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1. Introduction

‘Timestomping’ refers to the act of intentionally falsifying
timestamps associated with content. Essentially, the goal one
hopes to reach with this act is one of the following two:

. Make the content—a contract, a receipt, some message—
appear to have been created, modified, copied, accessed,
etc. at some other time than it really has been. The con-
tent is not hidden—on the contrary, the existence of the
content (with its falsified metadata) serves the tamperer’s
purposes.

. Evade detection of the content, as an anti-forensic mea-
sure. This is strongly related to the use of time lines
in forensic investigations. A time line serves to asso-
ciate events. For instance, timestamped web browser his-
tory can be integrated with file creation events, revealing
whether visiting a particular web site could have led to
creation of suspicious files, which can then be examined
for malware. By tampering with timestamps such time
based event correlation is frustrated. Specimens of mal-
ware that timestomps their files have appeared in the wild
[1].

This is an important distinction to make. In the first case, the
content and associated metadata can serve as a key with which
to find contradicting sources of time information. In the sec-
ond case, the key is lost: the timestomping of the malware file
metadata has wiped the time-based relation between the web
site visit and the creation of the files associated with the mal-
ware. Conversely, if the malware itself would be found through
some other means, an investigator would not be able to trace it
back to the web site visit just by examining the file timestamps.

In the latter and much harder case, it is the detection of the
tampering itself that could yield keys on which to base an in-
vestigation. Indeed, in the chapter Defeating Disk Analysis of
the guidebook The Rootkit Arsenal: Escape and Evasion in the
Dark Corners of the System [2, p 328], the following piece of
advice is offered:

[. . . ] This highlights the fact that you should
aspire to subtlety, but when it’s not feasible to do
so, then you should at least be consistent. If you
conceal yourself in such a manner that you escape
notice on the initial inspection but are identified
as an exception during a second pass, it’s going to
look bad.

[. . . ] If you can’t change time-stamp informa-
tion uniformly, in a way that makes sense, then
don’t attempt it at all.

There are many possible sources of inconsistencies. For in-
stance, a file may contain internal metadata on the program used
to produce it. If that program simply did not exist at the time
recorded in the timestamps, there is a clear inconsistency. The
inconsistency does not immediately imply tampering—for in-
stance, a system clock may simply have been faulty.

While there are many possible sources of such inconsisten-
cies, the original research documented in this report focuses
exclusively on NTFS structures. The goals of the research pre-
sented are formulated in terms of these structures. So, before
addressing these goals, first a discussion of NTFS, its times-
tamps, the ways in which they can be tampered with, and re-
lated work on tamper detection is required.

Section 2 is the summary result of the preparatory litera-
ture study into these four topics. Section 3 then introduces the
research questions. Sections 4: Investigating directory index
records, 5: Carving directory index entries from MFT slack
space, 6: Investigating direct manipulation, and 7: Single-source
anomaly detection present the original research and discuss the
findings, and Section 8 concludes.

2. Timestamps and timestomping in detail

2.1. Essential NTFS concepts

NTFS has been the default filesystem type for the popular
consumer-oriented series of the Windows family of operating
systems for over a decade. For this reason, forensic analysis of
this filesystem is ground well covered. NTFS is also a complex
filesystem. Indeed, Brian Carrier’s filesystem Forensic Analysis
[3] devotes more text to this filesystem than to any other filesys-
tem by a large margin.1 What follows is a short overview of
concepts as presented by Carrier [3], complemented with corol-
laries. This serves to allow a reader with a basic understanding
of filesystems and data structures to navigate the remainder of
this report.

MFT The MFT (for Master File Table) is at the heart
of NTFS. For each file or directory, it contains an
entry. The entry slot size is defined in the bootsec-
tor2 and is commonly 1024 bytes. Slots are enu-
merable. Not all slots contain entries referring to
existing files or directories; some slots are simply
not allocated (yet), others are marked as deallo-
cated (and available for reuse), or serve as an ex-
tension of an entry in a different slot. Many NTFS
elements—such as the transaction log (journal), at-
tribute descriptors, the free space bitmap, and even
the MFT itself—are defined as a “file” in the MFT.
The operating system is supposed to go to great
lengths to keep the MFT contiguous on-disk, but in
theory, the MFT can become fragmented, at which
point the linear relation between slot number and
disk location will break down.

MFT entries An MFT entry is identified by its MFT reference,
which is composed of a 16-bit integer (the record
sequence number) and a 48-bit integer (the MFT
slot number). The concatenation of these is then

1To be exact, it devotes 62 pages to FATx, 124 to NTFS, 82 to EXTx, and
58 pages to UFS.

2Not to be confused with the classic x86 PC-architecture MBR boot sector,
this structure is inside the actual partition on which the filesystem resides.
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represented as a 64-bit integer [3, pp 276-277]. An
entry may span multiple slots, but usually doesn’t.
When an MFT entry is (re)allocated, the record
sequence number is incremented, thereby render-
ing references to the entity previously allocated to
that slot unresolvable. After the header structure,
which encompasses these and some other book-
keeping fields, attributes follow.

