Feasibility of attacks against weak SSL/TLS ciphers

Kim van Erkelens

Supervisors: Jeroen van der Ham & Marc Smeets

Master System and Network Engineering University of Amsterdam 2 July 2014

Introduction

Motivation

■ Ciphers like DES and RC4 are considered weak

Weak ciphers still widely used

No practical feasibility of attacks described

RC4

SSL Pulse

Not Supported

16,110 10.4% + 1.1%

Some RC4 suites enabled

89,500 58.0% + 0.6 %

Used with modern browsers

48,796 31.6% -1.8% Introduction

Previous Research

- Minimal Key Lengths for Symmetric Ciphers to Provide Adequate **Commercial Security**
- Yearly Report on Algorithms and Keysizes
- SSL/TLS: What's Under the Hood

Research Questions

What is the feasibility of cracking weak ciphers based on resources required?

- 1. Which SSL/TLS ciphers are considered weak?
- 2. How can intercepted traffic be decoded and which tools can be used?
- 3. What are the requirements?
- 4. How can the attack be classified based on time, money, and resources?

Background

TLS and RDP

■ TLS = Transport Layer Security

Applications: HTTPS, SMTP, RDP etc.

RDP = Remote Desktop Protocol

Standard and Enhanced Security (uses TLS)

Open specification

Background

RDP Stack

User authentication

RDP data

Decoding Traffic

1. Obtaining session or private key

- Exhaustive key search
- Crypto-analytical attacks
- RSA factorisation
- 2. Decryption using private key or session key

C

Experimental Setup

■ Virtual servers:

Ubuntu with Apache and mod_ssl

- Windows Server 2003, 2008 & 2012
- Known private and session keys are used

HTTPS

- RDP Enhanced Security
- RDP Standard (different encryption levels)

Tools

- **openssl**: enforce cipher suite
- **tcpdump**: traffic capture
- Wireshark: decryption and analysis
- **Mimikatz**: export Windows Server private key

<u> E</u> dit	
kimvanerkelens/RP2/ssl.log	<u>⊨</u> Browse
	<u>B</u> rowse
<u> ≪ A</u> pply <u>X</u> anc	el <u>40</u> K

Classification

Budgets ranging from \$400 - \$300M **56-bit**: **\$750** in **30 days** (2008)

- Attack can be realised in *d/w* days by a device costing *cw* dollars ■ i.e. larger budget results in shorter recovery time
- Application of Moore's law: cost of attack drops by a factor 2 every 18 months

Weak Cryptography

Cipher suites with key sizes smaller than 128 bits \blacksquare 3DES (< 128 bits of security), EXPORT cipher suites

Ciphers with cryptographic weaknesses

RC4 (statistical biases in the key table)

RSA keys with short moduli

Findings

000

X Follow SSL Stream

Stream Content			
GET /flag.html HTTP/1.1 User-Agent: curl/7.32.0 Host: curlcore.local.plaidctf.com Accept: */*			
HTTP/1.0 200 OK Server: BaseHTTP/0.3 Python/2.7.5 Date: Thu, 20 Mar 2014 18:34:26 GMT Content-type: text/html			
<pre>content-type: text/ntmt <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <title>curlcore</title> </head> <body> <h1>CONGRATULATIONS!</h1> Your flag is: congratz_you_beat_openssl_as_a_whitebox </body> </html></pre>			
Entire conversation (425 bytes)		•	
Save As Eind Save As Eind ○ A	SCII O EBCDIC O Hex Dump	○ C Arrays ● Raw	
<mark>∐</mark> Help	Filter Out This Stream	X Close	

userName: 410064006d0069006e006900730074007200610074006f00... (Administrator) password: 700061007300730077006f00720064000000 (password) clientInfoPDU

source: failOverflow

Requirements

- Traffic can't be decrypted with private key for:
 - Diffie-Hellman (DHE) key exchanges
 - Ephemeral suites
- Whole session is captured
- Correct format RSA key file
- Correct format session key (master secret)

Findings

Practical Feasibility

Feasible

- Exhaustive key search: 40 or 56-bit session key
- \blacksquare RSA factorisation: < 512-bit modulus

Less feasible

Crypto-analytical attack on RC4: (13 * 2^20 sessions needed)

Conclusions

Conclusions

- Attacks are feasible for short key lengths
- Crypto-analytical attacks are less feasible
- HTTPS and RDP (standard & enhanced) decryption possible
 - RDP requires more effort for extracting information

Conclusions

Future Work

- Decompression of RDP traffic and extraction of information
- Decryption without Session ID
- Other applications with TLS

Questions?