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Abstract 

 
Information Centric Networking (ICN) is a new and promising network 

concept which is founded upon the idea that most users in the internet 

are interested in accessing digital objects, irrespectively of their 

locations. Digital objects in ICN have unique names that are used in 

order to route data content from the source node to the destination 

node. During the content delivery from sources to destinations, the data 

contents are cached to intermediate nodes in order to achieve efficient 

and reliable distribution of the data content among the network 

infrastructure (in-network caching). In this research project we focus 

on the efficiency of ICN for delivering Big Data with Persistent 

Identifiers. We proposed a Mapping Architecture for resolving PIDs to 

ICN names and we evaluate the efficiency of in-network caching when 

delivering Big Data objects. Our results showed that in-network 

caching can offer significant performance benefits when the cache size 

of the network elements that perform in-network caching is bigger than 

the Big Data object size.      
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1 Introduction 
 
Big Data [1] applications face challenges in acquiring, storing, sharing, transferring, 

analyzing and visualizing data with very large quantities and from distributed sources. 

Data research infrastructures (e.g. in the ENVRI project [2]) manage data from 

different sources and provide access services for scientists to perform inter-

disciplinary researches. The persistent identification (PID) is an important mechanism 

for publishing Big Data objects, referencing data objects, and retrieving data contents.   

 

Delivering data content from sources to destinations to perform further process and 

analysis is another important requirement in data research infrastructures, in particular 

when multi sources are involved for applications. The bandwidth limitation for Long 

Fat Networks (LFN) [3] is a performance bottleneck encountered during the 

distribution of Big Data in IP networks that led the researchers to use new state of the 

art technologies in order to overcome it. These new state of the art technologies 

include TCP tuning [4] Multipath TCP (MTCP) [5] data movement applications 

(GridFTP, bbFTP, FDT), applying light-paths for extending bandwidth and use 

Software Defined Networking (SDN) to dynamically control the network. All the 

aforementioned solutions are based on IP networks (end-to-end communication), and 

each solution has its shortcomings. Extending bandwidth technologies are limited 

from congestion problems in the network, thus they can only temporally solve the 

delivery of big data and dynamic control of the network using SDN is very complex 

and difficult to implement. 

 

On the other hand, Information Centric Networking (ICN) [6] concept, a new network 

paradigm which is founded upon the idea that most users are interested in accessing 

data contents, irrespectively of their locations is a new and promising approach for 

networking. Instead of having an end-to-end communication model between nodes, 

data objects have unique names that are used in order to route data content from the 

source node to the destination node. During the content delivery from sources to 

destinations, the data contents are cached to intermediate nodes in order to achieve 

efficient and reliable distribution of the data content among the network 

infrastructure. It is thus clear, that ICN can offer a natural architecture for transferring 

Big Data. 

 

However, using ICN to deliver PID based data objects in big data infrastructure is still 

in its very early stage, and there are also technical gaps between using PID for 

publishing and for retrieving Big Data content and using Information Centric 

Networking for delivering data. These gaps motivate us to investigate how to use ICN 

for delivering Big Data with Persistent Identifier (PID). 

1.1 Scope 
 
This research project focuses on how available ICN implementation can be used in 

Big Data infrastructure for delivering data with most common PID types. We 

highlight our research in the current PID standard schemes [7] and most well-known 

ICN implementations [8] respectively. Furthermore, we will also evaluate the 



2 
 

efficiency of current caching algorithms for delivering Big Data in ICN 

implementations. 

1.2 Research Questions 
 
The main research question of the project is to investigate: 

 

Can Information Centric Networking (ICN) efficiently be used for delivering Big Data 

with Persistent Identifiers? 

 
We will answer this question from the following three sub questions: 

 
o What are the state of the art of ICN approaches and PID standards? 

 

o How can PID standards be mapped to ICN‟s Object Identifiers? 

 

o How are the current ICN caching mechanisms behaving when 

delivering Big Data contents? 

1.3 Approach 
 
We will conduct our research via three steps: 

 
First, we will review the state of the art of current ICN approaches and PID standards. 

During the theoretical study in ICN approaches we pick the most popular ICN 

approach for further experimental studies.   

 

Afterwards, the key elements that constitute each PID standard are identified and we 

will propose a Mapping Architecture for resolving PIDs to the ICN approach selected 

in the first step. 

 

The last step of our approach will focus on evaluating the effectiveness of current 

caching algorithms for Big Data. For the evaluation we performed simulations under 

different scenarios using ccnSIM [9] caching simulator. 

 
The rest of the report is organized as follows: In chapter 2 and 3, we will review the 

current ICN approaches and PID standards. In the chapter 4, we will discuss proposed 

Mapping Architecture. In chapter 5, we will present the experimental simulation 

scenarios and methodology, and discuss the results of our simulations. Finally, we 

will conclude the research and discuss the future directions. 
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2 Information Centric Networking 
 

Information Centric Networking (ICN) is an umbrella term used to describe a number 

of research projects (DONA, NDN, PURSUIT, SAIL) which aim to evolve the 

Internet infrastructure and share the same objectives and structuring architectural 

properties. In this chapter, we first introduce the basic concepts of the ICN 

architecture and then we review the design choices that the most popular ICN 

approaches choose in order to implement these concepts.      

2.1 Basic concepts of ICN 
 

The basic concepts of the ICN architecture is the binding of each digital object with a 

unique name which is the object identifier(OI) of this digital object, the use of this OI 

in the network layer for routing and forwarding the digital object and the caching of 

the digital objects in the network infrastructure (in-network caching). 

 

Binding each digital object with an object identifier (OI) plays a critical role in the 

ICN concept. While in the IP network, the digital objects are named based on the 

location from which they can be retrieved using Uniform Resource Locators (URLs) 

(e.g. www.os3.nl/cia/dns_1.pdf), in the ICN concept the digital objects are named 

independently of their location, thus an OI in ICN is location independent. The 

naming syntax of the OIs in the ICN approaches is the key factor for routing and 

forwarding the digital object as we will show later. 

 

Routing and forwarding in ICN approaches is not based on the location of the server 

that hosts the digital object to be retrieved like in IP networks. In ICN routing and 

forwarding is based on the OI of the digital object requested. There are two 

approaches for routing and forwarding in ICN approaches that depends on the naming 

syntax of the OI. The first approach requires a service that is responsible for resolving 

OIs to a location from which the digital object can be retrieved. The second approach 

does not require a service for resolving OIs to a location. Instead, the OI itself is used 

in order for the request to be forwarded to a location from which the digital object can 

be retrieved. 

 

In network caching in ICN means that the digital objects are dynamically cached by 

the network elements (e.g. Routers) during the routing and forwarding procedure of 

the digital objects. The In-network caching in ICN aims to efficiently distribute the 

digital objects among the network infrastructure. 

 

To summarize table 1 shows the main differences between IP and ICN networking. 

 

Building Blocks IP ICN  

Digital Object Identifier URL: Location Dependent OI: Location Independent 

Routing & Forwarding Based on Location (IP) of the 

digital object 

Based on the OI, Location 

Independent 

In-Network Caching NO YES 

Table 1: IP and ICN Networking differences 
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2.2 Data Oriented Network Architecture (DONA) 
 

The Data Oriented Network Architecture (DONA) [10] is the first complete ICN 

approach introduced from UC Berkeley.  

2.2.1 Naming Syntax of Object Identifier 
 

In DONA naming syntax has a flat structure in the form P:L. The P part of the OI is 

globally unique and is defined as the principal which contains the cryptographic hash 

of the publisher‟s public key. On the other hand L is a locally unique name (in the 

scope of P) which uniquely identifies an object within the local scope. L syntax is left 

to the principals‟ (P) which may choose to just give a human readable name or even a 

cryptographic hash of the objects‟ content. The P:L naming syntax ensures that each 

OI in DONA is globally unique.    

2.2.2 Name Resolution and Data Routing 
 

Name Resolution in DONA is achieved through a Name Resolution System which is 

consisted by Resolution Handlers (RHs). Each Autonomous System (AS) in DONA 

has at least one RH and all RHs in the architecture are interconnected, thus creating a 

hierarchical Name Resolution System as shown on Figure 1. 

 

Publishing of OIs into the network is done by sources that are allowed to register data 

into the Name Resolution Infrastructure (arrows 1-3). When a source register a name 

to its local RH, the RH stores a pointer mapping the OI with the source that register 

the OI in a table and also forwards this OI to its peering and parent ASs, causing each 

intermediate RH to store a mapping between the OI and the address of the RH that 

forwarded the registration. As all the registrations are forwarded up to Tier-1 ASs 

which are peers with each other, Tier-1 contains all the registered OIs. Authoritative 

sources can also register wild cards OIs (e.g. P1:*) to their local RH, indicating that 

they can provide services for all the requests for the principal P1.       