Attributes There are a multitude of attributes which may be
mixed and nested to form meaningful data struc-
tures. Attribute bodies are preceded by a header
of constant format, which includes a declaration of
the attribute size. Walking the attributes is a matter
of reading headers and using the size declarations
to seek to the next header.
The header also declares whether the attribute body
is resident or non-resident. Resident attributes re-
side in the MFT, while the nonresident attributes
reside in the data area of the filesystem. Some at-
tributes are always resident, others are always non-
resident, and some can be both. For instance, file
content is stored in the DATA attribute. As long as
the attribute fits in the MFT entry, that is where file
contents will be stored. If it grows too large, the
data will be placed in the clusters (groups of sec-
tors; the basic allocation unit of the filesystem) in
the data area of the filesystem. Naturally, this then
requires a descriptor of these clusters holding file
data: another attribute. The Windows NTFS driver
stores the attributes (or their headers, in case of
nonresident attributes) ordered by their type iden-
tifiers.

Directory indices Though an MFT entry contains a reference
to its parent directory, the directories themselves
also contain references to their children. Addi-
tionally, the directories include copies of the file-
names and timestamps of the child entries. In prin-
ciple, the directory tree can be built by using just
the first type of reference. A path lookup for, say,
/dir1/dir2/dir3/file would then encompass a linear scan
of the n entries in the MFT for each path compo-
nent m, matching by name and parent reference.
This would result in O(mn) time complexity which
is clearly undesirable. The chosen solution is to
use directory indices, which are B+-tree structures
not only storing the MFT references to the direc-
tory child elements, but also their names—these
are the sorting criterion for the tree [3, pp 290-
294]. Such a setup features O(log(n)) lookup time
complexity (for a directory with n entries). A path
lookup operation would thus feature a time com-
plexity in the order of O(m log(n)).3 The directory

3Though it is possible (using hardlinks) for each directory to contain all files
in the filesystem, in reality, the search in each directory will be among n entries
with n a far lower number than the total number of files.

indices are built up from one or more attributes, of
which one, the INDEX_ALLOCATION attribute,
is non-resident.

2.2. Timestamps in NTFS
Modification, Access, Change, Birth

NTFS features modification, access, change and birth time
stamps for file and directory entries; MACB timestamps, for
short. There is considerable confusion caused by different nomen-
clature lineages in forensic filesystem analysis. MACB is an ex-
tension of the MAC timestamps found on most traditional Unix-
like systems, as displayed by the stat command. The terms are
used in Forensic Discovery by Dan Farmer and Wietse Ven-
ema [4], which mainly deals with Unix-like systems, and Car-
rier’s work [3], and in the open source TSK filesystem analy-
sis suite [5] which is closely connected to both of these works.
Some other forensic suites apply a different nomenclature. For
instance, EnCase (by Guidance Software) uses ‘MACE’; for
Modification, Access, Creation and “Entry Modified”.4

Format
Timestamps are stored in 64-bit unsigned little-endian in-

tegers, counting the number of 100-nanosecond intervals since
January 1, 1601 UTC [6]. On the surface this granularity might
seem superfluous—but when analyzing NTFS, it is of great
value: as two operations performed subsequently in a low-latency
thread may use different timestamps, derived from the system
clock closely after one another, a one-second or even a one-
millisecond resolution would make it much harder to spot the
fact that these are, in fact, two distinct timestamps.

Meaning of the time stamps
The modification timestamp signifies when the content of

the file is last updated. The access time refers to the last time of
access to the contents, but in versions of Windows from Vista
and up, updates to this timestamp are turned off by default. The
change time refers to changes to the file metadata—its name,
security attributes, and any of the other timestamps.

The birth time refers to the time at which the MFT entry was
created. This attribute receives a lot of attention, but it in con-
trast with the natural world, it actually means very little for a file
to be “born”; its content may be completely replaced afterwards
and its name, location, and security attributes may change. For
practical purposes, its identity may have completely changed
since its “birth”. The timestamp is not even tied to a particu-
lar MFT entry; moving files between file systems can result in
copying the birth timestamp to a completely new entry. This
begs the question of what the birth time is supposed to signify.
Especially when file content is of an incriminating nature, us-
ing only the birth timestamp as definite proof of creation of the
content at the signified time is highly questionable.

