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Chapter 1

Introduction

Weak ciphers as used in Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
have been around since many years. In theory many ciphers are feasible to crack. But
in current networks the usage of weak ciphers is still very common. According to SSL
Pulse one third of the sites surveyed still use RC4 with modern browsers, and almost 60
percent have some RC4 suites enabled [1]. Suprisingly, in practice only a few attempts
of cracking weak ciphers have been successful. Many other theoretically weak ciphers
are still not easy to crack. For instance cracking them would require a lot of money and
resources, and is therefore only within reach of large organisations.

SSL/TLS is widely used for securing traffic over the Internet and used for various ap-
plications. Besides web and HTTPS traffic the protocol can be used for SMTP, instant
messaging, and VPNs among many other applications. This project investigates both
HTTPS and Remote Desktop Protocol (RDP). Web servers using HTTPS are often tar-
get of scanners like SSL Labs. Such tools rank the security based on the ciphers available
among other settings in the SSL implementation. Therefore it is of interest to know what
the real value is of such ranking. Implementations of RDP have vulnerabilities related
to weak cryptography. It is known that the decryption of HTTPS traffic is easily when
in the possession of a private key, but it is not known whether cracking encrypted RDP
traffic has the same feasibility. This research aims to evaluate the practical feasibility of
cracking weak SSL/TLS ciphers in order to find out what the real risk is that the usage
of weak ciphers expose.

1



Chapter 1 Introduction 2

1.1 Research question

The research question for this project is: What is the feasibility of cracking weak SS-
L/TLS ciphers based on resources required?

In order to answer this question the following sub-questions are set:

1. Which SSL/TLS ciphers are considered weak?

2. How can intercepted traffic be decoded when the key is known, and which tools
can be used to achieve that goal?

3. What are the requirements for decryption?

4. How can the attack be classified based on time, money, and skills?

1.2 Related work

Many studies concern recommendations for cryptographic algorithms and key sizes. A
bit outdated but still relevant is a study by Blaze et al. [2]. The subject concerns
minimal key lengths for symmetric ciphers that are adequate enough to use in commercial
enterprises or government intelligence agencies. The study describes that brute-force
attacks can be performed fast and cheap against the key lengths that were common
back in 1995. Those 40-bit and 56-bit keys were already considered weak. The time and
money required to brute-force these keys is explained. The report advises the use of at
least 90 bits keys, which is also considered weak nowadays.

Similar research is performed by Lenstra [3] and Orman et al. [4] in 2004. Both also cover
asymmetric methods for key exchange, which influences the strength of the cryptography.
Symmetric/asymmetric size-equivalence relations are provided. More recent work is done
by ECRYPT II (European Network of Excellence in Cryptology II) [5] and provides
an extensive report on algorithms and key lengths. All of these recommendations are
summarised on keylength.com, a calculator for secure key lengths.

Research that resulted in commercially available hardware for cracking DES is per-
formed by Kumar et al. [6]. The machine named COPACOBANA (Cost-Optimized
Parallel Code Breaker) hosts 120 low-cost Field Programmable Gate Arrays (FPGAs).
It is optimized for running crypt-analytical algorithms and can be realised for less than
$10,000. The system can perform an exhaustive key search for DES in less than 9 days
on average. Also, other efforts for cracking DES are described. These are able to crack
DES in even less time but are more expensive.

This research project will expand on the previous research by investigating the practical
feasibility of cracking encrypted SSL/TLS session data.
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1.3 Organisation

This report is organised as follows. In Chapter 2 some background information on TLS
and RDP is provided. Chapter 3 describes our approach, and Chapter 4 presents our
results. Finally, we conclude and describe possibilities for future work in Chapter 5.



Chapter 2

Background

In this chapter, a theoretical background is provided. Two aspects of TLS are highlighted
because of their importance for this research, namely key exchange and encryption
algorithms.

The terms SSL and TLS are often used interchangeable. Because TLS 1.2 is the most
recent version specified in RFC 5246 [7], we will further refer to it as TLS. The protocol
uses both asymmetric and symmetric cryptography. Authentication of the counterparty
is performed by means of X.509 certificates. This asymmetric key is used for the exchange
of a symmetric key. That is the session key used for the encryption of the data sent.
The TLS Handshake Protocol, one of the two layers of which TLS is composed of, is
responsible for this authentication and key exchange at the start of a secure session.

