

Information Centric Networking

for Delivering Big Data with

Persistent Identifiers

Research Project 2

Andreas Karakannas
andreaskarakannas@os3.nl

Supervised by:

Dr. Zhiming Zhao

University of Amsterdam

System and Network Engineering (MSc)

July 11, 2014

Abstract

Information Centric Networking (ICN) is a new and promising network

concept which is founded upon the idea that most users in the internet

are interested in accessing digital objects, irrespectively of their

locations. Digital objects in ICN have unique names that are used in

order to route data content from the source node to the destination

node. During the content delivery from sources to destinations, the data

contents are cached to intermediate nodes in order to achieve efficient

and reliable distribution of the data content among the network

infrastructure (in-network caching). In this research project we focus

on the efficiency of ICN for delivering Big Data with Persistent

Identifiers. We proposed a Mapping Architecture for resolving PIDs to

ICN names and we evaluate the efficiency of in-network caching when

delivering Big Data objects. Our results showed that in-network

caching can offer significant performance benefits when the cache size

of the network elements that perform in-network caching is bigger than

the Big Data object size.

Contents

1 Introduction ... 1

1.1 Scope ... 1

1.2 Research Questions ... 2

1.3 Approach .. 2

2 Information Centric Networking ... 3

2.1 Basic concepts of ICN .. 3

2.2 Data Oriented Network Architecture (DONA) 4

2.2.1 Naming Syntax of Object Identifier ... 4

2.2.2 Name Resolution and Data Routing ... 4

2.2.3 In-Network Caching .. 5

2.3 Named Data Networking (NDN) .. 5

2.3.1 Naming Syntax of Object Identifier ... 5

2.3.2 Name Resolution and Data Routing ... 6

2.3.3 In-Network Caching .. 7

2.4 Publish Subscribe Internet Technology (PURSUIT) 7

2.4.1 Naming Syntax of Object Identifier ... 7

2.4.2 Name Resolution and Data Routing ... 8

2.4.3 In-Network Caching .. 9

2.5 Scalable and Adaptive Internet Solutions (SAIL) 9

2.5.1 Naming Syntax of Object Identifier ... 9

2.5.2 Name Resolution and Data Routing ... 9

2.5.3 In-Network Caching .. 10

2.6 Summary of ICN approaches .. 11

3 Persistent Identifiers ... 12

3.1 Uniform Resource Name (URN) ... 13

3.2 The Handle System .. 13

3.3 Digital Object Identifier (DOI) .. 14

3.4 Archive Resource Key (ARK) .. 14

3.5 Persistent URL (PURL) ... 15

3.6 Summary of PID standards ... 15

4 Delivering PID objects via NDN .. 16

4.1 Schema mapping between PID and OI ... 16

4.2 NDN gateway for PID ... 17

4.3 Interoperable PID/OI handling .. 19

4.4 Prototype .. 20

4.5 Summary of Gateway Architecture ... 23

5 Caching Strategies and Experimental Studies .. 24

5.1 Caching mechanisms ... 24

5.1.1 Forwarding Strategy (FS) ... 24

5.1.2 Decision Strategy (DS) ... 24

5.1.3 Replacement Strategy (RS) ... 25

5.2 Simulation Methodology and Scenarios .. 25

5.2.1 Simulation setup ... 26

5.2.2 Performance Metrics .. 29

5.2.3 Collection of measurements ... 29

5.3 Results and Evaluation ... 30

5.3.1 String Topology .. 30

5.3.2 Binary Tree Topology ... 31

6 Discussion .. 33

7 Conclusions .. 34

8 Future Work .. 35

9 References ... 36

1

1 Introduction

Big Data [1] applications face challenges in acquiring, storing, sharing, transferring,

analyzing and visualizing data with very large quantities and from distributed sources.

Data research infrastructures (e.g. in the ENVRI project [2]) manage data from

different sources and provide access services for scientists to perform inter-

disciplinary researches. The persistent identification (PID) is an important mechanism

for publishing Big Data objects, referencing data objects, and retrieving data contents.