4‘MACE’ has an edge on ‘MACB’ since in the MACB nomenclature,
the terms ‘change’ and ‘modification’—concepts used interchangeably in
everyday-language—actually have very different meanings. Some may find the
following moniker to be of use when working with the MACB nomenclature:
chAnge refers to metAdata, mOdification refers to cOntent.
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From the operating system perspective, there are choices to
be made with regard to the timestamp contents; for instance,
what should the value of the modification time be for a file
created empty? In 2010, Bang, Yoo and Lee [7] have docu-
mented how NTFS timestamps change when performing file
operations. To parse the MFT, they use EnCase, TSK and an un-
published tool by Bang. Details of the latter are unknown, but
it deserves to be mentioned that the first two are constrained
in that they represent timestamps rounded to whole seconds;
so reducing the actual precision of the NTFS timestamps by a
factor of ten million. As mentioned, such resolution loss is un-
desirable when investigating the way the operating system sets
timestamps.

Location of timestamps: SI, FN, IXFN
An MFT entry for a file or directory stores the MACB times-

tamps in an attribute of type STANDARD_INFORMATION
(hereafter: SI). The MAB timestamps can be displayed in the
explorer.exe file property dialogues. The change time is usually
not shown to the user.

In the same MFT entry, the file name is stored in an attribute
of type FILE_NAME (hereafter: FN). Multiple FN attributes
may exist, since there are four name spaces; for DOS 8.3 names,
Windows names, POSIX names, and a shared namespace for
filenames compatible with both DOS and Windows. An entry
can thus have up to three FN attributes. Each of these attributes
stores a set of MACB timestamps. These timestamps are pe-
culiar in that they are updated with the values of the SI times-
tamps whenever the FN attribute itself changes. As the FN at-
tribute includes a reference to the parent directory, the update
also happens when a file is moved to another directory within
the same file system [7]. The experiments conducted during
this research show that if a file name in a particular namespace
is changed, the timestamps of FN attributes in the other names-
paces are also updated, resulting in duplicates of (some earlier
state of) the SI attribute timestamps in all FN attributes.

The directory indices discussed in Section 2.1, Essential
NTFS concepts also store timestamps for each file; the design-
ers have made the choice to use FN attributes to store names.
To avoid confusion with the FN attribute proper, these struc-
tures will hereafter be referred to by the name IXFN.

Of particular interest is the fact that the timestamps are not
updated in the same way as for FN attributes stored directly
in an MFT entry. Rather, these IXFN timestamps reflect the
SI attribute timestamps. This behaviour has been reported on
in discussions following a post on the SANS Digital Forensics
and Incident Response blog [8], and has been confirmed in the
experiments conducted in the course of this research project.

2.3. Timestomping methods

API access
Traditionally, Unix-like operating systems have allowed read-

/write access to modification and access timestamps using the
utime family of system calls, through utilities such as touch. The
change time is usually not alterable through an API. In contrast,
the Windows API does let one change the change time. The

ZwSetInformationFile and NtSetInformationFile functions [9] take
a FILE_BASIC_INFORMATION structure [10] which has fields
for all of the MACB timestamps. Noteworthy is that a caller
can instruct the operating system to not update some or all of
the timestamps for operations performed on the file handle.

At the 2005 Blackhat conference, James Foster and Vinnie
Liu (of the Metasploit project) presented their anti-forensic tool
timestomp, to which we owe the verb ‘timestomping’ [11]. It
uses these functions to set the SI timestamps. The timestomp
utility has been discontinued [12], but the method continues to
be popular [2, pp 327-329].

Since there is no API for modifying FN timestamps, Foster
and Liu note that forensic tools should be improved to show
these, and that those timestamps should be compared to the
SI timestamps—since the FN timestamps are derived from SI
timestamps, they should never represent a point later in time.

There is a way around the FN timestamp problem. The
method is simple: by moving a file, the SI timestamps prop-
agate to the FN attribute. Stomping the SI attribute once more,
and subsequently moving the file back, results in SI and FN
timestamps all set to values of the falsifier’s choosing.

Direct disk access
An adversary with direct disk access can completely influ-

ence the information processed by a file system forensic ana-
lyst. The only limit to the power of such an adversary is the
extent to which he or she understands the system and manages
to avoid creating inconsistencies. The SetMACE program by
Joakim Schicht modifies SI and FN timestamps by direct disk
access from version 1.0.0.7 on [13]. For this, it needs to ac-
quire exclusive disk access—the program operates (with ele-
vated privileges) from user space, unmounts the to be tampered
with volume, and does its modifications. Acquiring direct disk
access to the volume from which Windows itself is booted is not
possible from user space in Windows versions since Vista [14],
so to perform timestomping operations with SetMACE on such
a volume, it needs to be approached using some other Windows
instance. This can be accomplished through booting a portable
Windows installation or by simply attaching the disk to some
other Windows machine (but not booting from it).

2.4. Timestomping detection methods

Detecting timestomping relies on either finding traces of the
very act itself, or on finding inconsistencies introduced by the
tampering.

The NTFS journal falls in the first category. It yields insight
in past operations applied to the filesystem, and can be used to
extract the updates made to filesystem timestamps, as shown in
2012 by Gyu-Sang Cho [15]. The journal cannot store all oper-
ations, however, so at some point these traces of past operations
will vanish.