 

Request for resolving an OI to its location is send by a subscriber in the form of a 

FIND(OI) message to its‟ local RH (arrows 4-7). The local RH look-up its mapping 

table and if a pointer mapping the requested OI is found, the FIND(OI) message 

follows the pointers route created by the registration procedure eventually reaching 

the publisher. If the pointer mapping the requested OI is not found at the local RH the 

FIND(OI) message is forwarded to the parent RHs until a pointer mapping the 

requested OI is found. Since Tier-1 knows all the registrations in the system, a pointer 

will eventually be found if the requested OI exists in the system. Data Routing back to 

the subscriber can be coupled or decoupled (arrows 8-11). In the coupled case, the 

FIND(OI) message saves the RHs that traversed during the resolution procedure and 

the answer containing the data is send to the subscriber using the reverse path. In the 

decoupled case, the answer containing the data is routed irrespectively of the routing 

path of the FIND(OI) message using regular IP routing and forwarding. 
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Fig. 1: The DONA Architecture [8] 

 

2.2.3 In-Network Caching 
 

In Network Caching in DONA is achieved using the RH infrastructure. In the coupled 

data routing case, the answer packet containing the OIs data will be routed to the 

subscriber thus the RHs can choose either to cache or not the OIs‟ content. In the 

decoupled data routing option, an RH can replace the IP address of the FIND(OI) 

message with its‟ own IP address, forcing the data routing to be done through it which 

it can then decide to cache or not the data. A subsequent FIND(OI) message can be 

then served from a cached copy in an RH. 

2.3 Named Data Networking (NDN) 
 

Named Data Networking (NDN) [11] formerly Content Centric Networking [12], is 

another pioneering internet architecture approach from PARC [13] which follows the 

ICN concept.  

2.3.1 Naming Syntax of Object Identifier 
 

In NDN the naming syntax [14] has a hierarchical structure which is based on the URI 

[15] naming syntax. The “/” delimiter is used to separate the hierarchy layers in an 

NDN OI, thus an OI can be /www.os3.nl/courses/cia/dns.pdf where www.os3.nl 

indicates the higher layer in the hierarchy structure. OIs in NDN do not necessarily 

have to be human-readable at all hierarchy layers thus the 

/www.os3.nl/courses/cia/<dns.pdf content hash> could also be an OI. The 

hierarchical structure of the naming syntax in NDN is very critical for the scalability 

of the architecture since it allows aggregation of OI prefixes in OI resolution and data 

routing. An NDN name can be an identifier of a file, an endpoint, a service in an 

endpoint or even a command to turn on some lights. 
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2.3.2 Name Resolution and Data Routing  
 

The name resolution in NDN is achieved by using the hierarchical structure of the OIs 

requested Figure 2. The basic component of the NDN architecture is the Content 

Routers (CRs). Each CR maintains three tables, the Forwarding Information Base 

(FIB), the Pending Interest Table (PIT) and the Content Store table (CS). The FIB is 

the equivalent of the FIB in IP but instead of saving IP prefixes, it stores a mapping of 

OI prefixes and their corresponding output interface (next hop). The FIBs in NDN are 

populated using the OSPF-N [16] protocol which is the equivalent of OSPF in IP 

networks. The PIT stores a mapping between the requested OI and the interface from 

which the request was received. The CS is used as the caching store of the CR, and it 

contains a mapping between the OI and the OIs‟ data. 

 

OI prefixes are published into the network by sources that are authorized to announce 

prefixes. When a publisher announces a prefix (e.g. /www.os3.nl/) it has to be able to 

provide the data that corresponds to all OIs that starts with this specific prefix. The 

prefix that the publisher announced is populated by the CRs using the OSPF-N 

mentioned above. A publisher can be multihomed, and it can publish the same NDN 

name prefix in all its‟ providers. CRs that will receive OSPF-N prefix advertises from 

both providers of a multihomed publisher choose to store on their FIB table the output 

interface that corresponds to the provider that gives the best cost towards the 

publisher.   

 

When a subscriber wants to retrieve the data that corresponds to an OI, it creates an 

INTEREST(OI) message and sends it to its‟ NDN default gateway(its‟ NDN CR) 

(arrows 1-3). When a CR receives an INTEREST(OI) message it first look-ups its‟ CS 

table to see if it has already the data regarding the OI requested and if so, it returns the 

data by issuing a DATA(OI,<data>) message and sending it to the interface through 

which it received the INTEREST(OI) message. If the CR did not find the requested 

OI in its‟ CS it performs a longest prefix match to its‟ FIB, forwards the 

INTEREST(OI) packet to the corresponding output interface(next hop) and saves the 

mapping of the OI requested and the interface from which it received the request to 

its‟ PIT. When a CR receives a DATA(OI,<data>) message it makes a look-up on its‟ 

PIT and forwards the DATA(OI,<data>) message to the interfaces from which this OI 

was requested (arrows 4-8). It is thus clear from the description above that the data 

routing back to the requester is coupled and that the DATA(OI,<data>) is routed 

through the reverse path of the INTEREST(OI) message.  
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Fig. 2: The NDN Architecture [8] 

2.3.3 In-Network Caching 
 

In-Network Caching in NDN is achieved at the CR as mentioned above. When a CR 

receives a DATA (OI,<data>) message it caches it on its‟ CS. In the NDN the caching 

decision algorithm currently used is Leave Copy Everywhere (LCE) in which each 

CR caches every DATA (OI,<data>) it sees.  

2.4 Publish Subscribe Internet Technology (PURSUIT) 
 

Publish Subscribe Internet Technology (PURSUIT) [17] formerly Publish Subscribe 

Internet Routing Paradigm (PSIRP) [18] is one more of the ICN approaches founded 

by the EU Framework 7 Programme.   

2.4.1 Naming Syntax of Object Identifier 
 

In PURSUIT, the naming syntax has a flat structure in the form 

<Scope_ID><Rendezvous_ID>. The scope ID groups related information objects and 

can have a hierarchical structure (e.g. /Family_Photos/2013/, /Family_Photos/2014/) 

with the “/” delimiter used to separate the hierarchy layers. On the other hand 

Rendezvous ID is the identifier of a particular object within the scope ID. Both scope 

IDs and rendezvous IDs can be a cryptographic hash, thus 

/Family_Photos/2013/<wedding.png content hash> can be an OI. 
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2.4.2 Name Resolution and Data Routing 
 

Name resolution in PURSUIT is achieved through the rendezvous function. The 

rendezvous function is implemented by a collection of Rendezvous Nodes (RNs), 

called the Rendezvous Network (RENE). The RENE is implemented as a hierarchical 

distributed hash table (DHT) [19] as shown on figure 3. Each RN is responsible for 

managing and resolving a number of Scope IDs. 

 

Published of OIs into the network is done by sources that are authorized to publish 

data into the RENE infrastructure (arrows 1-2). A source can publish an OI by 

sending a PUBLISH(OI) message to its‟ local RN, which is in turn routed by the DHT 

to the RN responsible for the Scope ID specified in the OI.  

 

When a subscriber wants to retrieve the content of an OI it sends a SUBSCRIBE(OI) 

message to its‟ local RN which in turn is forwarded by the DHT to the RN responsible 

for the specific OI (arrows 3-6). When the responsible RN receives the 

SUBSCRIBE(OI) message it contacts the Topology Manager (TM) (arrows 7-8) 

which is responsible in creating the route for delivering the OI data from the publisher 

to the subscriber. . The TM implements the topology management function through 

which it discovers the network topology and the forwarding function which uses the 

network topology to create routes from source to destination when requested by an 

RN. After the TM has created the route from the publisher to the subscriber it 

provides this route to the publisher (arrows 9-10) which is in turn add this route along 

with the OI and OIs‟ content to a message and sends it to a Forwarding Node (FN) 

(arrows 11-14).  Each FN uses the route from the message it receives to identify in 

which output interface (next FN) the message will be forwarded. The FNs does not 

need to keep any state of the routing path, thus the OIs‟ data routing in PURSUIT is 

decoupled. 

 
Fig. 3: The PURSUIT Architecture [8] 
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2.4.3 In-Network Caching 
 

In-network caching in PURSUIT is performed in the FNs during the OIs‟ data routing 

from the publisher to the subscriber. However, in-network caching may not be so 

effective due to the fact that the SUBSCRIBE(OI) messages can follow entirely 

different route from the OIs‟ data messages. 