Delivering data content from sources to destinations to perform further process and

analysis is another important requirement in data research infrastructures, in particular

when multi sources are involved for applications. The bandwidth limitation for Long

Fat Networks (LFN) [3] is a performance bottleneck encountered during the

distribution of Big Data in IP networks that led the researchers to use new state of the

art technologies in order to overcome it. These new state of the art technologies

include TCP tuning [4] Multipath TCP (MTCP) [5] data movement applications

(GridFTP, bbFTP, FDT), applying light-paths for extending bandwidth and use

Software Defined Networking (SDN) to dynamically control the network. All the

aforementioned solutions are based on IP networks (end-to-end communication), and

each solution has its shortcomings. Extending bandwidth technologies are limited

from congestion problems in the network, thus they can only temporally solve the

delivery of big data and dynamic control of the network using SDN is very complex

and difficult to implement.

On the other hand, Information Centric Networking (ICN) [6] concept, a new network

paradigm which is founded upon the idea that most users are interested in accessing

data contents, irrespectively of their locations is a new and promising approach for

networking. Instead of having an end-to-end communication model between nodes,

data objects have unique names that are used in order to route data content from the

source node to the destination node. During the content delivery from sources to

destinations, the data contents are cached to intermediate nodes in order to achieve

efficient and reliable distribution of the data content among the network

infrastructure. It is thus clear, that ICN can offer a natural architecture for transferring

Big Data.

However, using ICN to deliver PID based data objects in big data infrastructure is still

in its very early stage, and there are also technical gaps between using PID for

publishing and for retrieving Big Data content and using Information Centric

Networking for delivering data. These gaps motivate us to investigate how to use ICN

for delivering Big Data with Persistent Identifier (PID).

1.1 Scope

This research project focuses on how available ICN implementation can be used in

Big Data infrastructure for delivering data with most common PID types. We

highlight our research in the current PID standard schemes [7] and most well-known

ICN implementations [8] respectively. Furthermore, we will also evaluate the

2

efficiency of current caching algorithms for delivering Big Data in ICN

implementations.

1.2 Research Questions

The main research question of the project is to investigate:

Can Information Centric Networking (ICN) efficiently be used for delivering Big Data

with Persistent Identifiers?

We will answer this question from the following three sub questions:

o What are the state of the art of ICN approaches and PID standards?

o How can PID standards be mapped to ICN‟s Object Identifiers?

o How are the current ICN caching mechanisms behaving when

delivering Big Data contents?

1.3 Approach

We will conduct our research via three steps:

First, we will review the state of the art of current ICN approaches and PID standards.

During the theoretical study in ICN approaches we pick the most popular ICN

approach for further experimental studies.

Afterwards, the key elements that constitute each PID standard are identified and we

will propose a Mapping Architecture for resolving PIDs to the ICN approach selected

in the first step.

The last step of our approach will focus on evaluating the effectiveness of current

caching algorithms for Big Data. For the evaluation we performed simulations under

different scenarios using ccnSIM [9] caching simulator.

The rest of the report is organized as follows: In chapter 2 and 3, we will review the

current ICN approaches and PID standards. In the chapter 4, we will discuss proposed

Mapping Architecture. In chapter 5, we will present the experimental simulation

scenarios and methodology, and discuss the results of our simulations. Finally, we

will conclude the research and discuss the future directions.

3

2 Information Centric Networking

Information Centric Networking (ICN) is an umbrella term used to describe a number

of research projects (DONA, NDN, PURSUIT, SAIL) which aim to evolve the

Internet infrastructure and share the same objectives and structuring architectural

properties. In this chapter, we first introduce the basic concepts of the ICN

architecture and then we review the design choices that the most popular ICN

approaches choose in order to implement these concepts.

2.1 Basic concepts of ICN

The basic concepts of the ICN architecture is the binding of each digital object with a

unique name which is the object identifier(OI) of this digital object, the use of this OI

in the network layer for routing and forwarding the digital object and the caching of

the digital objects in the network infrastructure (in-network caching).

Binding each digital object with an object identifier (OI) plays a critical role in the

ICN concept. While in the IP network, the digital objects are named based on the

location from which they can be retrieved using Uniform Resource Locators (URLs)

(e.g. www.os3.nl/cia/dns_1.pdf), in the ICN concept the digital objects are named

independently of their location, thus an OI in ICN is location independent. The

naming syntax of the OIs in the ICN approaches is the key factor for routing and

forwarding the digital object as we will show later.