Other methods rely on finding inconsistencies using causal
relationships. In 2008, Svein Yngvar Willassen developed a
method to use the record sequence numbers of MFT entries
(mentioned in Section 2.1) to find evidence of antedating [16].
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He combines these with what is known of the first available-
type behaviour of the MFT slot allocator to derive a partial or-
dering for series of files. When a file can be said to must have
existed before some other file was created, and that other file
has earlier timestamps, there is an inconsistency. Similarly, in
2014, Wicher Minnaard analyzes the Linux FAT32 driver and
shows how its next available-type allocator allows for deriving
file creation order (and thus for finding inconsistencies), not us-
ing explicitly defined sequentiality (as with the NTFS sequence
numbers), but using the layout of the content of files on-disk
[17]. As the Windows NTFS driver uses a best fit-type alloca-
tor [3, p 313] for file content, such an approach will not work
for NTFS.

A straightforward type of inconsistency is when traces of
the original timestamps can be recovered. In a 2012 blog post,
William Ballenthin and Jeff Hamn present a tool, INDXParse,
with which the deallocated space of a non-resident component
of directory indices can be searched for IXFN structures of files
that have been deleted [18].. Such traces are volatile, but could
be used to detect the the double-move trick discussed in section
2.3: Timestomping methods.

3. Research questions

The ultimate goal is to find a reliable way to easily detect
any and all timestomping. This, of course, has been attempted
before. However, there seems to be some space left for a modest
contribution.

1. The INDXParse tool (version 1.2.2) can only process the
non-resident INDEX_ALLOCATION attribute. The other
directory index attribute where IXFN structures are stored
in is the INDEX_ROOT attribute. Therefore it makes
sense to find out if former entries of this attribute can
somehow be recovered, and if such is the case, then a
computer program that does so could be of use to the
forensic community.

2. The goal of the direct disk access timestomping utility
SetMACE is to leave no trace of its use. Its documenta-
tion mentions SI and FN attributes, but does not mention
the other place where timestamps are to be found: the
IXFN structures. An investigation into whether the IXFN
structures can betray the use of SetMACE is due.

3. All of the detection methods discussed in Section 2.4 rely
on some secondary source of ‘truth’ to compare to the
possibly falsified timestamps. In their Blackhat presen-
tation, James Foster and Vinnie Liu mention that since
the FN timestamps are derived from SI timestamps, they
should never represent a point later in time [11]. The
question is whether real-world systems hold up to such
(supposed) regularities, and if there are any such self-
inconsistencies that could be used to detect timestomping
without relying on some second source of information.

The research is constricted to the behaviour of the ntfs.sys driver,
version 6.1.7601.17514, with an internal modification timestamp
of “11/23/2010 4:23 AM”, operating on version 3.1 of the NTFS

on-disk format. That is to say, older or newer driver versions
and disk formats may behave differently from the system ex-
perimented with.

4. Investigating directory index records

4.1. Test environment

When examining the behaviour of an automated work, such
as a filesystem, it is desirable to create a setup that enables as
quick a turnaround as possible. The setup employed is Win-
dows (7, “premium”, x86-64 architecture, version 6.1.7601) vir-
tual machine running under the Linux KVM hypervisor using
Qemu. A 16 MB block device, backed by a memory-backed file
in a tmpfs file system, is attached to the guest OS through the
the VirtIO mechanism [19]. Write caching for this device (on
the host side) is turned off using the cache=directsync parame-
ter. This disk is initialized and formatted with a 1KiB cluster
size through the diskmgmt.mmc management console snap-in.
The Cygwin environment is deployed to provide a featureful
programmable remote shell. Prior to inspecting the on-disk ef-
fects of operations, the test volume is unmounted through the
offline disk command of the interactive diskpart.exe console ap-
plication. This serves to flush all changes made in the virtual
machine to the file which is backing the block device.

4.2. Creating a parser

There is no scarcity of utilities that can read the MFT struc-
ture. However, to truly understand how structures are nested,
the ‘extractor’-type utilities are insufficient, for what may mat-
ter from a forensic perspective is not just the information, but
also the way it is laid out. Further requirements are scriptabil-
ity and the ability to inspect raw values (the raw bytes, or raw
types not further interpreted). The Hachoir framework fulfills
these requirements [20]. Using a somewhat declarative style of
programming, structure parsers can be defined incrementally.
The framework forces the user to declare any data to be skipped
over; automatically, a map of which bytes have been interpreted
and which have not (yet) been is generated. The structure parser
can be loaded into a variety of user interfaces to interactively
explore data. Every structure, no matter how deeply nested, is
named unambiguously in a path-like fashion. These paths can
be used to quickly navigate a structure hierarchy. Dependency
ordering is automatic; fields are only read when they need to be.
For instance, if the on-disk position of some structure depends
on the value of an offset field defined elsewhere, the latter will
of course need to be parsed first. In the code, this dependency
does not require specification beyond simply using the offset
field to get to the position of the structure.