2.5 Scalable and Adaptive Internet Solutions (SAIL) 
 

Scalable and Adaptive Internet Solutions (SAIL) [20] formerly Architecture and 

Design for the Future Internet(4WARD) [21] is another ICN approach funded by the 

EU Framework 7 Programme. 

2.5.1 Naming Syntax of Object Identifier 
 

Naming Syntax in SAIL has flat structure in the form ni://A/L. The A part of the OI 

identifies the authority and is globally unique and the L part identifies the object and 

is locally unique within the authority, thus ensuring global uniqueness of the OI. Each 

part can be a cryptographic hash or a regular string (e.g. ni://Authrity_1/<Hash of 

DNS.pdf data>, ni://<Hash of Authority_1 public key>/DNS.pdf, ni://< Hash of 

Authority_1 public key>/<Hash of DNS.pdf>). OIs can also have a hierarchical 

structure as in NDN. 

2.5.2 Name Resolution and Data Routing 
 

Name resolution in SAIL can be achieved by either using the Name Resolution 

System (NRS) or by using the hierarchical structure of the OIs through Content 

Routers (CRs) like in NDN. The NRS is based on a multilevel DHT and is consisted 

by the Global NRS and multiple Local NRSs as shown on figure 4. Each authority (A) 

in SAIL maintains a local NRS in which it registers the L part of an OI along with its‟ 

corresponding locator (i.e. IP address) from which the OIs‟ data can be retrieved. The 

Global NRS has a mapping between the authorities and their corresponding local 

NRS. Each local NRS is responsible for aggregating the mapping between the L parts 

and their locators and registering this aggregation in the Global NRS, thus the Global 

NRS knows the location of every OI in the network. 

 

Published of OIs into the network is done by sources that are authorized to publish 

data in the NRS and the CRs. When a publisher wants to publish an OI it sends a 

PUBLISH(L) to its local NRS which stores the L and the sources‟ locator to its‟ 

mapping database (arrows 1-2). A publisher can also announce a name prefix to the 

CR as in NDN. 

 

When a subscriber wants to retrieve the data of an OI it can either choose to send a 

GET(ni://A/L) message to its‟ local NRS(arrows 3) or send the GET(ni://A/L) 

message to its‟ default CR gateway (arrow a). In the first case, its‟ local NRS will 

contact the Global NRS which will return the locator of the OI to the subscriber 

(arrows 3-6) which in turn can create a GET(locator) message and use regular routing 

to retrieve the OIs‟ data from the publisher(arrows 7-12). In the second case, the 

GET(ni://A/L/) will be forwarded to the publisher like in NDN and the publisher will 
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respond with the OIs‟ data (arrows a-f). The main difference with the NDN routing of 

the data back to the subscriber is that instead of each CR having a PIT, the route is 

accumulated to the GET(ni://A/L) message and its‟ then added to the data message by 

the publisher, thus used later by the CRs to route the data message from the reverse 

path. 

 

 
Fig. 4: The SAIL Architecture [8] 

 

2.5.3 In-Network Caching 
 

In network caching in SAIL is performed at the CRs like in NDN. Moreover, SAIL 

has replication mechanism that performs caching of data objects inside the NRS. 

Therefore, a GET(ni://A/L) request that is routed through the Global NRS can hit a 

cache copy that will be retrieve to the subscriber. However, caching in the NRS is 

done be establishing agreements between the different NRSs and is not embedded in 

the network infrastructure.  
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2.6 Summary of ICN approaches 
 

Table 2 shows a summary of the ICN approaches characteristics reviewed in this 

research project. DONA and SAIL are both promising approaches in ICN, however 

there are no known software implementations available for evaluating the efficiency 

of those architectures. PURSUIT on the other hand offers a complete software 

implementation of the functionalities of each component in the architecture, yet its‟ 

inefficiency in-network caching strategy is considered inappropriate for using it for 

Big Data objects. On the other hand, based on our research we find NDN the most 

mature ICN approach. NDN offers a complete software implementation of the 

architecture and also a lot of open source NDN simulators [22] are available for 

evaluating the efficiency of in-network caching strategies under different scenarios. 

Furthermore, most the research papers [23] [24] [25] for evaluating the efficiency of 

in-network caching algorithms in ICN architectures uses the NDN approach as the 

reference ICN architecture. Finally, NDN is the only approach that has published a 

specification [14]. For the aforementioned reasons we decided to focus the remaining 

of our research in the NDN approach. 

 

 
 DONA NDN PURSUIT SAIL 

Namespace Flat with structure (P:L). Hierarchical using URI 

based naming schemes (“/” 

separate hierarchy layers). 

Flat with structure 

(<Scope><Rendezvous>) 

Scope part can be 

hierarchical. 

Flat with structure 

(ni://A/L/). 

Both A and L can be 

hierarchical 

Routing the OI 

Request 

message 

OIs are used by the RHs to 

route the Request message 

through the Name 

Resolution Systems 

towards the source.   

Request message is routed 

by the Content Routers 

(CRs) using longest prefix 

max between the OIs and 

the FIBs entries. 

Rendezvous Network 

(RENE) is used to route 

an OI Request message 

to its‟ Rendezvous Node 

(RN) which has 

knowledge about the 

source location. 

Case 1: Routed through the 

Name Resolution 

System(NRS) until a pointer 

to the OI and its‟ locator is 

found and returned to the 

requester. Regular IP 

routing is followed onwards. 

Case2: Routed by the 

Content Routers (CRs) like 

in NDN  

Routing the 

OIs’ Data 

message 

Coupled: The routing of 

the Data message follows 

the reverse route of the 

Request message. 

Decoupled: The source 

uses regular IP routing to 

route the OIs‟ Data 

message. 

Coupled: Content Routers 

(CRs) keeps the state of 

each Request message and 

use to return the Data 

message through the 

reverse route of the 

Request message 

Decoupled: Source and 

Destination of an OIs‟ 

Data message is send 

from the RN to the 

Topology Manager (TM) 

which creates the route 

from source to 

destination. 

Decoupled: Used when Case 

1 is used for the routing the 

OI Request message. The 

Data message is returned by 

performing regular routing. 

Coupled. Used in Case 2 

and follows the reverse path 

as in NDN. 

In-Network 

Caching 

Performed at Resolution 

Handlers (RHs). 

Performed at the Content 

Routers (CRs). 

Performed to the Routers 

among the Data delivery 

path. Not so efficient 

since Request message 

can follow a completely 

different route. 

Performed at Content 

Routers(CRs). Also possible 

at NRS using agreements 

between NRSs. 

Table 2: Summary of ICN approaches characteristics reviewed at this Research Project 

 

 



12 
 

3 Persistent Identifiers 
 

At the beginning of the World Wide Web, its‟ creator Tim Bernes-Lee proposed in 

the Internet Engineering Task Force (IETF) the Uniform Resource Identifier (URI) as 

the naming scheme for describing identifiers for the Web contents. The IETF rejected 

the use of URIs as the identifier of Web contents due to the fact that they wanted to 

allow the WWW users to change the URIs of Web contents when they moved to 

another location. Therefore, Uniform Resource Locators (URLs) where chosen as the 

Web content identifiers. Although, this way of retrieving digital objects was found to 

be working fine in the early stages of the World Wide Web(WWW), several studies 

[26] [27] have found out that approximately 50% of the URLs in scholarly 

publications fail to retrieve the digital object after a period of seven to ten years. This 

problem is well known as „link rot‟ and it can be caused by several reasons some of 

which are shown below: 

 

 The digital object has moved to another server and is no longer accessible 

through the given URL (The 404 error „Page not Found‟ does not gives any 

insight on what happened to the digital object). 

 The URL is accessible but it now points to another digital object (The user 

may not be informed of that change). 

 The website registration has expired. 

 The web server hosting the digital object has been upgraded to a new machine 

with a new web address. 

 The website directory structured is rearranged. 

 

The „link rot‟ problem has led to the need for persistent identification (PID) of the 

digital objects. A persistent identifier is a long lasting, globally unique identifier 

which can be resolved to a representation of the digital object that gives information 

about how to access it, meta-data about the digital object and even more. The PID 

resolved representation can be updated when the digital object changes location, or is 

no longer available so that it can continuously give appropriate resolve representation 

of the same digital object. From our research in the current PID standards, we found 

that all the PID standards have the same hierarchy in naming their digital objects. 

Specifically, each PID standard is consisted by three parts as shown in Figure 5 which 

makes the PID globally unique. 

 

 
Fig. 5: PID hierarchical scheme  

 

In this chapter we will review the current PID standards and services that were 

developed in order to overcome the “link rot” problem of the URL. 
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3.1 Uniform Resource Name (URN) 
 

The Uniform Resource Name (URN) concept is a PID standard which was first 

introduced in RFC 1737. The URN syntax (RFC 2141) is based on the Uniform 

Resource Locator (URI) syntax and is shown below: 

 

“urn:” <NID> “:” <NSS> 

 

The first part specifies that the specific PID is a URN, thus it uses the naming syntax 

of the URN standard. 