Routing and forwarding in ICN approaches is not based on the location of the server

that hosts the digital object to be retrieved like in IP networks. In ICN routing and

forwarding is based on the OI of the digital object requested. There are two

approaches for routing and forwarding in ICN approaches that depends on the naming

syntax of the OI. The first approach requires a service that is responsible for resolving

OIs to a location from which the digital object can be retrieved. The second approach

does not require a service for resolving OIs to a location. Instead, the OI itself is used

in order for the request to be forwarded to a location from which the digital object can

be retrieved.

In network caching in ICN means that the digital objects are dynamically cached by

the network elements (e.g. Routers) during the routing and forwarding procedure of

the digital objects. The In-network caching in ICN aims to efficiently distribute the

digital objects among the network infrastructure.

To summarize table 1 shows the main differences between IP and ICN networking.

Building Blocks IP ICN

Digital Object Identifier URL: Location Dependent OI: Location Independent

Routing & Forwarding Based on Location (IP) of the

digital object

Based on the OI, Location

Independent

In-Network Caching NO YES

Table 1: IP and ICN Networking differences

4

2.2 Data Oriented Network Architecture (DONA)

The Data Oriented Network Architecture (DONA) [10] is the first complete ICN

approach introduced from UC Berkeley.

2.2.1 Naming Syntax of Object Identifier

In DONA naming syntax has a flat structure in the form P:L. The P part of the OI is

globally unique and is defined as the principal which contains the cryptographic hash

of the publisher‟s public key. On the other hand L is a locally unique name (in the

scope of P) which uniquely identifies an object within the local scope. L syntax is left

to the principals‟ (P) which may choose to just give a human readable name or even a

cryptographic hash of the objects‟ content. The P:L naming syntax ensures that each

OI in DONA is globally unique.

2.2.2 Name Resolution and Data Routing

Name Resolution in DONA is achieved through a Name Resolution System which is

consisted by Resolution Handlers (RHs). Each Autonomous System (AS) in DONA

has at least one RH and all RHs in the architecture are interconnected, thus creating a

hierarchical Name Resolution System as shown on Figure 1.

Publishing of OIs into the network is done by sources that are allowed to register data

into the Name Resolution Infrastructure (arrows 1-3). When a source register a name

to its local RH, the RH stores a pointer mapping the OI with the source that register

the OI in a table and also forwards this OI to its peering and parent ASs, causing each

intermediate RH to store a mapping between the OI and the address of the RH that

forwarded the registration. As all the registrations are forwarded up to Tier-1 ASs

which are peers with each other, Tier-1 contains all the registered OIs. Authoritative

sources can also register wild cards OIs (e.g. P1:*) to their local RH, indicating that

they can provide services for all the requests for the principal P1.

Request for resolving an OI to its location is send by a subscriber in the form of a

FIND(OI) message to its‟ local RH (arrows 4-7). The local RH look-up its mapping

table and if a pointer mapping the requested OI is found, the FIND(OI) message

follows the pointers route created by the registration procedure eventually reaching

the publisher. If the pointer mapping the requested OI is not found at the local RH the

FIND(OI) message is forwarded to the parent RHs until a pointer mapping the

requested OI is found. Since Tier-1 knows all the registrations in the system, a pointer

will eventually be found if the requested OI exists in the system. Data Routing back to

the subscriber can be coupled or decoupled (arrows 8-11). In the coupled case, the

FIND(OI) message saves the RHs that traversed during the resolution procedure and

the answer containing the data is send to the subscriber using the reverse path. In the

decoupled case, the answer containing the data is routed irrespectively of the routing

path of the FIND(OI) message using regular IP routing and forwarding.

5

Fig. 1: The DONA Architecture [8]

2.2.3 In-Network Caching

In Network Caching in DONA is achieved using the RH infrastructure. In the coupled

data routing case, the answer packet containing the OIs data will be routed to the

subscriber thus the RHs can choose either to cache or not the OIs‟ content. In the

decoupled data routing option, an RH can replace the IP address of the FIND(OI)

message with its‟ own IP address, forcing the data routing to be done through it which

it can then decide to cache or not the data. A subsequent FIND(OI) message can be

then served from a cached copy in an RH.

