

Open Data analysis to retrieve sensitive information regarding national-centric critical infrastructures

Renato Fontana

Research Project 2

Supervised by: Ralph Dolmans, Benno Overeinder

Presentation flow

- Introduction
- Known Studies
- Project Scope
- Visualization of Open Data
 - Demo
- Conclusions & Future Work
- Questions

Introduction

- Open Data initiative
 - Democratization of information;
 - Sharing and collaboration;
 - Application Development;
 - Accountability;
 - Freedom of Information Act;
 - Empowers users;

Source: OmgevingsAlert

"The FOIA establishes for any person—corporate or individual, regardless of nationality—presumptive access to existing, unpublished agency records on any topic." *

- Information disclosure;
- Sensitive content;

* Critical Infrastructure Information Disclosure and Homeland Security, DTIC 2002.

Introduction

- Critical Infrastructures
 - What is critical ?
 - "Essential services that contribute to the stability and security of a Country" – Rinaldi 2001
 - Nation dependent
- CI Protection
 - National Security information
 - Information classification;
 - Sensitive but unclassified
 - Openness vs Secrecy

Research question

- Can users make use of Open Data databases to retrieve country sensitive information?
- How can this information be visually represented in a way that allows the easy identification of critical and strategically important areas on detailed level?

Known studies

- No studies in the visual representation of CI areas based on open data.
- "The risk of public data availability on critical infrastructure protection". *Abbas*, 2006.
 - Compilation of SBU information;
- "Empirical findings on critical infrastructure dependencies in Europe". *Luiijf*, 2009.
 - Analysis on public reports of CI disruption events to recognize cascading effects.
- "Mapping the Dutch Critical IP Infrastructure". Alizadeh and Oprea, 2013.
 - Dutch Critical Infrastructures organizations rely on foreign communication providers – based on public knowledge.

Project Scope

- Limited to Netherlands;
 - Existing repositories in National and City levels;
 - Country classification of Cl;
- Limited dataset analysis;
 - Most relevant data reflecting CI;
 - Telecommunication & ICT;
 - Energy Resources;
- Visual representation;
 - Pattern recognition;

Open Data - Netherlands

- Current view
 - Netherlands 6th in OKFN rank.
- Multiple reliable repositories;
 - Government, private sector and user maintained;
 - data.overheid.nl;
 - maps.amsterdam.nl,;
 - alliander.nl;
 - data.amsterdamopendata.nl;
 - Other public sources;
- Machine readable;
 - .csv, .xls, .json, live APIs;

Dutch Critical Infrastructures

Dutch government on the CIP identify the following as critical infrastructures

Source: government.nl/issues/crisis-national-security-and-terrorism

Approach

- Create hypothesis and visualizations;
 - Relevant CI Datasets;
 - Experimentation;
 - Gain insights;
- Feedback loop process. Keim,2008

Visualization of Open Data

- Data Acquisition
 - Web crawlers, visual inspection, search engines, manual download of contents;
- Data Sanitation
 - Removal of arbitrary and blank entries;
 - Project scope;
- Layer creation
 - Visual representation of datasets to Cl categories;
- Quickly identification of patterns

Data Analysis

- Initial data inspection;
 - Common localization identifier among datasets
 - PostCode, Coords, LAT, LONG, City, locatie, buurt, wijk, gem
- Map representation;
 - Shape Files (.shp) parse;
 - Centraal Bureau voor de Statistiek cbs.nl
 - Convert to .kml
 - Google Maps API;
 - Geocoding, Fusion Tables

Demonstration

13

Findings

- Patterns on CI;
 - Identified cities;
 - Amsterdam, Den Haag, Rotterdam;

- Data Centers and Power Plants
 - NL-IX peering DCs, Hemweg PowerPlant;
- High resource demanding areas
 - Westpoort, Sloterdijk, De Omval, Bullewijk
 - Details on electric consumption;
- Business offices and companies
- AMSTERDAM,1101AAfgeschermdAMSTERDAM,1101BAfgeschermdAMSTERDAM,1101C22.961.527

• Interest in hiding data

Conclusions

- Compilation of public information;
 Not trivial;
- Sufficient insights from CI;
 - Specific layers;
 - Limited amount of time;
- Openness vs Secrecy;
 - Hidden values
- Proper classification of information;
- Critical Infrastructure Protection risk;
 - Multiple areas with overlapping events
 - Possible correlation

Future work

- Research scoped to Netherlands;
 - Further cities:
 - Den Haag;
 - Rotterdam;
 - Additional dataset and sources;
- Real-time APIs;
- Automated approaches;
 - Machine learning;
 - Artificial Intelligence;
- Ongoing country profiling;
 - Business purposes;
- Open Discussion
 - Beneficial or Dangerous ?

Questions ?

