currently
exists for kernel nor framework vulnerabilties. If expatting would be used
in the real world, such a database is needed.

37

Android patching 11 References

11 References

[1] TechCrunch and Natasha Lomas. Android Still Growing Market Share By
Winning First Time Smartphone Users. http://goo.gl/FJKHC6.

[2] Joost Kremers. Security Evaluation of Mobile Device Management Solutions.
Master’s thesis, Radboud Universiteit Nijmegen, 2014.

[3] Terrence Cosgrove, Rob Smith, Chris Silva, Bryan Taylor, John Girard, and
Monica Basso. Magic Quadrant for Enterprise Mobility Management Suites.
Gartner G00211101, April, 2014. https://info.mobileiron.com/gartner-magic-
quadrant-2014-content.html.

[4] Collin Mulliner, Jon Oberheide, William Robertson, and Engin Kirda. Patch-
Droid: scalable third-party security patches for Android devices. In Proceed-
ings of the 29th Annual Computer Security Applications Conference, pages
259–268. ACM, 2013. http://www.mulliner.org/collin/academic/publications/
patchdroid.pdf.

[5] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol Sheth. TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smartphones. In OSDI, vol-
ume 10, pages 1–6, 2010. http://appanalysis.org/tdroid10.pdf.

[6] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Dali Kaafar. On the
Effectiveness of Dynamic Taint Analysis for Protecting Against Private Infor-
mation Leaks on Android-based Devices. In 10th International Conference
on Security and Cryptography (SECRYPT), 2013. http://www.nicta.com.au/
pub?doc=6865.

[7] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In NDSS, 2011. http://www.
seclab.tuwien.ac.at/papers/egele-ndss11.pdf.

[8] Tsung-Hsuan Ho, Daniel Dean, Xiaohui Gu, and William Enck. PREC: prac-
tical root exploit containment for android devices. In Proceedings of the 4th
ACM conference on Data and application security and privacy, pages 187–198.
ACM, 2014. http://dance.csc.ncsu.edu/papers/codespy14.pdf.

[9] Keunwoo Rhee, Woongryul Jeon, and Dongho Won. Security Requirements
of a Mobile Device Management System. International Journal of Security &
Its Applications, 6(2), 2012. http://www.sersc.org/journals/IJSIA/vol6 no2
2012/49.pdf.

[10] Keunwoo Rhee, Dongho Won, Sang-Woon Jang, Sooyoung Chae, and Sangwoo
Park. Threat modeling of a mobile device management system for secure smart
work. Electronic Commerce Research, 13(3):243–256, 2013.

[11] Dan Bornstein. Dalvik VM internals. In Google I/O Developer Conference,
volume 23, pages 17–30, 2008. https://sites.google.com/site/io/dalvik-vm-
internals/.

[12] Dan Bornstein. Android Developers Blog: Dalvik JIT. http://android-
developers.blogspot.nl/2010/05/dalvik-jit.html.

38

http://goo.gl/FJKHC6
https://info.mobileiron.com/gartner-magic-quadrant-2014-content.html
https://info.mobileiron.com/gartner-magic-quadrant-2014-content.html
http://www.mulliner.org/collin/academic/publications/patchdroid.pdf
http://www.mulliner.org/collin/academic/publications/patchdroid.pdf
http://appanalysis.org/tdroid10.pdf
http://www.nicta.com.au/pub?doc=6865
http://www.nicta.com.au/pub?doc=6865
http://www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf
http://www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf
http://dance.csc.ncsu.edu/papers/codespy14.pdf
http://www.sersc.org/journals/IJSIA/vol6_no2_2012/49.pdf
http://www.sersc.org/journals/IJSIA/vol6_no2_2012/49.pdf
https://sites.google.com/site/io/dalvik-vm-internals/
https://sites.google.com/site/io/dalvik-vm-internals/
http://android-developers.blogspot.nl/2010/05/dalvik-jit.html
http://android-developers.blogspot.nl/2010/05/dalvik-jit.html

Android patching 11 References

[13] Bas Alberts and Massimiliano Oldani. Beating up on Android. http://www.
infiltratecon.net/infiltrate/archives/Android Attacks.pdf.