As it happens, the Hachoir framework (version 6c52231) al-
ready includes a rudimentary NTFS parser. Not many attributes
classes are defined; it can parse the bare MFT entry type, and
the FN and SI attributes. More importantly, it yields some in-
correct results, the cause of which is that the fixup values are not
applied. As some kind of integrity checking mechanism, fixup
values are used in NTFS for structures that may span multiple
disk sectors, such as MFT entries. The two bytes at the end

6



of each sector occupied by the structure are overwritten with
a signature value, which is incremented on every such write.
The original values are copied to an array somewhere near the
start of the structure, which also includes the signature value
used. Before reading the complete structure, it first needs to be
‘fixed up’ using the original values stored in the array. The idea
is that some kinds of corruption can be detected by checking
whether the values at the end of the sectors match the stored
signature value [3, pp 352-353]. Hachoir did not have provi-
sions for patching up an input stream in a just-in-time fashion.
Thus, before starting on improving the NTFS/MFT parser, first
an alternate input stream type that does allow patching ahead of
the parser is created. This is the InputMmapCowStream, which,
as the name suggests, uses a copy-on-write memory-mapped
file to this end. It is a simple and safe approach; it does not
modify the underlying file, and it lets the operating system do
all the bookkeeping work on which byte ranges have been re-
placed and which have not been. Currently it is limited to 4GiB
maps. This seems to be a problem in Python5 as in straight C
code, memory maps addressing more than 232 bytes can be cre-
ated and used just fine on the 64-bit architecture used in this
research. The code has been made available online in the form
of a fork of the main Hachoir project [21].

For restructuring, extending and improving the existing NTFS
parser code with the main goal of reaching the IXFN struc-
tures, Carrier’s chapter on NTFS data structures is used. Car-
rier, in turn, bases this chapter on the documentation of the
Linux NTFS project [3, p 396]. Since development of that
project has moved into a commercial effort, this documentation
is not available online anymore at the project website. Fortu-
nately, the Internet Archive still has a copy of the documenta-
tion [22].

The original Hachoir NTFS parser code assumed that the
MFT is not fragmented. The code has now been modularized
to decouple the parsing of the MFT from the parsing of NTFS,
so that the MFT may be extracted and parsed separately from
the NTFS partition. Extraction of the MFT from a disk image
can be performed using the icat utility from the TSK [5] suite,
in the following manner:

icat /path/to/ntfs-partition-or-image 0 > mft

This works by virtue of the fact that the MFT is the first file
in the NTFS filesystem. NTFS suffers from some potentially
circular dependencies; for instance, the layout of the MFT is
described in the MFT itself. Therefore, to enable bootstrapping
of the filesystem, parameters that are essentially variable are
in special cases assumed to be static. Such is the case for the
location of the MFT entry for the MFT.

The code of the MFT parser is included with the hachoir-
cow fork, and available online [23].

4.3. Growth of a directory index
The hachoir-urwid interactive user interface is used to track

the on-disk directory index representations as directories cre-
ated in the virtual machine test environment are grown in size

5To be precise: CPython 2.7.6, GCC 4.7.3, on x86_64 linux-3.15.2 .

by adding more files using the touch command included with
Cygwin. Fig. 1 shows the initial layout of the MFT entry.

Next, files with names G, F, E, D, C, B and A are added to the
directory, in that order. The result is the layout as shown in Fig.
2. The index entries are not stored in insertion order, but rather
in the order defined by the collation type declared in a field of
the INDEX_ROOT attribute. In this case, that seems to be an
alphabetical ordering.

No more file references will fit into the root node of the in-
dex attribute. Adding a file X will result in a conversion of
the index to a B+-tree proper, as shown in Fig 3. Two new at-
tributes are added: the INDEX_ALLOCATION attribute and
the BITMAP attribute. Together, these attributes declare the
storage in the data area of the filesystem to be used for further
index nodes. From this moment on, the three attributes will
slowly grow in size as the tree grows. The INDEX_ROOT is
initially empty, with all of the index entries in child nodes, but
over time will come to accommodate some index entries of its
own. The INDEX_ALLOCATION and BITMAP attributes will
grow to contain the references to the out-of-MFT storage units.
Of particular interest is the fact that these attributes have only
overwritten part of the list-type initial node. Entries B through
G are now contained in the space still assigned to the MFT en-
try, and this space is unavailable as a storage area to anything
other than this very MFT entry. As the index grows, it will take
up more of the slack, eventually overwriting every last one of
the original list-type entries.
Further experiments show that once the conversion has taken
place, shrinking the amount of index entries (by deleting files)
will not bring the directory back into the single-node strictly-
resident state. Therefore, the timestamps in any entry retrieved
from slack MFT space carry a special meaning, since we know
that they are traces of some of the very first couple of files hav-
ing been placed in the directory.
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Figure 1: Initial layout of an MFT entry for a directory with a 6-letter name.