TLS supports an extensive amount of algorithms for authentication, key exchange, en-
cryption, and integrity. One combination of algorithms is called a cipher suite. It is
negotiated between client and server within the TLS Handshake. The client specifies a
list with supported cipher suites in the ClientHello message in order of preference. Then
the server replies with the cipher suite that it has selected in the ServerHello message.
Each cipher suite defines a key exchange algorithm, a bulk encryption algorithm, a Mes-
sage Authentication Code (MAC) algorithm, and a pseudorandom function (PRF). The
first two are further explained in the next sections.

2.1 Key exchange algorithms

Different algorithms exist for exchanging or generating the unique session key between
the two sides of the communication channel. These algorithms are important if one
wants to decrypt a session. Two of the most common algorithms are RSA and Ephemeral
Diffie-Hellman (DHE in the cipher suite name).

Part of the RSA key exchange mechanism is the generation of a pre-master secret by
the client. This is sent to the server encrypted with the servers’ public key. Then the
pre-master secret is used for computing the 48-byte master secret on both ends. Finally
the master secret is used for generating the actual session keys. Access to the TLS
handshake and the pre-master secret allows an attacker to compute the master secret.
RSA encrypts the master secret with the private key in order to protect it.

4
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Diffie-Hellman uses key generation with the use of public and private components. Client
and server both compute the master secret. Only the public components are sent over the
network, but interception does not provide enough information to compute the master
secret or the session keys. Ephemeral suites use session keys that do not include the
servers’ private key in the computation. Therefore, compromise of the private key does
not result in the compromise of all previously intercepted sessions. This characteristic
provides perfect forward secrecy [8].

2.2 Bulk encryption algorithms

The bulk encryption algorithm specifies the cipher used to encrypt the message stream.
Some of the most common ciphers used in TLS1 applications are displayed in Table 2.1.
DES (Data Encryption Standard) is also included, but is no longer supported since TLS
1.2. Each cipher has a specific key length, which is important for its strength.

Cipher Key length (bits)

DES 46
3DES 168
RC4 40 - 128
AES 128 - 256

Table 2.1: The key space of common ciphers

Another ”cipher” that can be negotiated is NULL encryption, which means that no
encryption is applied, and therefore data can be obtained in plain text.

2.3 RDP encryption

Because TLS is application protocol independent, other protocols can built on top of it.
Among those protocols is RDP, which is specified by Microsoft as an open protocol [9].
RDP provides two levels of security, called enhanced and standard security. TLS 1.0,
1.1, 1.2, and Credential Security Support Provider (CredSSP) are used for the enhanced
security level. Older versions of Windows use the standard security level by default.
This security level does not verify the identity of the server.

A simplified view of the RDP network stack is shown in Table 2.2. An RDP session
starts with the establishment of a TLS channel. For enhanced security the server is
authenticated. CredSSP is used for authentication of the user that connects to the
remote desktop computer. CredSSP uses Kerberos or NT LAN Manager (NTLM) for
that case. On the right side, the protocol stack for RDP traffic is shown, which uses
several protocols for transport and communication, such as the transport service named
Transport Packet (TPKT).

1Information based on ClientHello packets from several browsers
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Kerberos / NTLM RDP

CredSSP Transport & Communication

TLS

TCP

Table 2.2: Network stack of RDP authentication and data

Standard security supports five different encryption levels as displayed in Figure 2.1.
Enhanced security supports a subset of the encryption levels, namely Client Compatible,
High, and FIPS (Federal Information Processing Standard). Except for FIPS, which only
allows 3DES, the encryption algorithm is negotiated between client and server.

Figure 2.1: Standard RDP Security [9]
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Methodology

This chapter describes the approach of this research. In order to answer the research
questions the following steps are performed:

1. Identification of weak cryptography;

2. Decoding of encrypted traffic;

3. Identification of attack requirements;

4. Classification of attack feasibility.

3.1 Identification of weak cryptography

In order to identify the cipher suites that are considered weak, security and govern-
mental organisations are consulted. These organisations have recommendations about
the ciphers that should not be used according to the security level an organisation
has to meet. Both PCI DSS (Payment Card Industry Data Security Standard) [10]
and ISO/IEC 27001 recommend the use of strong cryptography but do not specify key
lengths or algorithms1. Therefore the definition of weak ciphers is mainly based on the
more specific and practical SSL Labs and OWASP, which describe best practises.