 

The second part <NID> is the Namespace Identifier which identifies the namespace 

or in other words the authority that publishes the specific URN.  

 

The last part <NSS> is the Namespace Specific String which syntax depends on the 

authority identified by the NID. The <NSS> can be used from the authority for further 

delegation to sub-authorities. 

 

URNs were developed to be independent of any one specific resolution service, thus 

although some resolution mechanisms were proposed (NAPTR[RFC 2168] ,Trivial 

HTTP [RFC 2169]) there is no universal resolution system for URNs. As a result 

different authorities that are using the URN to name their digital objects has 

established online services [28] for resolving a URN to a URL which it can be then 

used to retrieve the digital object. 

3.2 The Handle System 
  

The Handle System [29] is an infrastructure designed to provide naming services. The 

Handle System is composed by an open set of protocols, a name space and a reference 

software implementation. It uses handles to uniquely name a digital object. Its main 

functionalities are specified on RFC 3650. The naming scheme of the handle system 

is shown below: 

 

“handle:”<Handle Naming Authority>”/”<Handle Local Name> 

 

The Handle Naming Authority is a prefix that it is assigned by the Global Handle 

Service. It has hierarchical structure similar to the DNS domain names. Specifically, 

the Handle Naming Authority is sequence of decimals that are separated by the 

dot(„.‟) character (e.g. 1.2.3). The path is read from the left to the right and the dot(„.‟) 

character is used to define the hierarchy of the Naming Authorities. The hierarchy 

does not imply any technical implication. That is, a Handle Naming Authority „1.2.3‟ 

can be independent of the HNA „1.2‟. The protocol specification ensures that in order 

to create a new HNA (e.g. „1.2.3‟), an authorization from the higher HNA (e.g. „1.2‟) 

in the hierarchy is required but no further dependencies are implied. 

 

The slash „/‟ is used to separate the Handle Naming Authority from the Handle Local 

Name 
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The Handle Local Name syntax is specified by its Handle Naming Authority policies. 

The only limitation is that it can only contain printable characters from Unicode‟s 

UCS-2 character set. 

 
The resolution mechanism of the Handle System is based on the Handle System itself. 

The Global Handle System hosted by the Corporation for National Research 

Initiatives (CNRI) is the root server of the Handle System and has knowledge about 

all the Handle Naming Authorities. Each Handle Naming Authority can establishes its 

own resolution infrastructure, thus queries for handle resolution can be delegated by 

the Global Handle System to the corresponding Handle Naming Authority. Each 

Handle Naming Authority has a web accessed handle resolver (e.g. [30]) that can 

resolve a handle to a URL which it can be then used to retrieve the digital object.  

3.3 Digital Object Identifier (DOI) 
 
Digital Object Identifier (DOI) [31] is another PID service that is managed and 

controlled by the DOI Foundation (IDF). DOI uses the Handle System as the 

underlying communication technology for managing and resolving DOIs. It has been 

assigned the <Handle Naming Authority> value 10 in the Global Handle System. The 

DOI is mostly an administrative framework for assuring common practices and 

standards for publishing and maintaining handles between the Registration Agencies 

(RAs). An RA is an organization or institution that must fulfill specific quality 

standards in order to participate in the DOI project. The RAs are responsible for 

assigning DOIs to digital objects. The naming syntax of a DOI is as shown below. 

 

“doi:10.”<unique number”/”<name> 

 

The “doi:” identifies the PID as a DOI and the <unique number> is an identifier for 

the RA which is locally unique. The <name> identifies the name of the digital object 

and is unique among the RAs‟ scope. The resolution of a DOI to the digital object is 

achieved by web accessed resolver. The DOI Resolver [32] is the higher in the 

hierarchy DOI resolver and it can resolve any RAs‟ DOI to a URL from which the 

digital object can be retrieved. A list of the current RAs can be found here [33]. 

3.4 Archive Resource Key (ARK) 
 

The Archive Resource Key (ARK) [34] is another concept for persistent identification 

of digital objects. ARKs naming syntax is shown below: 

 

“ark:/”<NAAN>”/”<Name>[<Qualifier>] 

 

The Name Assigning Authority Number (<NAAN>) identifies the Naming Assigning 

Authority (NAA) that assigned the specific ARK. The NAAN is a string of five to 

nine decimals that uniquely identify each NAAN. 

 

The <Name> is an identifier of the digital object which is unique among the NAAN 

scope. The <Name> is a string composed of printable ASCII characters and should be 

less than 128 bytes in length. 
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The Qualifier is an optional parameter of the ARK that specifies a variant of a digital 

object. It is added to the ARK identifier by appending a “.” after the <Name>. 

 

The resolution of an ARK is achieved by web accessed resolver called Naming 

Mapping Authority (NMAH). Each NAA has its‟ own NMAH that resolves the ARK 

to a URL which it can be then used for retrieving the digital object.  

3.5 Persistent URL (PURL) 
 

Persistent URL (PURL) [35] is another PID service that was developed from the 

Online Computer Library Center (OCLC) [36] The PURL naming syntax is shown 

below: 

 

“purl:”<protocol><resolver address>”/”<name> 

 
The <protocol> specifies the protocol used to access to resolver of the PURL and the 

<resolver address> the location of the resolver from which the digital object specified 

in the <name> field can be resolved. 

 
A PURL is basically a URL that instead of pointing directly to the location from 

which the digital object can be retrieved, it points to a resolver that does the mapping 

between the <name> and the actual URL from which the digital object can be 

retrieved. 

3.6 Summary of PID standards 
 

From our research in the current PID standards, we found that all the PID standards 

have the same hierarchy scheme in naming their digital objects. Moreover, the 

resolution of each PID type to a locator is achieved by a web accessed resolver that 

resolves the PID to a URL through which the digital object can be retrieved. Table 3 

shows the values that the PID standards reviewed in this research project have in their 

hierarchical naming scheme shown above in figure 5. 

 

PID Types PID Type 

Identifier 

Delimiter Authority Delimiter Name 

URN urn : <NID> : <NSS> 

 

HANDLE handle : <Handle Naming Authority> / <Handle Local Name> 

 

DOI doi : 10.<Naming Authority> / <doi name syntax> 

 

ARK ark : /<NAAN> / <Name>[<Qualifier>] 

 

PURL Purl : <protocol><resolver 

address> 

/ <name> 

 

Table 3: Hierarchical scheme of PID standards review at this Research Project Values 

 

The hierarchy scheme followed by the current PID standards was the key in creating 

the name-space implementation of our Mapping Architecture as we will show later. 
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4  Delivering PID objects via NDN  
 

In this chapter we present our proposed architecture for mapping PIDs to NDN OIs. 

First, we define our Mapping Architecture Design Goals. Then we continue with the 

namespace-implementation of our architecture. The functionality of each component 

of our architecture design is then explained and the PID resolution procedure is 

specified. Finally, we show how a PID is resolved to an NDN name (OI) using our 

Mapping Architecture Design. 

4.1 Schema mapping between PID and OI 
 

Our main goal during the design of the Mapping Architecture was to provide a 

solution that will be: 

 

 Generic: Can support many different PID types. 

 Extensible: New PID Types could be easily added later on. 

 Scalable: Can provide PID resolution for a large number of requests per time 

unit (size scalability) and across large geographical distances (geographical 

scalability). 

 Availability & Performance. 

 

In general there are two approaches for mapping a PID to an NDN Name. 

 

The first approach could be based on rules that can be applied on a PID and 

transforms it to an NDN Name. For example if a PID is urn:isbn:0-7645-2641-3 and 

the NDN name is /urn/isbn/0/7645/2641/3 a simple rule that will replace all the “:” 

and “-“ to “/” will have successfully transform the PID to an NDN name. The rule 

could be installed to each client ndn-enable browser which given the PID would have 

applied the appropriate rule, forward the NDN name to the NDN network and 

eventually receive the digital object that corresponds to that PID. Although this 

approach of mapping PID to an NDN Name sounds simple it has a lot of 

disadvantages. Firstly, the mapping will be highly depended on the clients‟ ndn 

browser which will need to be updated every time new rule would be appeared or 

changed. Moreover, if for some reason the NDN Name that corresponds to a PID 

changes, the digital object could not be retrieved although the PID would be valid. 