Figure 2: Layout of an MFT entry for a directory with a 6-character name referencing seven files with short names.

Figure 3: Layout of the MFT entry for a directory after conversion to a B+-tree proper.

Figure 4: Layout of the end of a list-type INDEX_ROOT attribute. Synchronization points are coloured in yellow. The two declarations of substructure sizes and
the structures they refer to are coloured blue and green.
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5. Carving directory index entries from MFT slack space

5.1. Method

Fig. 4 depicts the end of a list-type INDEX_ROOT at-
tribute. Shown are the terminating index entry and the pre-
ceding index entry. The terminating entry is constant across
indices, but not by design. The structure is the same as for any
other entry, but by virtue of embedding no IXFN structure, its
size is constant, and therefore so are the descriptor of its own
length and the IXFN attribute length. Moreover, the reference
to the parent directory is zero, and the only flag set is the one
that designates the element as the last element in a node. For
these reasons there are simply no terminating entry elements
that can vary across directory indices.

While such a 16-byte anchor point seems luxurious with the
goal of creating a carver in mind, the reality is that this anchor
point mostly consists of zeroes—only two bytes are nonzero.
Scanning backwards from this anchor, we encounter another
anchor point. This is the header flag set of the preceding en-
try, and it is no better than the footer anchor point: four bytes,
all zero. As the default state6 of bytes on storage media and
in paged userspace memory is zero (NULL)7, sequences of ze-
roes are, by themselves, of very low utility as anchor points.
However, we know that it should appear at least 72 bytes (68
bytes for the minimum length of a IXFN attribute, padded to a
multiple of 8) before the footer. Before the header flags should
be two 16-bit unsigned little-endian integers, both of which al-
low to confirm the distance between the header anchor and the
footer anchor independently—so decreasing chance of a ran-
dom match considerably.

Once the penultimate entry is found, its start can be used as
an anchor point instead of the 16-byte empty entry, and from
there a new backward scan for the header flag anchor point can
be attempted. This repeats until the slack buffer is exhausted.

The method is implemented in the ixcarve module, part of
the source code accompanying this report [24].

5.2. Evaluation

Described in section 4.3: Growth of a directory index, the
mechanism by which indices grow raises the supposition that
there is a decent chance of finding stale index entries in MFT
slack space. A test run of the ixcarve carver will make clear to
what extent this will be the case.

5.2.1. Test images
As results may vary through differences in operational his-

tory of filesystems, some background information on subject
systems is provided. The following two filesystems are used:

6As presented to the OS.
7That we speak of ‘zeroing’ instead of of ‘fiving’ or ‘eighting’ also raises

the expectation for null values to be quite common.

System A. This filesystem was created December 31st, 2012.
It resides in a dualboot system which is infrequently booted to
Windows (7, “premium”, x86-64 architecture, version 6.1.7601).
Likely, the filesystem has not seen as much use as other NTFS
filesystems of similar age. Moreover, the Windows driver does
not enjoy exclusive use of the filesystem; it is (infrequently)
accessed through the ntfs3g NTFS userspace driver on Linux.

System B. This filesystem was created May 16th, 2014. The
driver and operating system are the same as for System A. The
filesystem is part of the virtual machine used for research, as
described in Section 4.1: Test environment.

5.2.2. Running the carver, results

The script dumptrel-ts.py [24] reads the MFT using the parser
described in Section 4.2: Creating a parser, and dumps times-
tamps and some other useful information to a SQLite database.
In addition it carves the slack space of each MFT for derelict
index entries. Table 1 shows a breakdown of the results. Sys-
tem A yields 7072 carved records, from 12% of the directories.
System B yields 4393 records, from 7% of its directories.

Table 1: MFT slack index entry carving results.
System A System B

Total amount of directories 32803 100% 30425 100%

yielding 1 carved record 1784 5.4% 1214 4.0%

yielding 2 carved records 1150 3.5% 292 1.0%

yielding 3 carved records 495 1.5% 337 1.1%

yielding 4 carved records 362 1.1% 386 1.3%

yielding 5 carved records 11 – 8 –

No further investigation into the causes of the differences
between A and B is made; they may or may not be related their
respective ages. For now, it is sufficient to say that the method
indeed unlocks a non-negligible amount of time information.