3.2 Decoding of encrypted traffic

The practical feasibility of decryption is experimentally verified. For generating network
traffic a test lab with multiple virtual servers was created. The virtual machines were
running Ubuntu 12.10, Windows Server 2003, 2008, and 2012. Using the tools as de-
scribed by Vandeven [8], several setups are investigated in order to identify requirements
for traffic decoding. Our starting point is traffic that is already captured. In that case
no interference with the handshake is possible anymore. As a consequence there is no
possibility to downgrade the security level, SSL version or cipher suite.

1The versions consulted are PCI DSS version 3.0 (November 2013), ISO/IEC 27001:2013(E), and
ISO/IEC 27002:2013(E)

7
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3.2.1 Experimental setup

We first verified the feasibility of decrypting HTTPS traffic. The Ubuntu server running
a standard Apache configuration with mod_ssl was used for this. For the decryption of
RDP traffic, remote desktop was enabled on the Windows Server 2012 machine. The
experiments conducted are displayed in Table 3.1.

System Traffic type

Ubuntu HTTPS
Windows Server 2012 RDP - Enhanced Security (TLS)
Windows Server 2012 RDP - Standard Security (Low)
Windows Server 2012 RDP - Standard Security (High)

Table 3.1: Decryption experiments

The web page was requested using the OpenSSL s_client, because that allowed for full
control over the cipher suite and it has verbose output regarding the session. To ensure
that standard or enhanced RDP security was used, it was explicitly configured to be
enforced on both server and client. On Windows Server, those settings are configured
in the group policy editor. The Server 2003 and 2008 instances were used for analysis
of their default settings.

Figure 3.1: Network setup

As shown in Figure 3.1, the machine in the middle of the network topology acted as
sniffer. It listened on the bridge interface that connected the servers with the rest of the
network. For this part of the research tcpdump was used, but alternatives as Wireshark,
tshark or ssldump can be used as well. Traffic was captured with tcpdump as follows:

# tcpdump -w traffic.pcap
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3.2.2 Decryption of traffic

Wireshark, an open-source packet analyser, was used for the analysis and decryption of
the captured traffic. The newest version (1.10.7) during the time of research was used
as well as an older version (1.8.2). Decryption results differed considerably. The newer
version was better in dissecting RDP packets. Some of the decrypted packets could be
read only with this version.

Known private keys are used in this research project in order to analyse the decryption
process. For Apache this key can be copied from the file system. Exporting the private
key of a Windows server cannot be done directly from the operating system. For Server
2003 it can be exported via the management interface, but for newer versions that is
not allowed. A tool for invoking Windows security functions, Mimikatz2, could be used
for this purpose. The procedure followed is described on the FreeRDP wiki [11].

3.3 Identification of attack requirements

A division is made between Wireshark-specific requirements and requirements to the
traffic and session.

3.3.1 Wireshark-specific requirements

The decryption of TLS traffic is explained by Wireshark [12]. Based on this information
requirements for decryption are identified:

• Wireshark must be compiled against GnuTLS (for Linux systems);

• The RSA key file must be in PEM format or be a PKCS#12 keystore with password
provided;

• The RSA key file must only contain the private key with the correct header and
footer;

• The format of the master secret must be in the correct format. For RSA key
exchanges a Session-ID is required.

3.3.2 Session requirements

From the background information about TLS it follows that the requirements to the
TLS session are:

• Knowledge of the private key of the server and a handshake that does not use
Diffie-Hellman or the master secret used to encrypt the session data;

• No ephemeral suite is used;

• The session is not reused.
2https://github.com/gentilkiwi/mimikatz
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3.4 Classification of attack feasibility

The method for classifying the cost of brute-force attacks as described by Blaze et al. [2]
has been used for the classification of symmetric and factorisation based systems. The
type of attackers that they have defined are explained in Section 3.4.1. The approach
from Lenstra [3] for calculating the cost of an attack has been used in our research. This
is described in Section 3.4.2. The classification for crypto-analytical attacks is based on
specific literature concerning those attacks.

3.4.1 Type of attackers

Blaze et al. [2] describe different type of attackers plus the budget they have at their
disposal, together with the equipment they use. These categories have been used in this
research project:

• Hacker: $400;

• Small organisation: $10k;

• Medium organisation: $300k;

• Large organisation: $10M;

• Intelligence agency: $300M.

These numbers are used in the calculations that are described in the next section.