Furthermore, since the name of the digital object field in the PID could be used for 

further delegation and each authority can choose to use any delimiter it wants to 

divide the hierarchy of its‟ sub-authorities, a vast number of rules could be needed in 

order for an ndn browser to be able to perform mapping for all the authorities that 

exists. Finally, each PID authority that wants to publish a PID for an NDN name it 

will also need to develop a rule for resolving the PID to the NDN name. Finally, due 

to the fact that some PIDs formats may not be easily transform to an NDN name by 

applying a rule, a publisher will not have the opportunity to choose any PID type it 

likes, 

 

The second approach is a PID resolution service that will keep bindings between the 

PIDs and their corresponding NDN names. By using this approach, the clients ndn 

browser would not have to be updated with the rules of each authority, thus all the 

aforementioned disadvantages would not be present. Moreover, the authorities would 
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not have any limitations on which PID type to choose for publishing their NDN 

digital objects. This approach is more generic and extensible and for these reasons we 

decided to follow this approach for mapping PIDs to NDN Names. 

4.2 NDN gateway for PID 
 

The Mapping Architecture design goals specified above lead us to create a name-

space implementation in which the PID resolution process along with the name-space 

management will be hierarchically distributed across multiple machines. The 

hierarchy layers on our Mapping Architecture name-space implementation was based 

in the hierarchical naming scheme of the PID standards reviewed in the previous 

chapter. Figure 6 shows the name-space implementation of our Mapping Architecture. 

As shown in figure 6, the name-space is hierarchically distributed in a tree structure. 

The tree is consisted of three layers, the Root PID layer, the PID Type layer and the 

Authority PID layer. Each layers‟ components have a unique NDN name.  

 

 
Fig. 6: Mapping Architecture Namespace Implementation 

 

The Root PID layer is the top of the tree and the main component is the Root PID 

Server. A Root PID Server maintains a mapping table between PID types and their 

corresponding NDN name. Its‟ main functionality is to resolve the PID Type 

Identifier field of a PID to the NDN name of the server responsible for this PID Type. 

 

The PID Type layer is the second layer of the tree structure and it consists of the 

server responsible for each PID Type. Each PID Type server maintains a mapping 

table between the authorities that uses the specific PID type to publish PIDs and their 

corresponding NDN name. The functionality of a PID Type server is to resolve the 
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Authority identifier field of a PID to the NDN name of the server responsible for this 

Authority.  

 

The Authority PID layer is the last layer on our tree structure and it consists of the 

server responsible for each authority. Further delegation to sub-authorities is allowed 

on this layer. In this case, the parent authority server maintains a mapping table 

between their sub-authorities and their corresponding NDN name. The components 

that are leafs (authorities or sub-authorities) in the tree, maintain the mapping table 

between the PIDs and their corresponding NDN names.  

 

Our name-space implementation ensures that each PID can be resolved to its‟ 

corresponding NDN name by following the path from the Root PID server towards 

the Authority (leaf) server which maintains the mapping between PIDs and their 

corresponding NDN names. Moreover, our name-space implementation meets our 

Mapping Architecture design goals defined in the previous section by the following: 

 

The name-space implementation is generic since it can support all the current PID 

types reviewed in chapter 3. The naming scheme of all the reviewed PID types and 

specifically the delimiter used to separate the PID Type field with the Authority field 

can be used by the Root PID server to extract the PID Type from a PID and do the 

look up to its‟ mapping table. 

 

Extensibility is achieved by allowing new PID types to easily be added to the name-

space implementation. The only requirement for a PID type that wants to register to 

the mapping infrastructure is to have a PID schema from which the PID type can be 

easily extracted from the Root PID server. PID types that follow this requirement can 

be easily added to the Mapping Architecture. 

 

From the availability and performance point of view, servers in each layer have to 

meet different requirements. Servers higher in the hierarchy are expected to have 

higher availability since if a server fails, a large part of the name space will be 

unreachable. Moreover, higher level servers‟ performance is also important since 

more request per time unit will be send to these servers. Since changes in the Root 

PID layer and the PID Type layer are expected to rarely occur (i.e. New PID Types 

and new Authorities are not every day registered in the Mapping System), replication 

of the servers at these layers can easily be deployed and maintained. Replicas should 

be geographically and efficiently distributed all around the world in order to 

overcome geographical scalability delays. Furthermore, since answer from look up 

operations at these layers remains valid for a long time, caching these answers to the 

client side (e.g. clients‟ resolver) can be effective and will significantly reduce the 

burden from the servers at these layers. On the other hand, servers at the Authority 

PID layer have completely different requirements from the availability and 

performance point of view. PIDs are expected to register to each authority in a daily 

basis, thus replication of the servers will introduce difficulties in keeping all the 

replicas consisted and should be avoided. Client resolver caching side is also 

considered inappropriate since it will burden the resolver with a vast amount of 

information. These lead us to the solution of high performance machines for running 

the servers at the Authority PID layer. Table 4 shows an overview of the availability 

and performance requirements for each layer. 
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Item Root PID PID Type Authority PID 

Geographical 

Scalability 

Worldwide Worldwide Organizational 

Update 

Propagation 

Small Small-Medium High 

Number of 

Replicas 

Many Many None 

Clients’ Resolver 

Caching 

Yes Yes No 

Servers  High Performance 

is Recommended 

High Performance 

is Recommended 

High Performance 

is Required 
Table 4: Availability and Performance Requirements for each Layer 

4.3 Interoperable PID/OI handling  
 

The hierarchical distribution of the Mapping architecture name-space across multiple 

servers defined above, affects the implementation of the PID resolution. In order to 

explain the resolution of a PID in a large-scale environment (Worldwide), we assume 

for now that there is no cache information in the clients PID resolver. A client PID 

resolver is the equivalent of a name resolver in the DNS system thus is responsible for 

resolving the PID to an NDN name. Moreover, the NDN name of the Root PID server 

is required to be known by the Clients‟ PID resolver and the Client is required to 

know the NDN name of its‟ PID resolver. Referring to figure 6, assume that the PID 

to be resolved is the ark:/12345/Sub-Ath-1/SSL. In general there are two ways to 

implement the PID resolution, iteratively and recursively. 

 

In the iterative PID resolution the server that has received a PID is responsible to 

resolve this PID to its‟ corresponding NDN name and return it to the requester. 

 

In the recursive PID resolution the server that has received a PID is responsible to 

resolve the PID as far as it can on the tree and return information about how to 

continue the resolve procedure to the requester. 

 

In our implementation of the PID resolution we use both iterative and recursive PID 

resolution as shown on Figure 7. 
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Fig. 7: PID Resolution Implementation 

 

Specifically, the servers in the Root PID layer and the PID Type layer perform 

iterative PID resolution and the servers in the Authority PID layer implement 

recursive PID resolution. Our choice was based in the fact that the servers in the Root 

PID layer and the PID Type layer can have replicas efficiently geographically 

distributed, thus the communication with the Clients‟ PID Resolver will not introduce 

high time delays. On the other hand the servers on the Authority PID layer implement 

recursive PID resolution that is the parent Authority PID server from which the 

Clients‟ PID resolver will request the resolution of a PID will return the NDN name 

of that PID. The choice was based in the fact that as mentioned on the previous 

section of this chapter, Authority PID servers cannot easily manage geographically 

distributed consisted replicas and also to the expectation that parent Authority servers 

will be in a close geographical distance with their sub-Authorities servers (e.g. same 

country) thus the recursive PID resolution perform in this layer will not introduce 

high time delays. To finalize, the use of iterative PID resolution in the Root PID layer 

and PID Type layer and the recursive PID resolution in the Authority layer meets our 

design goal about geographical scalability of the Mapping Architecture.     

4.4 Prototype 
 

In the previous sections, we describe our name-space implementation, the 

implementation of the PID resolution and we analyze how our initial design goals can 

be meet using the proposed Mapping Architecture. In this section we describe how the 

Mapping Architecture can to be implemented in an NDN network infrastructure. 
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As mentioned in the review of the NDN architecture at chapter 2 the packet types 

defined in the specification are the INTEREST packet and the DATA packet. The 

forwarding of the INTEREST packet is achieved by the Content Routers (CRs) that 

perform longest prefix match between the NDN Name in the INTEREST packet and 

their Forwarding Information Base (FIB). In order to be able to forward INTEREST 

packet to the components of our Mapping Architecture, the Name inside the 

INTEREST packet has to contain the NDN name of the component to which the 

INTEREST message has to be delivered. Furthermore, the PID must be also 

forwarded to the component in order for the Mapping Architecture to work. Based on 

this requirements the NDN name of the INTEREST packets for the communication 

between the components of our Mapping Architecture must have the scheme shown in 

Figure 8.   