[14] Patrick Brady. Anatomy & physiology of an android. In Google I/O Devel-
oper Conference, 2008. http://androidteam.googlecode.com/files/Anatomy-
Physiology-of-an-Android.pdf.

[15] Wikipedia. Protection ring. http://en.wikipedia.org/wiki/Protection ring.

[16] Jools Whitehorn. Android malware gives itself root access.
http://www.techradar.com/news/phone-and-communications/mobile-
phones/android-malware-gives-itself-root-access-1062294.

[17] Wikipedia. Android rooting. http://en.wikipedia.org/wiki/Android rooting.

[18] Rovo89. XDA-Developers: Xposed - ROM modding without modify-
ing APKs. http://forum.xda-developers.com/xposed/framework-xposed-rom-
modding-modifying-t1574401.

[19] Jeff Forristal. Android: One root to own them all. Black Hat USA,
2013. https://media.blackhat.com/us-13/US-13-Forristal-Android-One-Root-
to-Own-Them-All-Slides.pdf.

[20] Rovo89. XDA-Developers: The ART of patience. http://forum.xda-
developers.com/showpost.php?p=49979752.

[21] Wikipedia. Ksplice. http://en.wikipedia.org/wiki/Ksplice.

[22] Wikipedia. kGraft. http://en.wikipedia.org/wiki/KGraft.

[23] Red Hat. kpatch: dynamic kernel patching. https://github.com/dynup/
kpatch.

[24] Wikipedia. Linux kernel: Legal aspects. http://en.wikipedia.org/wiki/Linux
kernel.

[25] jeboo. XDA-Developers: BypassLKM: bypass module signature verification
on TW 4.3. http://forum.xda-developers.com/showthread.php?t=2578566.

[26] Jim Keniston and Prasanna S. Panchamukhi. Kernel debugging with kprobes.
https://www.kernel.org/doc/Documentation/kprobes.txt.

[27] Kernel.org. Building External Modules. https://www.kernel.org/doc/
Documentation/kbuild/modules.txt.

[28] Mike Hommey. Building a Linux kernel module without the exact kernel head-
ers. http://glandium.org/blog/?p=2664.

[29] Wikipedia. Address space layout randomization. http://en.wikipedia.org/
wiki/Address space layout randomization.

[30] Jon Oberheide. Exploit Mitigations in Android Jelly Bean 4.1. https://www.
duosecurity.com/blog/exploit-mitigations-in-android-jelly-bean-4-1.

[31] Dan Rosenberg. kptr restrict for hiding kernel pointers from unprivi-
leged users. https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/
commit/?id=455cd5ab305c90ffc422dd2e0fb634730942b257.

[32] MWR Labs. Extra modules for the Mercury Android Security Assessment
Framework. https://github.com/mwrlabs/mercury-modules.