3.4.2 Calculation

Developments in hardware and cryptanalysis result in a decrease of the attack effort over
a certain amount of time. Because studies were used that describe the attack effort in
previous years, we have to take this into account. The figures from these studies have to
be adjusted for new developments. Besides that, the attack effort has to be calculated
for the different budgets as described in the previous section.

In order to have up-to-date figures for the developments in technology Moore’s law is
used. This law says that computing power doubles every 18 month. Lenstra [3] applied
Moore’s law as follows: ”The cost of any fixed attack effort drops by a factor 2 every 18
months”. Integer factorisation poses a problem that differs from exhaustive key search.
Not only the cost of factoring drops by a factor 2 in 18 months, but the cost of equipment
also drops with the same rate. Therefore, the Double Moore factoring law is applied on
these calculations, which Lenstra defined as: ”The cost of factoring any fixed modulus
drops by a factor 2 every 9 months”.
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Lenstra [3] uses the same formula for the cost of breaking symmetric and factorisation
based systems. With his method the time of a key search can be calculated for different
budgets. This same method is also used in the estimations by Gehrmann et al. [5].
Lenstra describes the cost of an attack as being c dollars, to be realised in d days.
For any reasonable w, the attack can be realised in d/w days by a device costing cw
dollars. This implies that the cost-performance ratio is constant, i.e. with a larger
budget available, the number of days needed to break a key decreases with the same
factor. The cost of an attack can then be specified in dollardays: the amount of dollars
it costs to break a key in one day.

The calculations are automated in a Python script. Below is a part of the script. The
full version can be found in Appendix A. The results obtained with the help of these
formulae can be found in Section 4.3.

x = [400, 10000, 300000, 10000000, 300000000]

# dollardays (getting the cost for cracking in one day):

# d/w = 1, thus d = w, thus c*w = c*d)

cd = c * d

# Apply Moore’s law

a = (y2 - y1) * 12

c = cd / (2 ** (a/18))

d = 1

# b = cw, thus w = b / c

i = 0

for b in x:

w = b / c

t = d / w

...



Chapter 4

Results

This chapter describes the results of this research. First, weak cryptography as de-
scribed by security organisations is identified. Then, the practical feasibility of decoding
encrypted traffic is verified. Finally, a classification is created for the feasibility of crack-
ing the weak ciphers.

4.1 Identification of weak cryptography

The usage of weak cryptography in applications invites an attacker to conduct attacks
against it. The following categories of weak cryptography have been identified:

1. Cipher suites with key sizes smaller than 128 bits;

2. Ciphers with cryptographic weaknesses;

3. RSA keys with short length.

4.1.1 Cipher suites with key sizes smaller than 128 bits

Cipher suites define the size of the symmetric session key. SSL Labs describes that
128 bits is the recommended minimum key length today to provide enough protection
against brute force attacks [13]. As shown in Table 2.1, DES and the RC4 types that
use 40 or 56 bits keys have a key size that is smaller than 128 bits. That results in an
attack effort that is equal to the key space of the ciphers as can be seen in Table 4.1.
3DES provides only 108 or 112 bits of security and therefore is below the recommend
minimum. This is due to the two keys that are being used for encryption. Also Export
level (EXP/EXPORT in cipher suite name) cipher suites belong to this category. Those
cipher suites have a restricted length of 40 bits, designed for US export regulations.

12
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Cipher Attack effort

DES 2ˆ40
3DES 2ˆ112
RC4 2ˆ40 - 2ˆ128
AES 2ˆ128 - 2ˆ256

Table 4.1: Attack effort

4.1.2 Ciphers with cryptographic weaknesses

RC4 was first recommended for mitigation of the BEAST attack. Now, this advice has
been withdrawn because of the discovery of crypto-analytical attacks [13]. Parts of the
plain text can be recovered because of statistical biases in the RC4 key table. However,
13 ∗ 220 encrypted sessions are needed to perform the most recent attack, a double-byte
bias attack. It is expected that the attacks on RC4 will improve in the future [14].

4.1.3 RSA keys with short length

Public RSA keys that are used for the authentication of the server should be at least 2048
bits [15]. RSA keys with a smaller size are considered weak because they are vulnerable
for integer factorisation. This attack can recover the private key by factorisation of the
modulus N, which is part of the public key. The largest key size that is publicly known
to be factorised is RSA-768 [16].

4.2 Decoding of encrypted traffic

This section describes the process of decoding encrypted traffic. First, methods for
obtaining the private or session key are described. Then the results of the decryption
expirements are analysed.