2.3 Named Data Networking (NDN)

Named Data Networking (NDN) [11] formerly Content Centric Networking [12], is

another pioneering internet architecture approach from PARC [13] which follows the

ICN concept.

2.3.1 Naming Syntax of Object Identifier

In NDN the naming syntax [14] has a hierarchical structure which is based on the URI

[15] naming syntax. The “/” delimiter is used to separate the hierarchy layers in an

NDN OI, thus an OI can be /www.os3.nl/courses/cia/dns.pdf where www.os3.nl

indicates the higher layer in the hierarchy structure. OIs in NDN do not necessarily

have to be human-readable at all hierarchy layers thus the

/www.os3.nl/courses/cia/<dns.pdf content hash> could also be an OI. The

hierarchical structure of the naming syntax in NDN is very critical for the scalability

of the architecture since it allows aggregation of OI prefixes in OI resolution and data

routing. An NDN name can be an identifier of a file, an endpoint, a service in an

endpoint or even a command to turn on some lights.

6

2.3.2 Name Resolution and Data Routing

The name resolution in NDN is achieved by using the hierarchical structure of the OIs

requested Figure 2. The basic component of the NDN architecture is the Content

Routers (CRs). Each CR maintains three tables, the Forwarding Information Base

(FIB), the Pending Interest Table (PIT) and the Content Store table (CS). The FIB is

the equivalent of the FIB in IP but instead of saving IP prefixes, it stores a mapping of

OI prefixes and their corresponding output interface (next hop). The FIBs in NDN are

populated using the OSPF-N [16] protocol which is the equivalent of OSPF in IP

networks. The PIT stores a mapping between the requested OI and the interface from

which the request was received. The CS is used as the caching store of the CR, and it

contains a mapping between the OI and the OIs‟ data.

OI prefixes are published into the network by sources that are authorized to announce

prefixes. When a publisher announces a prefix (e.g. /www.os3.nl/) it has to be able to

provide the data that corresponds to all OIs that starts with this specific prefix. The

prefix that the publisher announced is populated by the CRs using the OSPF-N

mentioned above. A publisher can be multihomed, and it can publish the same NDN

name prefix in all its‟ providers. CRs that will receive OSPF-N prefix advertises from

both providers of a multihomed publisher choose to store on their FIB table the output

interface that corresponds to the provider that gives the best cost towards the

publisher.

When a subscriber wants to retrieve the data that corresponds to an OI, it creates an

INTEREST(OI) message and sends it to its‟ NDN default gateway(its‟ NDN CR)

(arrows 1-3). When a CR receives an INTEREST(OI) message it first look-ups its‟ CS

table to see if it has already the data regarding the OI requested and if so, it returns the

data by issuing a DATA(OI,<data>) message and sending it to the interface through

which it received the INTEREST(OI) message. If the CR did not find the requested

OI in its‟ CS it performs a longest prefix match to its‟ FIB, forwards the

INTEREST(OI) packet to the corresponding output interface(next hop) and saves the

mapping of the OI requested and the interface from which it received the request to

its‟ PIT. When a CR receives a DATA(OI,<data>) message it makes a look-up on its‟

PIT and forwards the DATA(OI,<data>) message to the interfaces from which this OI

was requested (arrows 4-8). It is thus clear from the description above that the data

routing back to the requester is coupled and that the DATA(OI,<data>) is routed

through the reverse path of the INTEREST(OI) message.

7

Fig. 2: The NDN Architecture [8]

2.3.3 In-Network Caching

In-Network Caching in NDN is achieved at the CR as mentioned above. When a CR

receives a DATA (OI,<data>) message it caches it on its‟ CS. In the NDN the caching

decision algorithm currently used is Leave Copy Everywhere (LCE) in which each

CR caches every DATA (OI,<data>) it sees.

2.4 Publish Subscribe Internet Technology (PURSUIT)

Publish Subscribe Internet Technology (PURSUIT) [17] formerly Publish Subscribe

Internet Routing Paradigm (PSIRP) [18] is one more of the ICN approaches founded

by the EU Framework 7 Programme.