39

http://www.infiltratecon.net/infiltrate/archives/Android_Attacks.pdf
http://www.infiltratecon.net/infiltrate/archives/Android_Attacks.pdf
http://androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf
http://androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf
http://en.wikipedia.org/wiki/Protection_ring
http://www.techradar.com/news/phone-and-communications/mobile-phones/android-malware-gives-itself-root-access-1062294
http://www.techradar.com/news/phone-and-communications/mobile-phones/android-malware-gives-itself-root-access-1062294
http://en.wikipedia.org/wiki/Android_rooting
http://forum.xda-developers.com/xposed/framework-xposed-rom-modding-modifying-t1574401
http://forum.xda-developers.com/xposed/framework-xposed-rom-modding-modifying-t1574401
https://media.blackhat.com/us-13/US-13-Forristal-Android-One-Root-to-Own-Them-All-Slides.pdf
https://media.blackhat.com/us-13/US-13-Forristal-Android-One-Root-to-Own-Them-All-Slides.pdf
http://forum.xda-developers.com/showpost.php?p=49979752
http://forum.xda-developers.com/showpost.php?p=49979752
http://en.wikipedia.org/wiki/Ksplice
http://en.wikipedia.org/wiki/KGraft
https://github.com/dynup/kpatch
https://github.com/dynup/kpatch
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Linux_kernel
http://forum.xda-developers.com/showthread.php?t=2578566
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kbuild/modules.txt
https://www.kernel.org/doc/Documentation/kbuild/modules.txt
http://glandium.org/blog/?p=2664
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://en.wikipedia.org/wiki/Address_space_layout_randomization
https://www.duosecurity.com/blog/exploit-mitigations-in-android-jelly-bean-4-1
https://www.duosecurity.com/blog/exploit-mitigations-in-android-jelly-bean-4-1
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=455cd5ab305c90ffc422dd2e0fb634730942b257
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=455cd5ab305c90ffc422dd2e0fb634730942b257
https://github.com/mwrlabs/mercury-modules

Android patching References

[33] About.com. Linux / Unix Command: mem. http://linux.about.com/library/
cmd/blcmdl4 mem.htm.

[34] Android Git. Kernel hacking Kconfig.debug. https://android.googlesource.
com/kernel/common/+/android-3.0/arch/unicore32/Kconfig.debug.

[35] MITRE. CVE-2013-6282. http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-6282.

[36] Michael Coppola. Suterusu rootkit: Inline kernel function hooking on x86
and ARM. http://www.poppopret.org/2013/01/07/suterusu-rootkit-inline-
kernel-function-hooking-on-x86-and-arm/.

[37] Michael Coppola. CSAW CTF 2013 kernel exploitation challenge. http://www.
poppopret.org/2013/11/20/csaw-ctf-2013-kernel-exploitation-challenge/.

[38] Nelson Elhage. Much ado about NULL: Exploiting a kernel NULL dereference.
https://blogs.oracle.com/ksplice/entry/much ado about null exploiting1.

[39] Brad Spengler. Enlightenment - Linux Null PTR Dereference Exploit Frame-
work. http://www.exploit-db.com/exploits/9627/.

[40] Android Source. Validating Security-Enhanced Linux in Android. http://
source.android.com/devices/tech/security/se-linux.html.

[41] Novic dev. XDA-Developers: AniDroid-hardened kernel. http://forum.xda-
developers.com/nexus-s/development/kernel-anidroid-hardened-t1525257.

[42] Richard Carback. Understanding Linux kernel vulnerabilities. http://www.
csee.umbc.edu/courses/undergraduate/421/Spring12/02/slides/ULKV.pdf.

[43] Wikipedia. NX bit. http://en.wikipedia.org/wiki/NX bit.

[44] ITB CompuPhase. The SMALL booklet: implementor’s guide. 2005. http:
//www.doomworld.com/eternity/engine/smallguide.pdf.

[45] Android Source. Dm-verity on boot. https://source.android.com/devices/
tech/security/dm-verity.html.

[46] Nikolay Elenkov. Verified boot with dm-verity. http://nelenkov.blogspot.be/
2014/05/using-kitkat-verified-boot.html.

[47] eLinux. Android Booting. http://elinux.org/Android Booting.

[48] Android Source. Device specific configuration. https://source.android.com/
devices/tech/storage/config.html.

[49] Rémy Evard. An Analysis of UNIX System Configuration. In LISA, vol-
ume 97, pages 179–194, 1997. https://www.usenix.org/legacy/publications/
library/proceedings/lisa97/full papers/20.evard/20 html/main.html.