4.2.1 Obtaining the key

Before traffic can be decrypted, the session or private key has to be obtained first.
Several methods are identified for achieving that. Based on Section 4.1 the following
methods can be identified:

• Brute force (exhaustive key search);

• RSA factorisation;

• Crypto-analytical attacks.

Exhaustive key search or brute force is a crypto-analytical attack that searches the key
space of a cipher in order to find the correct key of encrypted data. Usually special
purpose hardware, such as FPGA designs, is used for optimising this process in terms
of speed.
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For RSA factorisation, several tools are available that can run on desktop computers.
Sage1, a mathematical software package based on Python, can be used for small numbers.
Msieve2 is a C library with a suite of algorithms for factoring large integers. Lastly we
note that crypto-analytical attacks exist in different variations. Not all of them are
usable against weak ciphers, or result in decryption of the whole stream of traffic. For
instance the attacks may result in recovering a web cookie only. Therefore, not every
attack is covered in this report. The feasibility of the attacks identified is considered in
Section 4.3.

4.2.2 Experimental results

During this research project traffic was intercepted and decrypted successful with Wire-
shark, except for the HTTPS session with its session key. The results are displayed in
Table 4.2. These results are further explained below.

System Traffic type Decoding successful with
Private key Master secret

Ubuntu HTTPS yes no
Server 2012 TLS yes yes
Server 2012 RDP - Low yes yes
Server 2012 RDP - High yes yes

Table 4.2: Results of decryption experiments

4.2.3 Decryption of HTTPS traffic

The packet capture can be analysed to answer the question whether the session meets
the requirements as described in 3.3.2. The first step is identifying the used cipher
suite in order to look for possible weak ciphers. The ServerHello packet can be used to
identify the negotiated cipher suite. This information is included in the Cipher Suite
field of this packet. When the key exchange method is RSA, the attacker needs to be in
the possession of either the private key or the session key in order to decrypt the traffic.
For a session with Diffie-Hellman key exchange, it is only possible to decrypt using the
symmetric session key.

TLSv1.1 Record Layer: Handshake Protocol: Server Hello

Content Type: Handshake (22)

Version: TLS 1.1 (0x0302)

Length: 58

Handshake Protocol: Server Hello

Handshake Type: Server Hello (2)

Length: 54

Version: TLS 1.1 (0x0302)

Random

Session ID Length: 0

Cipher Suite: TLS_RSA_WITH_3DES_EDE_CBC_SHA (0x000a) ...

1www.sagemath.org
2sourceforge.net/projects/msieve/
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4.2.3.1 Using private key

After the private key has been retrieved, the process for decrypting HTTPS traffic
is straight forward. All settings regarding TLS traffic can be found in the Wire-
shark preference panel under Protocols, SSL. The information that needs to be pro-
vided under the RSA keys list is the IP address of the server, the port number, the
protocol, and the private key. For HTTPS, the following parameters are specified:
<server-ip>,443,http,<path to key>. This results in plain HTTP data, which can
be shown with Follow SSL stream (a related packet must be selected).

4.2.3.2 Using session key

It turned out that the Export SSL Session Keys option that is available in Wireshark,
does not export the session key, but the master secret. The master secret is not the
same as the actual encryption keys. This is described in section 6.3 Key Calculation of
RFC 5246 [7]. A consequence for the brute-force attack is that the session key cannot
be imported directly into Wireshark. Further research has to be performed for solving
this problem. Decryption with the master secret will be described instead.

The master secret for RSA key exchanges is configured in the preference panel for the
SSL dissector in the following format3:

* - "RSA Session-ID:xxxx Master-Key:yyyy"

* Where xxxx is the SSL session ID (hex-encoded)

* Where yyyy is the cleartext master secret (hex-encoded)

For using the master secret with an RSA cipher suite, also the SSL Session ID is needed.
This value can be found in the same ServerHello packet. When it is absent, the value
of Session ID Length is equal to zero as is the case for the packet shown. That resulted
in traffic that could not be decrypted. Unfortunately Wireshark needs the Session ID
for mapping the traffic flow to the private key. Decryption of the traffic should be
possible without providing the Session ID. One option is to use the format for non-RSA
traffic (shown below). Another option is to use a different tool such as Unsniff4 that can
decrypt the traffic with the master secret only.