2.4.1 Naming Syntax of Object Identifier

In PURSUIT, the naming syntax has a flat structure in the form

<Scope_ID><Rendezvous_ID>. The scope ID groups related information objects and

can have a hierarchical structure (e.g. /Family_Photos/2013/, /Family_Photos/2014/)

with the “/” delimiter used to separate the hierarchy layers. On the other hand

Rendezvous ID is the identifier of a particular object within the scope ID. Both scope

IDs and rendezvous IDs can be a cryptographic hash, thus

/Family_Photos/2013/<wedding.png content hash> can be an OI.

8

2.4.2 Name Resolution and Data Routing

Name resolution in PURSUIT is achieved through the rendezvous function. The

rendezvous function is implemented by a collection of Rendezvous Nodes (RNs),

called the Rendezvous Network (RENE). The RENE is implemented as a hierarchical

distributed hash table (DHT) [19] as shown on figure 3. Each RN is responsible for

managing and resolving a number of Scope IDs.

Published of OIs into the network is done by sources that are authorized to publish

data into the RENE infrastructure (arrows 1-2). A source can publish an OI by

sending a PUBLISH(OI) message to its‟ local RN, which is in turn routed by the DHT

to the RN responsible for the Scope ID specified in the OI.

When a subscriber wants to retrieve the content of an OI it sends a SUBSCRIBE(OI)

message to its‟ local RN which in turn is forwarded by the DHT to the RN responsible

for the specific OI (arrows 3-6). When the responsible RN receives the

SUBSCRIBE(OI) message it contacts the Topology Manager (TM) (arrows 7-8)

which is responsible in creating the route for delivering the OI data from the publisher

to the subscriber. . The TM implements the topology management function through

which it discovers the network topology and the forwarding function which uses the

network topology to create routes from source to destination when requested by an

RN. After the TM has created the route from the publisher to the subscriber it

provides this route to the publisher (arrows 9-10) which is in turn add this route along

with the OI and OIs‟ content to a message and sends it to a Forwarding Node (FN)

(arrows 11-14). Each FN uses the route from the message it receives to identify in

which output interface (next FN) the message will be forwarded. The FNs does not

need to keep any state of the routing path, thus the OIs‟ data routing in PURSUIT is

decoupled.

Fig. 3: The PURSUIT Architecture [8]

9

2.4.3 In-Network Caching

In-network caching in PURSUIT is performed in the FNs during the OIs‟ data routing

from the publisher to the subscriber. However, in-network caching may not be so

effective due to the fact that the SUBSCRIBE(OI) messages can follow entirely

different route from the OIs‟ data messages.

2.5 Scalable and Adaptive Internet Solutions (SAIL)

Scalable and Adaptive Internet Solutions (SAIL) [20] formerly Architecture and

Design for the Future Internet(4WARD) [21] is another ICN approach funded by the

EU Framework 7 Programme.

2.5.1 Naming Syntax of Object Identifier

Naming Syntax in SAIL has flat structure in the form ni://A/L. The A part of the OI

identifies the authority and is globally unique and the L part identifies the object and

is locally unique within the authority, thus ensuring global uniqueness of the OI. Each

part can be a cryptographic hash or a regular string (e.g. ni://Authrity_1/<Hash of

DNS.pdf data>, ni://<Hash of Authority_1 public key>/DNS.pdf, ni://< Hash of

Authority_1 public key>/<Hash of DNS.pdf>). OIs can also have a hierarchical

structure as in NDN.

2.5.2 Name Resolution and Data Routing

Name resolution in SAIL can be achieved by either using the Name Resolution

System (NRS) or by using the hierarchical structure of the OIs through Content

Routers (CRs) like in NDN. The NRS is based on a multilevel DHT and is consisted

by the Global NRS and multiple Local NRSs as shown on figure 4. Each authority (A)

in SAIL maintains a local NRS in which it registers the L part of an OI along with its‟

corresponding locator (i.e. IP address) from which the OIs‟ data can be retrieved. The

Global NRS has a mapping between the authorities and their corresponding local

NRS. Each local NRS is responsible for aggregating the mapping between the L parts

and their locators and registering this aggregation in the Global NRS, thus the Global

NRS knows the location of every OI in the network.