40

http://linux.about.com/library/cmd/blcmdl4_mem.htm
http://linux.about.com/library/cmd/blcmdl4_mem.htm
https://android.googlesource.com/kernel/common/+/android-3.0/arch/unicore32/Kconfig.debug
https://android.googlesource.com/kernel/common/+/android-3.0/arch/unicore32/Kconfig.debug
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6282
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6282
http://www.poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/
http://www.poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/
http://www.poppopret.org/2013/11/20/csaw-ctf-2013-kernel-exploitation-challenge/
http://www.poppopret.org/2013/11/20/csaw-ctf-2013-kernel-exploitation-challenge/
https://blogs.oracle.com/ksplice/entry/much_ado_about_null_exploiting1
http://www.exploit-db.com/exploits/9627/
http://source.android.com/devices/tech/security/se-linux.html
http://source.android.com/devices/tech/security/se-linux.html
http://forum.xda-developers.com/nexus-s/development/kernel-anidroid-hardened-t1525257
http://forum.xda-developers.com/nexus-s/development/kernel-anidroid-hardened-t1525257
http://www.csee.umbc.edu/courses/undergraduate/421/Spring12/02/slides/ULKV.pdf
http://www.csee.umbc.edu/courses/undergraduate/421/Spring12/02/slides/ULKV.pdf
http://en.wikipedia.org/wiki/NX_bit
http://www.doomworld.com/eternity/engine/smallguide.pdf
http://www.doomworld.com/eternity/engine/smallguide.pdf
https://source.android.com/devices/tech/security/dm-verity.html
https://source.android.com/devices/tech/security/dm-verity.html
http://nelenkov.blogspot.be/2014/05/using-kitkat-verified-boot.html
http://nelenkov.blogspot.be/2014/05/using-kitkat-verified-boot.html
http://elinux.org/Android_Booting
https://source.android.com/devices/tech/storage/config.html
https://source.android.com/devices/tech/storage/config.html
https://www.usenix.org/legacy/publications/library/proceedings/lisa97/full_papers/20.evard/20_html/main.html
https://www.usenix.org/legacy/publications/library/proceedings/lisa97/full_papers/20.evard/20_html/main.html

Android patching Appendix

Appendix

A Code repository

The proof of concept code for the Expat MDM solution is too long to
include in the appendix, and can therefore be found on GitHub at http:
//github.com/c3c/ExpatMDM. It uses CVE-2013-6282 by fi01 for both
the exploiting and patching.

Table 4 Repository structure

Directory Description

android/ The Expat MDM Android agent PoC
nodejs/ The Expat MDM server PoC code in NodeJS
poc/ Contains the native exploit/patch code in C with JNI

B Acronyms

ADB Android Debug Bridge

AOT Ahead-of-time (compilation)

API Application Programming Interface

APK Android Package

ARM Acorn RISC Machine

ART Android RunTime

ASLR Address Space Layout Randomization

BYOD Bring Your Own Device

DEX Dalvik Executable

JAR Java Archive

JIT Just-in-time (compilation)

LKM Linux Kernel Module

LVM Logical Volume Management

MAC Mandatory Access Control

MDM Mobile Device Management

ORM Object-relational Mapping

POC Proof of Concept

ROM Read-only Memory. In this context, firmware for the mobile device.

41

http://github.com/c3c/ExpatMDM
http://github.com/c3c/ExpatMDM

	Introduction
	Problem statement
	Research question

	Related research
	Primer
	Android architecture
	Dalvik runtime
	ART runtime
	Android kernel

	Hooking
	Runtime hooking
	Dalvik hooking
	ART hooking

	Kernel hooking
	Ksplice, kGraft, kpatch
	Kprobes
	Expatting
	Kernel symbols
	Read/write access to kernel memory
	Kernel exploiting and patching
	Kernel protections

	Boot hooking
	Obstacle: dm-verity
	Approach: broadcast receiver
	Approach: modifying init files
	Approach: modifying app_process binary
	Overview

	Expat MDM
	Server component
	Agent component
	Information gathering
	Miscellaneous information
	Determining the runtime
	Linux vermagic string
	Status of dm-verity

	Expatting process

	Expat device life cycle
	Proof of concept

	Practical evaluation
	Ethical considerations
	Conclusion
	Future work
	References
	Appendix A: Code repository
	Appendix B: Acronyms