For Diffie-Hellman key exchanges Wireshark requires the master secret to be in a file
with the client random, which can be copied from the ClientHello packet. The master
secret for Diffie-Hellman needs to be provided in the following format:

* - "CLIENT_RANDOM xxxx yyyy"

* Where xxxx is the client_random from the ClientHello (hex-encoded)

* Where yyy is the cleartext master secret (hex-encoded)

3Code snippets from the Wireshark source code (version 1.10.8)
4www.unleashnetworks.com/blog/?p=574
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4.2.4 Decryption of RDP traffic

Decryption of RDP traffic does in general not differ much from HTTPS traffic. There-
fore, only the differences are highlighted in this section. When viewing the encrypted
RDP traffic no human-readable information can be derived. This is in contrast with
HTTPS traffic where TLS Handshake packets are dissected by Wireshark. For the
standard security level the packets are recognised as TCP streams. This may differ per
Windows Server version as a capture for Server 2008 was interpreted differently by Wire-
shark. A couple of SSL packets were present in that capture, but without any meaning.
For the enhanced security level also TPKT packets are dissected.

The downside of this is that the cipher suite used cannot be identified. However, as
described in Section 2.3, there are only a couple of possibilities for the cipher suite.
A common approach for identifying the cipher suites supported by the server is the
usage of an SSL scanner. SSLMap5 was used against the Windows Server 2012 machine.
The results are included in Appendix B. Log entries for Schannel, a Windows Security
Support Provider for encryption, were consulted to verify that the cipher suite shown
in Wireshark was correct. This was indeed the case.

In order to decrypt RDP traffic with the private key, one should configure the SSL dis-
sector with the following setting [17]: <server-ip>,3389,tpkt,<path to key>. De-
cryption with the master secret is exactly the same as for HTTPS traffic. Decryption for
RDP is successful when CredSSP packets are shown. Then, user name and password can
be viewed in plain text. However, the remainder of the traffic is compressed. As stated
in a Microsoft article about RDP encryption [18], compression needs to be disabled in
order to view the unencrypted traffic.

Remote Desktop Protocol

SendData

clientInfoPDU

flags: 0x0040

flagsHi: 0x0000

codePage: 1043

optionFlags: 0x002103fb

cbDomain: 0

cbUserName: 26

cbPassword: 24

cbAlternateShell: 0

cbWorkingDir: 0

domain: 0000 ()

userName: 410064006d0069006e006900730074007200... (Administrator)

password: 700061007300730077006f00720064000000... (password)

The decrypted ClientInfoPDU with username and password.

5thesprawl.org/projects/sslmap/
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4.3 Classification of attack feasibility

First the cost for breaking cryptographic systems is estimated. Then the feasibility of
other crypto-analytical attacks is described. Our results are discussed in the end of this
section.

Many estimations have been done for the costs of breaking symmetric and factorisation
based keys. Those figures are renewed by applying (double) Moore’s law. The recovery
time for different key lenghts is calculated for each type of attacker. The estimations do
not include the one time costs for design.

4.3.1 Symmetric systems

Two key lengths are chosen for symmetric systems: 56-bit and 83-bit. In 2008, ECRYPT
described that a 56-bit key can be cracked in one month for only 750 dollar. For 83-bit
already a machine costing $300M is needed. This machine can find the key in 73 days.
A machine that can perform a 128-bit key search in one month, would still cost $2.8 *
10ˆ24 [5]. This is even infeasible for an intelligence agency with the budget as used in
the calculations.

The previous developments are translated to this year, which is displayed in Table 4.3.
Then cracking 56-bit session keys is feasible for the normal hacker, because it can be
performed in 3.5 days on average. But cracking a symmetric system with 83-bit session
keys becomes infeasible for the hacker. For an intelligence agency the attack is still
feasible in around 4.6 days.

Attacker Budget Recovery time
56bits 83bits

Hacker $400 3.52 days 3421875 days
Small org. $10k 202.5 minutes 136875 days
Medium org. $300k 6.75 minutes 4562.5 days
Large org. $10M 0.20 minutes 136.88 days
Intelligence agency $300M 0.01 minutes 4.56 days

Table 4.3: Time and cost for breaking symmetric keys in 2014

That means that for 3DES with a key space around 110 bits, exhaustive key search is
still impractical for an attacker. Only DES and RC4 (40 or 56 bits) are feasible, while
cracking RC4 (128 bit) and AES are far beyond his capabilities.