 

 
Fig. 8: NDN Name in the INTEREST packet 

 

Since the NDN Name field of the INTEREST packet starts with the Components 

NDN Name it ensures that the INTEREST(<Components‟ NDN Name><PID>) 

packet will be forwarded to the appropriate component. Moreover, bearing in mind 

the each component knows its NDN name, when it receives an 

INTEREST(<Components‟ NDN Name><PID>) it can easily extract the <PID> field 

from the NDN Name. On the other hand, a DATA packet in NDN must contain the 

NDN Name of the INTEREST packet due to the coupled data routing used in NDN 

and a data field containing the data that corresponds to the INTEREST request, thus a 

DATA packet exchanged between the components of our Mapping Architecture will 

have the scheme shown in Figure 9. 

 

 
Fig. 9: DATA packet scheme for Mapping Architecture communication 

 

The DATA field inside the DATA packet must contain information about what would 

be the next step in the PID resolution procedure. The possible values that the DATA 

field of a DATA packet can have are shown on table 5. 

 

Value Meaning 
FOUND:<NDN Name of PID> The NDN Name of the PID was found. 

<NDN Name of PID> contains the NDN Name of the PID 

NOT_FOUND:<Description Message> The PID could not be resolved. 

<Description Message> contains information about the failure 

REDIRECTION:<NDN Name of 

Component> 

A redirection to another Component of the Mapping Architecture 

<NDN Name of Component> is the NDN Name of the Component that 

needs to be queried  

Table 5: Possible Values of DATA field of the DATA packet 
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Referring again to figure 6, assume that the PID to be resolved is the ark:/12345/Sub-

Ath-1/SSL and that no caches exists in the Clients‟ PID Resolver. The client types 

ark:/12345/Sub-Auth-1/SSL to its‟ NDN enable browser. Its‟ browser under the hood, 

constructs the INTEREST(<Clients‟ PID_Resolver_NDN name>ark:/12345/Sub-

Auth-1/SSL) and sends it to its‟ default NDN gateway. This INTEREST packet will 

be forwarded through the CRs to the Clients‟ PID resolver. The PID resolution 

procedure is shown on figure 10. 

 

 

 
Fig. 10: PID Resolution Procedure in NDN 

 

Upon arrival of the INTEREST packet in the Clients‟ PID resolver (arrow 1), it will 

extract the PID(ark:/12345/Sub-Auth-1/SSL) and will construct an 

INTEREST(<Root_PID_Server_NDN_Name>ark:/12345/Sub-Auth-1/SSL) packet 

and send it to its‟ default NDN gateway. This INTEREST packet (arrow 2) will be 

forwarded by the CRs to the Root PID Server which in turn will first extract the 

PID(ark:/12345/Sub-Auth-1/SSL) from the INTEREST packet and then the PID 

Type(ark) from the PID(ark:/12345/Sub-Auth-1/SSL). Extracting the PID Type from 

the PID is not trivial since the delimiter used (:) for separating the PID Type field 

from the Authority field in each PID standard defines where the PID Type field ends 

inside the PID. The Root PID server will then perform a look up on its‟ PID Type – 

PID Type NDN name mapping database and will construct the answer message 

REDIRECT:<ARK PID Server NDN Name> that will add in the DATA(<Root PID 

Server NDN Name>ark:/12345/Sub-Auth-1/SSL, REDIRECT:<ARK PID Server 

NDN Name>) and send it to the Clients‟ PID resolver server (arrow 3). This PID 

resolution procedure will continue (arrows 4 - 9) until eventually the Clients‟ PID 

resolver will receive the DATA packet (arrow 9) that contains the NDN name of the 

PID. At this point the Clients‟ PID resolver will construct the DATA packet (arrow 

10) and send it to the client NDN enabled browser which can then construct an 

INTEREST(/UvA/OS3/SSN/SSL.pdf) packet, forward it to the NDN network and 
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receive the DATA(/UvA/OS3/SSN/SSL.pdf,<data>) packet that contains the data that 

corresponds to the PID(ark:/12345/Sub-Auth-1/SSL) requested. 

 

In the aforementioned scenario the PID exists on the Mapping Architecture. In the 

case where the PID requested does not exists, the Clients‟ PID resolver will 

eventually receive a DATA packet that will contain in the <data> field the 

NOT_FOUND:<Description Message> that will in turn return to the Client.  

 

Our Mapping Architecture porting in NDN ensures that if the NDN name of the PID 

requested for resolution exists, the clients‟ NDN enabled browser will eventually 

receive the DATA packet containing the NDN Name of the PID which in hence can 

use to get the actual data that correspond to the PID requested. 

4.5 Summary of Gateway Architecture 
 

In this chapter, we describe our proposed Mapping Architecture Design for resolving 

PIDs to their corresponding NDN names. Firstly, based on our design goals explained 

in section 1 and the hierarchical scheme of the PID standards, in section 2 we defined 

the name-space implementation of our Mapping Architecture. In section 3, we 

propose a hybrid PID resolution by the components of our Mapping Architecture in 

order to achieve the best geographical scalability. Finally, in section 4 we explained 

how the communication between the components of the Mapping Architecture can be 

achieved using the INTEREST and DATA packet specified in NDN.  
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5 Caching Strategies and Experimental Studies 
 
Caching is an important mechanism in ICN for delivering data objects. In this chapter, 

we review the most well-known caching strategies implemented in NDN, and 

investigate how they influence the delivery of a Big Data object. The experiments in 

this chapter will be based on simulations.  

5.1 Caching mechanisms 
 
The key parameters of the caching mechanisms on an NDN network are the 

Forwarding Strategy (FS), the Decision Strategy (DS) and the Replacement Strategy 

(RS). Below, we briefly describe the functionality of each strategy and the most well-

known algorithms used in each strategy.  

5.1.1 Forwarding Strategy (FS) 
 
The Forwarding Strategy (FS) is used to determine the route that an INTEREST 

packet will follow towards its‟ final destination in the network. Each router in the 

network that received an INTEREST packet for which it has no entry in his PIT will 

use the FS to decide in which output interface will send the INTEREST packet. There 

different FS algorithms for NDN networking some of which we briefly present below. 

 

 Shortest Path Routing (SPR): In the shortest path routing FS the INTEREST 

packet is forwarded through the shortest path towards the repository that 

contains the requested content. SPR is the current FS that is used as the de 

facto FS in NDN. 

 

 Nearest Replica Routing (NRR): In the Nearest Replica Routing FS the 

INTEREST packet is forwarded towards the nearest CR that has a replica of 

the requested content, or in the worst case scenario towards the server that 

hosts the permanent copy of the requested content. The implementation of the 

NRR requires the CRs to send meta-interest packets in order to discover a CR 

that contains the requested content. 
 

5.1.2 Decision Strategy (DS) 
 
The Decision Strategy (DS) is used to determine which router along the reverse path 

of an INTEREST request will cache the contents of the DATA packet. Each router in 

the reverse path of an INTEREST packet runs the DS to decide if it will cache or not 

the contents of the incoming DATA packet. There are different DS algorithms in the 

bibliography from which the most-well known and used are briefly described below. 

 

 Leave Copy Everywhere (LCE): In the LCE DS, each router caches the 

contents of every DATA packet it receives. LCE is the DS currently used on 

NDN. 
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  Leave Copy Down (LCD) [37]: In the LCD DS, each router in the reverse 

path caches the contents of the DATA packet it receives only if the previous 

router in the reverse path had a replica of the contents on its‟ Content Store or 

if it had received the DATA packet from the permanent repository (the 

publisher itself) meaning that it was the first CR in the reverse path. Therefore, 

in LCD only one CR caches the content of the DATA packet on its Content 

Store (CS). 

 

 Fix Probability (FIX(p)): In the FIX(p) DS, each CR on the network caches 

the incoming DATA packet on its‟ Content Store with a probability p(e.g. with 

p=0.5 each CR caches the half of the DATA packet it receives). 

 

 Probabilistic In-Network Caching (ProbCache) [24]: In the ProbCache DS 

algorithm, the DATA packets are cached by each CR in the reverse path with 

a different probability. In general, in ProbCache, CRs that are closer to the 

node (CR or Server) from which the content of the requested object was 

retrieved have higher probability in caching the received DATA packet.   

 

5.1.3 Replacement Strategy (RS) 
 
Replacement Strategy (RS), is used to determine which object in the Content Store 

will be pulled out in order to make space for the new incoming object to be pushed in. 

The replacement algorithm runs on each router in the NDN network. There are many 

RS algorithms for NDN in the bibliography, from which the most-well known and 

widely used are briefly described below. 

 

 First In First Out Cache (FIFO): In the FIFO cache RS, each router replace the 

Object that was first pushed in the Content Store. 