False positives. Even though the carver features strict input
constraints, it is good practice to examine results for false pos-
itives. For System B, the carved results were filtered based on
their MFT reference. 76 results had references that could not
be resolved in the current state of the MFT. However, the four
timestamps for each of these FN attributes were close to each
other (in 64 results, the change time was within one second af-
ter the birth time), and all change times had reasonable values
between May 16th and June 23rd 2014. It is highly likely that
the results are valid, but belong to directories that themselves
no longer exist (and of which the MFT entries have been real-
located). In other words, there are assumed to be no false posi-
tives in System B, and there are no particular reasons to assume
that there would be many false positives on other systems.
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6. Investigating direct manipulation

SetMACE, version 1.0.0.9 [13] is run on the test VM (see
Section 4.1) to examine its behaviour using the MFT parser
(see Section 4.2). First, a test was run to see if the utility in-
deed correctly overwrites the SI and FN timestamps in-place,
without leaving traces such as a reordering of the attributes.
This appears to be the case, but a bug was revealed through try-
ing to use a timestamp with value 5498:01:10:21:10:24:730:3440,
which should have resulted in the 64 bit unsigned little-endian
integer 1229782938247303441 being written to disk in its byte
representation of 0x1111111111111111. Instead, the lower value
of 0x00C1814E1BE8B401 is written to disk. This converts to
September 14th, 1990, just before midnight (UTC).

Of more significance is the discovery that SetMACE leaves
the copy of the SI timestamps in the IXFN structure intact. This
is not only apparent when using the parser, but can be witnessed
without the use of special utilities using plain cmd.exe. The
initial situation is as follows, with a small 11-byte file testfile
with timestamps in 2014.

C : \ cygwin64 \ home \ boer \ setmace> d i r F : \ t e s t d i r
Volume i n d r i ve F i s En thee efkes
Volume S e r i a l Number i s 0246−9FF7

D i r e c t o r y o f F : \ t e s t d i r

07/07/2014 02:50 PM <DIR> .
07/07/2014 02:50 PM <DIR> . .
07/07/2014 02:50 PM 11 t e s t f i l e

1 F i l e ( s ) 11 bytes
2 D i r ( s ) 6 ,567 ,936 bytes f ree

Next, SetMACE is run to modify the date to just before the turn
of the last millennium (CET, converted to UTC):

C : \ cygwin64 \ home \ boer \ setmace>SetMace64 . exe F : \ t e s t d i r \ t e s t f i l e
−z "1999:12:31:21:59:59:999:9999" −x

S t a r t i n g SetMace by Joakim Schicht
Version 1 . 0 . 0 . 9

Record number : 39 found at d isk o f f s e t : 0x000000000000DC00
Success dismount ing F :
Success w r i t i n g timestamps
Job took 0.03 seconds

Another directory listing shows the timestamps from the IXFN
structures for the testfile file. These timestamps have not been
changed. A remount of the volume brings no change in this
situation, and neither does rebooting the virtual machine.

C : \ cygwin64 \ home \ boer \ setmace> d i r F : \ t e s t d i r
Volume i n d r i ve F i s En thee efkes
Volume S e r i a l Number i s 0246−9FF7

D i r e c t o r y o f F : \ t e s t d i r

07/07/2014 02:50 PM <DIR> .
07/07/2014 02:50 PM <DIR> . .
07/07/2014 02:50 PM 11 t e s t f i l e

1 F i l e ( s ) 11 bytes
2 D i r ( s ) 6 ,567 ,936 bytes f ree

Next, the content of the testfile file is read and displayed in the
terminal.

C : \ cygwin64 \ home \ boer \ setmace>more F : \ t e s t d i r \ t e s t f i l e
l e content

After this, a directory listing does show the timestamp values
written by SetMACE:

C : \ cygwin64 \ home \ boer \ setmace> d i r F : \ t e s t d i r
Volume i n d r i ve F i s En thee efkes
Volume S e r i a l Number i s 0246−9FF7

D i r e c t o r y o f F : \ t e s t d i r

07/07/2014 02:50 PM <DIR> .
07/07/2014 02:50 PM <DIR> . .
31/12/1999 11:59 PM 11 t e s t f i l e

1 F i l e ( s ) 11 bytes
2 D i r ( s ) 6 ,567 ,936 bytes f ree

Further experimentation using the Cygwin utilities show that
this also happens when using stat, which does not read file con-
tent, but only its metadata. There must be some mechanism that
detects inconsistencies with the parent directory IXFN struc-
tures upon reading MFT entries, and fixes them, regarding the
SI attributes as authoritative. So while SetMACE can be said
to create inconsistencies between SI/FN timestamps on the one
hand, and the timestamps in IXFN structures on the other hand,
they are corrected by some mechanism—in the NTFS driver,
presumably—as soon as entries are accessed. The implication
is that it is what happens after the timestomping with SetMACE
has taken place, that will determine whether it can be easily de-
tected by comparing SI and IXFN timestamps. This once more
points to the importance of following best practices for conser-
vation of digital evidence, especially in dealing with situations
in which timestomping is a possibility.

7. Single-source anomaly detection

This section details research into the detection of inconsis-
tencies by using just the timestamps that can be retrieved from
the MFT, i.e. without resorting to some other source of time
or sequentiality information. The filesystem used to investigate
wildtype timestamps is the System B filesystem as introduced
in Section 5.2.1. Timestamps are extracted to a database using
the dumptrel-ts.py script, and post-processing is performed us-
ing the tsfipri.py script [24]. The database for System B is made
available online [25].