4.3.2 Factorisation based systems

Relatively recent is the factorisation of RSA-512 keys used for signing the operating
systems of Texas Instrument calculators. One of the keys is factored in 73 days using
a desktop computer (2009). That resulted in several successful distributed attempts of
other signing keys [19, 20]. The first successful attempt of the factorisation of a 768-bit
RSA key was announced in 2010 by Bos et al. [16].

Preneel [21] estimated the budget that would be needed for the factorisation of RSA-768
keys. A 768-bit modulus could be factored in 95 days with a budget of 10,000 dollar.
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The time and cost for RSA factorisation in 2014 is shown in Table 4.4. 512-bit RSA
keys can be cracked even by a hacker. 768-bit factorisation would take the hacker about
two months, but is not impossible.

Attacker Budget Recovery time
512bits 768bits

Hacker $400 1034.71 minutes 58.91 days
Small org. $100k 41.39 minutes 2.36 days
Medium org. $300k 1.38 minutes 113.10 minutes
Large org. $10M 0.04 minutes 3.39 minutes
Intelligence agency $300M 0.001 minutes 0.11 minutes

Table 4.4: Time and cost for RSA factorisation in 2014

1024-bit RSA is not factorised yet. Several estimates has been done over the years as
described by Coffey [20]. One of the most recent estimates dates from 2009 by Bos et
al. [22]. Although these estimates are hypothetical, it can be assumed that 1024-bit
factorisation is feasible for an intelligence agency. In 2012 Bernstein et al. have shown
that it is also feasible for large organisations [23].

4.3.3 Crypto-analytical attacks

Attacks against cryptographic weaknesses have a different feasibility. For evaluating this,
we consult the paper of Bernstein et al. [14] about the security of RC4. The setup that
is used only involves a recent consumer-grade computer. The attacks proposed apply on
both TLS and WPA. They describe that 13 ∗ 220 amount of sessions are needed. And
even then, only parts of the plain text can be recovered. Bernstein et al. come to the
conclusion that RC4 does not provide as much security as it should, but the attacks they
describe are not considered as a practical threat. Still, they point out that the attacks
described could be improved in the future. Therefore, they recommended to avoid the
usage of RC4 in TLS.

4.3.4 Discussion

Because the calculations make use of models that easily can turn out to be too simplified,
the results obtained in this way will now be more critically discussed. As expected,
the calculations correspond with the recommendations for key lengths described at the
beginning of this chapter. The ciphers that are recommended are those for which it
is computationally infeasible to crack. Even the removal of 3DES in the near future
makes sense with these results. The estimations for factorisation based systems are
more optimistic than for symmetric ones. This is because the double Moore’s law has
been used. When looking at developments on RSA-1024 factorisation, they are not as
fast as this law implies. Also, the figures that are less than one minute could be too
optimistic.

Finally, the practical feasibility is concluded. This feasibility applies for someone with
low resources like the hacker with a budget around 400 dollar. With such capabilities,
the practical feasibility can be classified as displayed in Table 4.5.
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Weakness Practical feasible

Cipher with short key length (e.g. DES and RC4) yes*
3DES, AES no

Weakness in RC4 no
RSA modulus 512-bit and below yes

* When decryption with session key is possible

Table 4.5: Practical feasibility

It should be noted that private keys can be used for sessions with RSA based key
exchanges only.



Chapter 5

Conclusions

5.1 Conclusions

The central research question reads: What is the feasibility of cracking weak SSL/TLS
ciphers based on resources required? Four sub-questions are set in order to answer this
question.

1. Which SSL/TLS ciphers are considered weak?

The ciphers most commonly called weak are 3DES and RC4. Weaknesses of a cipher
can be divided into ciphers that use short key lengths and ciphers with cryptographic
weaknesses. DES and 3DES fall into the first category. RC4 is considered weak because
of statistical biases in the key table that can help in recovering parts of the plain text.
A group of cipher suites that are weak are EXPORT ciphers. They are weakened on
purpose, and have short key lengths. The NULL cipher can also be seen as weak be-
cause it does not encrypt data at all. RSA public keys have weaknesses such as short
key lengths. Moduli that have a length that is less than 2048-bit are considered weak
because of integer factorisation.

2. How can intercepted traffic be decoded when the key is known, and which
tools can be used to achieve that goal?

All these weaknesses can aim in cracking TLS traffic. The ciphers with short key lengths
are susceptible to exhaustive key search, while the ciphers with cryptographic weaknesses
are vulnerable for other cryptanalytic attacks. Short RSA keys can be factorised. When
one of these methods can be applied for retrieving the private key, they can be used for
the decryption of traffic. For the two investigated protocols, HTTPS and RDP, this can
be performed with Wireshark. The tool is able to decrypt and dissect this traffic. For
RDP, only parts of the decrypted traffic resulted in useful information.