 

 Random Cache (Random): In the Random cache RS, each router replaces an 

object randomly in order to make space for the incoming one. 

 

 Least Recently Used (LRU): In the LRU RA, each router replaces the least 

recently used Content. The LRU, is the most used replacement algorithm 

within the literature and the replacement algorithm used for NDN. 

 

 Least Frequently Used (LFU): In the LFU RA, each router replaces the least 

frequently used Content.  

 

5.2 Simulation Methodology and Scenarios 
 

In this section, we describe the simulation parameters used in our scenarios, the 

simulation metrics along with the method we use for collecting these metrics. Since 

our main focus is on Big Data objects our main simulation goal were to investigate 

how the Content Store size (C) of a CR to the Big Data object size (B) ratio (C:B) 

affect the performance of the caching mechanisms used in NDN. Moreover, we 

investigate if the segmentation of the Big Data objects to multiple equal sized sub-
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objects (c) affects the performance of the caching mechanisms. The ccnSIM [9] 

caching simulator for NDN was used as the platform for performing all the simulation 

experiments.   

5.2.1 Simulation setup 
 
Table 6 shows an overview of the simulation parameters investigated in this research 

project. Afterwards, follows a brief description of each parameter.   

 

Parameter Description Values 

R Big Data Repository Size 51.2TBytes 

|R| Num. of Big Data Objects 

in R 

150 

B Size of Big Data Object 350GBytes 

c Num. of equal size sub 

Objects a Big Data Object 

is segmented 

[1,2,4,6..20] 

C The Content Store Size in 

each Content Router 

expressed as Size of Big 

Data Object 

[0.5B,1B,2B,6B,8B] 

a Zipf exponent 1 

FS Forwarding Algorithm SPR 

DS Caching Algorithm [LCE,LCD,FIX(0,5),FIX(0.25),ProbCache,NoCache] 

RS Replacement Algorithm LRU 

T The Big Data Object 

Client has request and 

received so far  

- 

Network 

Topologies 

The network topologies 

used in simulations 

String(figure 11), Binary Tree (figure 12) 

Table 6: Overview of Simulation Parameters Investigated in this Research Project 

 

 Big Data Repository(R,|R|,B,c,a) 

 

In order to determine a realistic size for our Big Data Repository we investigate 

different public Big Data repositories available in the Open Data Science 

Cloud(ODSC) [38].Table 7 shows an overview of the public Big Data Sets 

available on OSDC. 

 

Big Data Repository Size  

(TBytes) 

Num. of Big 

Data Objects 

Average Size of 

Big Data Objects 

(GBytes) 

Complete Genomics 

Public Data 

50.4 150 350 

Earth Observing-1 

Mission 

80.5 Unknown Unknown 

ASTER 23.7 Unknown Unknown 

Table 7: Public Data Sets Available in ODSC 
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From our investigation on public Big Data sets we find out that Big Data 

Repositories can have a size of 25-100TBytes (e.g. Complete Genomics Public 

Data [39], Earth Observing-1 Mission [40]), and contain Big Data objects of 

approximately 350GByte(e.g. In Complete Genomics Public Data each Genome 

has approximately 350 GBytes of information [41]). Based on these observations 

in our simulation experiments we consider a Big Data Repository size equal to 

51.2TBytes(R), 150 Big Data objects (|R|) each one with 350 GBytes size (B). 

Due to the fact that Big Data Objects consumes a big amount of memory to be 

saved as one piece of data, we wanted to investigate how the number of equal size 

sub-Objects a Big Data Object is segmented can affect the performance of the 

caching strategies. Therefore, in our simulations, we investigate different number 

of equal size sub-Objects (c) a Big Data Object is segmented. In the case where 

the Big Data Object is consisted of multiple sub-Objects a Client that wants to 

receive a Big Data Object, starts sending request for the first sub-Object and when 

it received the content it proceeds with a request for the second sub-Object and so 

on until it has received all the sub-Objects of the Big Data Object. 

 

Finally, as we could not have any insights on the distribution of the popularity of 

the Big Data Objects, in our experiments, the popularity of the Big Data Objects is 

calculated as a single sequence using Zipf law [42] with exponent (alpha) 

parameter set to 1. 

 

 Content Routers (C) 

 

As we wanted to investigate how the Content Store size (C) of each CR affects the 

efficiency of the caching strategies, we used variable Content Store size starting 

with CS size of half of the Big Data Object size and we doubled it each time up to 

the point where the Content Store size is eight times bigger the Big Data Object 

size. 

 

 Caching Strategies(FS,DS,RS) 

 

For the caching strategies: 

 

o SPR described earlier in this chapter as the FS algorithm. Our choice 

was based in the fact that SPR is the current FS algorithm used in 

NDN.  

o LRU also described earlier in this chapter as the RS algorithm. Here 

our choice was based in the fact that is the most-well known and used 

RS. 

o For the DS algorithms we used LCE, LCD, FIX(0.5), FIX(0.25), 

ProbCache and NoCache. As we wanted to see how the different DS 

algorithms proposed in the bibliography perform when they are used 

for Big Data Objects we choose to evaluate all the well-known DS 

algorithms in our simulations. NoCache was used in order to have a 

comparison of the other DS algorithms with CRs that do not cache any 

objects. 

 

In our simulations when the Big Data Object is segmented to multiple equal size 

sub-objects, each sub-object of a Big Data Object is treated by the Caching 
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strategies independently of all the others. That means that a sub-object of a Big 

Data Object may be cached by a CR and another may be not cached   

 

 Clients Request (T) 

 

The parameter T indicated how many Big Data Objects a client has request and 

received so far. In the case of multiple clients each client in the simulation have to 

finish the request and the reception of the Big Data Object T before any other 

client proceeds in requesting the T+1 Big Data Object. 

 

 Network Topologies 
 

String and binary tree as shown in figure 11 and figure 12 are the network 

topologies investigated in our simulations. In both topologies the distance of each 

client from the repository is 5 hops (4 CRs and 1 Hop for the Big Data 

Repository). 

 

 

 

 

 

 
Fig. 11: String Topology 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 12: Binary String Topology 
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5.2.2 Performance Metrics 
The main goal of the in–network caching in ICN can be described by the following 

three aspects: 

 

 From a customer point of view, ICN aims to reduce the average time for 

downloading a requested content. 

 From the provider point of view, ICN aims to reduce the number of requests 

that the provider needs to serve. 

 From the network point of view, ICN aims to reduce the network traffic. 

 

All the above aspects can be express as the average number of Content 

Routers(Hops), a customer request need to travel before finding a temporary(in a 

routers Content Store) or a permanent copy(In the Providers Repository) of the 

requested object. Therefore, in our simulation the metric that we used to describe the 

benefit for all the aforementioned aspects is the average number of hops a request 

needs to be routed in order to find the requested object. 

5.2.3 Collection of measurements 
 

As described above the main metric that we use to evaluate the performance our 

simulation scenarios is the average number of Hops that the request from the clients 

need to be routed before hitting the Big Data Object requested. One of the issues to 

take in to account when taking measurements within a network of caches is when to 

start collecting the metrics. In our simulation scenarios we start to collect the average 

number of hops metric when the average number of hops converges. More 

specifically, each simulation scenario runs until the average number of hops metric is 

stable for at least 50T as shown on figure 13. 

 

  

 
Fig. 13: Collection of measurements at convergence point 

 
By performing the simulations described above, we can have valuable results for 

evaluating the performance of in-network caching for the most well-known caching 

strategies, the effectiveness of segmenting the Big Data Object in multiple equal size 

sub-Objects and the impact introduce by the CR Content Store size (C) to the Big 

Data Object size (B) ratio (C:B). 
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5.3 Results and Evaluation 
 

In this chapter, we present and analyze the results of our simulations. First we present 

and analyze the result for the string topology and then we proceed with the results of 

the binary tree topology. For each topology, we first evaluate how the cache size (C) 

of a CR to the Big Data object size (B) ratio (C:B) effects the performance of the 

caching strategies and then we proceed on how the number of equal sized sub-objects 

a Big Data object is segmented, effects this metric. Finally, for each topology we 

explain which caching decision (DS) algorithm gives the best performance results.   

5.3.1 String Topology 
 

The results gathered from the simulations of the string topology are shown on figure 

14. X-axis shows the ratio of the Content Router Cache Size to the Big Data Object 

Size (C:B). Y-axis shows the average number of hops metric collected at the 

convergence point as described on the previous section. The dotted points in the graph 

shows the average value of the different number of equal size sub-Objects a Big Data 

Object is segmented and the error bar indicates the standard deviation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 14: String Topology Simulation Results 

 

 CRs‟ cache size (C) to Big Data Object size(B) ratio (C:B): 

 

As we can clearly see from the graph the ratio of Content Router Cache Size 

to Big Data Object Size (C:B) significantly effects the performance of the 

Caching Algorithms. More specifically, for C:B ≤ 1 the performance of the 

Caching Algorithms does not give any significant improvements in the 
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average number of hops metric. On the other hand for C:B ≥ 2 we can see that 

for the LCD and ProbCache DS algorithms the average number of hops 

decreases by approximately 18%, thus significant gains on the performance 

metrics can be gained from that point and onwards.  