7.1. Testing assumptions

7.1.1. FN timestamps should be less or equal to SI timestamps
As FN timestamps are updated with SI values, they should

invariantly be of lesser or equal value as SI timestamps. For
System A, there are 116658 files for which all timestamps are
retrieved, and for System B there are 60489 such files. Only
23% of the files on System A conform to this “invariant”, and on
System B, the fraction is even lower: 3%. Clearly, the invariant
does not hold. In fact, the most common relations with respect
to FN and SI MACB values are

MS I = MFN , AS I = AFN ,CS I < CFN , BS I = BFN

on System A (19%), and

MS I < MFN , AS I < AFN ,CS I = CFN , BS I < BFN

on System B (57%).
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7.1.2. File change time should be greater than parent directory
birth time

A file cannot be placed in a directory that does not yet ex-
ist. When placing a file in a directory, its change time will be
updated. It may be updated again for various reasons, but that
newer timestamp value should never be smaller than its previ-
ous value. Testing this invariant yields 83 nonconforming files
on System B. 66 file change times lag more than 5 hours be-
hind their parent directory birth time; and of those, 26 lag by
more than a week: too long for it to be caused by non-slewing
clock synchronisation. Thus the inconsistency does not occur
often—the false positive ratio is low enough to further examine
the results by hand—but on the other hand, we know nothing
of the false negative ratio. This will depend on a tamperer be-
ing unwise enough to antedate files beyond the parent directory
birth timestamp.

7.2. Classifying wildtype timestamps

The previous experiment shows that inconsistencies occur
on filesystems even if no intentional timestomping has been tak-
ing place. This begs the question: what are the regular times-
tamp configurations? To answer this question, a simple finger-
print is derived from the SI and FN MACB timestamps. The
timestamps are sorted first alphabetically, by timestamp name.
After this, a stable sort by increasing value is performed. Rela-
tions between each value and the next one are then expressible
as either equality or less-than. A fingerprint may thus take the
following form:

ffna = ffnb = ffnc = ffnm = fsia = fsib < fsim < fsic

There are
7∑

x=1

(
8−1
x−1

)
= 55581 unique configurations that these fin-

gerprints can express.8 The fingerprints encountered on System
B are not evenly spread over this space; some fingerprints are
much more common than others. Figure 5 shows the cumu-
lative distribution for the 1360 allocated .exe files on System
B. The distribution is highly skewed, one particular fingerprint
covers almost half of the files, and seven fingerprints are suf-
ficient to cover 90% of of the files. What follows is a long
tail of one-offs. Again, none of these can be considered to be
a true positive. While this shows that some fingerprints will
be very uncommon, the utility of that knowledge for detecting
timestomping is limited. As a selection criterion, it will suffer
from a high false negative ratio. It may, however, be of some use
when ranking an otherwise bland result of running a filter on the
executables, such as a known-good list. As the fingerprints dif-
fer by type of file, and will likely differ by how they have been
handled, they could also be of some value when attempting to
find subgroups within collections of hundreds of pictures, some
of which have been handled differently than others.

8Each binomial coefficient expresses the number of ways in which the eight
time stamps can be subdivided between a certain number of inequality rela-
tions. There can be a maximum of seven inequality relations. See http:
//en.wikipedia.org/wiki/Stars_and_bars_(combinatorics).

Figure 5: Cumulative distribution of fingerprints of .exe files on System B.

8. Conclusions

With regard to the three research questions, we can con-
clude as follows:

1. Carving for derelict IXFN structures in MFT slack space
yields good results, in a quantitative sense. Since the
traces are related to the time that a directory first grew be-
yond a couple of entries, types of investigation other than
timestomping investigations may be better served by this
interesting type of trace.

2. A volatile type of inconsistency caused by direct-disk
manipulation of SI and FN timestamps has been discov-
ered.

3. Determining generic self-inconsistencies for timestamps
has not been found to be a worthwhile pursuit. The con-
fidence with which we reason about the result of file op-
erations on timestamps is not transferable to systems of
which we do not know which operations have been per-
formed on it. With an API to arbitrarily modify times-
tamps with, there can only be an open world assumption.
It is, however, unquestionably the case that in certain sce-
nario’s, with specific applications performing specific op-
erations, there can be easily detectable self-inconsistencies–
except that these will not be true self-inconsistencies, since
in such cases, a second source of truth is implicitly being
used: the specific behaviour of some application. Fin-
gerprinting time relations might be of some use, but it is
hard to see how it could outdo well-established clustering
algorithms.

The way forward seems to lie in developing a consistency checker
which integrates the types of inconsistencies that we do un-
derstand well–this includes Willassen’s causal relations, and
more mundane checks such as for discrepancies between mul-
tiple FN attributes in different namespaces, and possibly the in-
variants that have shown to yield some false positives, such as
the file-change-time-before-parent-directory-birth-time incon-
sistency type.
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