20
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3. What are the requirements for decryption?

The requirements for decryption can be divided into requirements for the intercepted
traffic and Wireshark-specific requirements. Decryption with the private key is only
possible for a session with an RSA based key exchange. Furthermore, the whole session
needs to be captured for decryption. In order to decrypt traffic with the session key,
Wireshark requires a special formatted key that includes the master secret and Session
ID. When the ID is not present in the session, decryption will likely fail with Wireshark.

4. How can the attack be classified based on time, money, and skills?

The feasibility of cracking the ciphers with short key length and factorisation depends on
the budget of the attacker. Cracking 56-bit session keys is feasible for the normal hacker
with a budget around 400 dollar, because it can be performed in 3.5 days on average.
Cracking a symmetric system with 83-bit session keys already becomes infeasible for
the hacker. For an intelligence agency with an estimated budget around 300M dollar,
that would be still feasible in around 4.6 days. That means that for 3DES with a key
space around 110 bits, exhaustive key search is still impractical for an attacker. Only
DES and RC4 (40 or 56 bits) are feasible, while cracking RC4 (128 bits) and AES are
far beyond his capabilities. Only small sizes can be factorised by someone with low
resources. However, such small sizes are rarely used these days. 512-bit factorisation
is possible for a hacker in a couple of days, and a 768-bit key would take two months.
1024-bit RSA keys can be cracked by a large organisation or intelligence agency.

5.2 Future research

More research is needed in the light of the following areas:

• Decryption with session key instead of master secret. Decryption was (partially)
successful with the master secret. However, brute force attacks result in the session
key. More effort has to be done for solving this problem and the investigation of
methods or tools that can perform decryption with the session key.

• Decompression of RDP traffic. Compression was applied on the RDP traffic.
Therefore, no information could get extracted from the traffic. More analysis
is desired for this.

• Elliptic curve cryptography. With elliptic curve cryptography different key sizes
are applicable. The key sizes used in this research have to be converted for this
type of cipher suites.

• Other applications that use TLS. Many other applications use TLS for secure
communication. The impact of decrypting traffic from these applications still has
to be investigated.



Appendix A

Attack effort calculation

This appendix contains a Python script that was written for the calculations of attack
efforts for breaking symmetric and asymmetric systems.

#!/usr/bin/python

# Output is LaTeX formatted

from __future__ import division

c =

d =

y1 =

y2 = 2014

x = [400, 10000, 300000, 10000000, 300000000]

attacker = ["Hacker", "Small org.", "Medium org.", "Large org.",

"Intelligence agency"]

m = 18 # 18 for Moore’s law, 9 for double Moore factoring law

# dollardays (getting the cost for cracking in one day: d/w = 1, thus d = w,

thus c*w = c*d)

cd = c * d

# Apply Moore’s law

if y1 != y2:

a = (y2 - y1) * 12

c = cd / (2 ** (a/m))

d = 1

print "Attacker & Budget & Recovery time \\\\"

# b = cw, thus w = b / c

i = 0

for b in x:

w = b / c

t = d / w

# if less than one day, translate to minutes

if t < 1:

22
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time = str(t * (24 * 60)) + " minutes"

else:

time = str(t) + " days"

print attacker[i] + " & \$" + str(b) + " & " + time + " \\\\"

i = i + 1



Appendix B

RDP cipher suites

This appendix contains the cipher suits that are supported by the Windows Server 2012
machine retrieved with SSLMap.

[*] Scanning 145.100.108.164:3389 for 229 known cipher suites.

[+] TLS_RSA_WITH_AES_128_CBC_SHA (0x00002F)

[+] TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (0x00C013)

[+] TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0x00C014)

[+] TLS_RSA_WITH_AES_256_CBC_SHA (0x000035)

[+] TLS_RSA_WITH_3DES_EDE_CBC_SHA (0x00000A)

[+] TLS_RSA_WITH_RC4_128_MD5 (0x000004)

[+] TLS_RSA_WITH_RC4_128_SHA (0x000005)

==================== Scan Results ====================

The following cipher suites were rated as HIGH:

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

The following cipher suites were rated as MEDIUM:

TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

24
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