 

 Number of equal sized sub-objects a Big Data object is segmented (c): 

 

Referring to the graph of figure 14 we can see that the error bar that indicates 

the standard deviation for all the different values of c has a small variation for 

all points in the graph. From this result, we can clearly see that the number of 

equal size sub-objects a Big Data Object is segmented does not significantly 

affect the performance of the CD algorithms. 

 

 Performance of different Caching Decision Strategy (DS) algorithms. 

 

Referring again to the graph of figure 14 we can see that there is a significant 

difference on the performance of the DS algorithms investigated in our 

simulations. More specifically, the LCE algorithm that is the current DS 

algorithm used in NDN gives significant performance benefits at the point 

where C:B ≥ 8. On the other hand, the ProbCache and the LCD DS algorithms 

are found to give the best performance gains since they manage to give 

approximately the same performance results with the LCE at the point where 

C:B ≥ 2. Finally, the Fix(p) DS algorithms also perform better than the LCE.  

5.3.2 Binary Tree Topology 
 

The results gathered from the simulations of the binary tree topology are shown on 

figure 15. Again in this graph the axis, the dotted points and the error bar has the same 

meaning as in the string topology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2,4

2,6

2,8

3

3,2

3,4

3,6

3,8

4

4,2

4,4

4,6

4,8

5

5,2

0,5 1 2 4 8 16

A
ve

ra
ge

 N
u

m
b

e
r 

o
f 

H
o

p
s 

Content Router Size/Big Data Object Size (C:B) 

Binary Tree Topology 

No Cache

LCE

Fix(0.5)

Fix(0.25)

ProbCache

LCD



32 
 

 CRs‟ cache size (C) to Big Data Object size(B) ratio (C:B): 

 

As we can see from the graph the results are the same as in the case of the 

string topology. More specifically, the performance of caching algorithms give 

significant benefits at the point where C:B ≥ 2 while for C:B ≤ 1 the gains are 

insignificant. 

 

 Number of equal sized sub-objects a Big Data object is segmented (c): 

 

Again as in the case of the string topology, the number of equal size sub-

objects a Big Data object is segmented (c) does not affect the performance of 

the CS. The only significant difference that can be observed is that the 

standard deviation values are smaller compared to the case of the string 

topology. 

 

 Performance of different Caching Decision (CS) algorithms: 

 

The performance of the CS algorithms for the case of the tree topology is 

again approximately the same as in the case of the string topology. The only 

significant difference that can be observed compared to the results of the string 

topology is the performance of the LCD when the C:B = 0.5. At this point the 

LCD in the binary tree topology has an average number of hops of 

approximately 4.6 while at the string topology the average number of hops is 

5. This difference is based on the fact that in the binary tree topology, there are 

multiple clients requesting Big Data objects, thus some clients are benefit for 

Big Data objects that are already cached in the CRs because other clients has 

already requested them. This result gives motivation for evaluating the 

performance of the in-network caching for more complex networks  

 

 

To finalize, our results for both topologies, showed us that in order to have significant 

benefits for In-Network caching in NDN the Content Router Cache Size has to be at 

least twice the size of the Big Data Object size and that the number of equal size sub-

Objects a Big Data is segmented does not affect the performance of the caching 

algorithms. Moreover, we find out that the LCE which is the current CS algorithm 

used in NDN needs at least a C:B ≥ 8 to give significant performance benefits. On the 

hand, LCD and ProbCache are more promising CS algorithms for delivering Big Data 

objects since they give significant performance benefits from the point where C:B ≥ 2 

and onwards.  
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6 Discussion 
 

In this section, we discuss the advantaged and disadvantages of the proposed Mapping 

Architecture, and the challenges with respect of the efficiency of in-network caching 

for delivering Big Data in NDN. 

 

During this research project a generic, extensible, scalable and efficiency Mapping 

Architecture was proposed for resolving PIDs to NDN names. Although we show the 

requirements that our solution needs in order to meet our design goals there are other 

issues that can arise during the implementation of the Mapping Architecture. More 

specifically, since each PID standard is allowed to use different delimiters for 

separating the different fields (PID type, Authority, Sub-Authority, Name of Digital 

Object) the PIDs it publishes, it is not possible to have a universal software (like 

BIND in DNS) that could be installed for every new PID type, Authority or sub-

Authority. As a result, each PID type and authority must develop its‟ own software 

that would be in compliance with the scheme that they use for publishing their PIDs 

in order to be able to enter our Mapping System. One way to over-come this burden is 

to specify a framework in which a general scheme with some elasticity will be 

provided in order to limit the big number of possible different PIDs schemes that 

could be chosen by the authorities. Based on this framework, a universal software 

could be developed and each authority that use this framework can also use this 

software instead of developing its‟ own. 

 

After the proposed Mapping Architecture was introduce, we conducted experimental 

studies by performing simulations in order to investigate what benefits can Big Data 

objects have from the in-network caching of NDN. Our results showed that significant 

benefits can be gained from the point where the cache size of the Content Routers is 

double the size of the Big Data Objects. However the amount of cache size that a 

Content Router need in the case of Big Data objects would be more than 1TBytes. 

Adding 1TBytes in a Content Router cache size that needs to precede data at line 

speed is a hardware limitation even in todays‟ state of the art Routers. However, the 

technology of fast SSD is rapidly developed and we believe that in the near future 

implementing TBytes of cache size in a Content Router will be possible. 
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7 Conclusions  
 

This research project is a preliminary study on how Information Centric Networking 

(ICN) can efficiently be used for delivering Big Data with Persistent Identifiers 

(PIDs). Firstly, we reviewed the state of the art approaches in ICN and the current 

PID standards, we chose the most mature ICN approach (NDN) and we proposed a 

Mapping Architecture for resolving PIDs to NDN names. After, we evaluate the 

efficiency of the in-network caching mechanisms proposed for NDN when delivering 

Big Data objects. 

 

The main design goals of our Mapping Architecture was to provide a solution that 

support all the current PID standards, allow new PID standards to be ported in and 

scale for a vast number of PIDs. Based on these goals, we design a name-space 

implementation in which the PID resolution process along with the name-space 

management is hierarchically distributed in a tree structure across multiple 

components. We showed that the hierarchy layers defined in our name-space 

implementation can support all the current PID standards and allows new PID 

standards to be easily ported in. Moreover, we showed that by assigning specific 

requirements for each hierarchy layers‟ components, the implementation of the PID 

resolution can efficiently scale for a vast number of PIDs. Finally, we showed how the 

Mapping Architecture can be efficiently ported in NDN. 

 

In order to investigate the efficiency of the NDN in-network caching mechanisms 

when delivering Big Data objects, we performed experimental studies based on 

simulations. Our results showed that the cache size of the Content Routers (CR) to the 

Big Data object ratio (C:B) plays an important role in the efficiency of the in-network 

caching mechanisms in NDN. Specifically, for C:B ≤ 1 the in-network caching in 

NDN has no significant performance benefits, while for C:B ≥ 2 significant 

performance benefits can be gained for delivering Big Data objects. Furthermore, the 

number of multiple equal sized sub-objects a Big Data object is segmented does not 

affect the performance of the in-network caching mechanisms in NDN. 

 

To finalize, based on the work done in this research project we can say that ICN is a 

promising approach for delivering Big Data with Persistent Identifiers (PID) that 

should be taken into account and further researched. 
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8 Future Work 
 

Future work can be done both on improving the Mapping Architecture proposed and 

evaluating the efficiency of caching mechanism for delivering Big Data objects. For 

the Mapping Architecture future work can be done in specifying the exact protocol for 

the communication between the components. Moreover, security mechanisms for the 

Mapping Architecture were not taken into account during the design phase, thus 

implementing secure communication between the components is another topic for 

future work. For the efficiency of in-network caching mechanisms when delivering 

Big Data objects further research is need to be done. More specifically, during our 

experimental studies the only forwarding strategy investigated was the shortest path 

routing towards the Big Data repository and experimental studies were based on two 

simple network topologies (string and binary tree). The efficiency of in-network 

caching mechanisms for more forwarding strategy algorithms (e.g. NRR) and more 

complex network topologies must be also researched and evaluated. 
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