Published of OIs into the network is done by sources that are authorized to publish

data in the NRS and the CRs. When a publisher wants to publish an OI it sends a

PUBLISH(L) to its local NRS which stores the L and the sources‟ locator to its‟

mapping database (arrows 1-2). A publisher can also announce a name prefix to the

CR as in NDN.

When a subscriber wants to retrieve the data of an OI it can either choose to send a

GET(ni://A/L) message to its‟ local NRS(arrows 3) or send the GET(ni://A/L)

message to its‟ default CR gateway (arrow a). In the first case, its‟ local NRS will

contact the Global NRS which will return the locator of the OI to the subscriber

(arrows 3-6) which in turn can create a GET(locator) message and use regular routing

to retrieve the OIs‟ data from the publisher(arrows 7-12). In the second case, the

GET(ni://A/L/) will be forwarded to the publisher like in NDN and the publisher will

10

respond with the OIs‟ data (arrows a-f). The main difference with the NDN routing of

the data back to the subscriber is that instead of each CR having a PIT, the route is

accumulated to the GET(ni://A/L) message and its‟ then added to the data message by

the publisher, thus used later by the CRs to route the data message from the reverse

path.

Fig. 4: The SAIL Architecture [8]

2.5.3 In-Network Caching

In network caching in SAIL is performed at the CRs like in NDN. Moreover, SAIL

has replication mechanism that performs caching of data objects inside the NRS.

Therefore, a GET(ni://A/L) request that is routed through the Global NRS can hit a

cache copy that will be retrieve to the subscriber. However, caching in the NRS is

done be establishing agreements between the different NRSs and is not embedded in

the network infrastructure.

11

2.6 Summary of ICN approaches

Table 2 shows a summary of the ICN approaches characteristics reviewed in this

research project. DONA and SAIL are both promising approaches in ICN, however

there are no known software implementations available for evaluating the efficiency

of those architectures. PURSUIT on the other hand offers a complete software

implementation of the functionalities of each component in the architecture, yet its‟

inefficiency in-network caching strategy is considered inappropriate for using it for

Big Data objects. On the other hand, based on our research we find NDN the most

mature ICN approach. NDN offers a complete software implementation of the

architecture and also a lot of open source NDN simulators [22] are available for

evaluating the efficiency of in-network caching strategies under different scenarios.

Furthermore, most the research papers [23] [24] [25] for evaluating the efficiency of

in-network caching algorithms in ICN architectures uses the NDN approach as the

reference ICN architecture. Finally, NDN is the only approach that has published a

specification [14]. For the aforementioned reasons we decided to focus the remaining

of our research in the NDN approach.

 DONA NDN PURSUIT SAIL

Namespace Flat with structure (P:L). Hierarchical using URI

based naming schemes (“/”

separate hierarchy layers).

Flat with structure

(<Scope><Rendezvous>)

Scope part can be

hierarchical.

Flat with structure

(ni://A/L/).

Both A and L can be

hierarchical

Routing the OI

Request

message

OIs are used by the RHs to

route the Request message

through the Name

Resolution Systems

towards the source.

Request message is routed

by the Content Routers

(CRs) using longest prefix

max between the OIs and

the FIBs entries.

Rendezvous Network

(RENE) is used to route

an OI Request message

to its‟ Rendezvous Node

(RN) which has

knowledge about the

source location.

Case 1: Routed through the

Name Resolution

System(NRS) until a pointer

to the OI and its‟ locator is

found and returned to the

requester. Regular IP

routing is followed onwards.

Case2: Routed by the

Content Routers (CRs) like

in NDN

Routing the

OIs’ Data

message

Coupled: The routing of

the Data message follows

the reverse route of the

Request message.

Decoupled: The source

uses regular IP routing to

route the OIs‟ Data

message.

Coupled: Content Routers

(CRs) keeps the state of

each Request message and

use to return the Data

message through the

reverse route of the

Request message

Decoupled: Source and

Destination of an OIs‟

Data message is send

from the RN to the

Topology Manager (TM)

which creates the route

from source to

destination.

Decoupled: Used when Case

1 is used for the routing the

OI Request message. The

Data message is returned by

performing regular routing.

Coupled. Used in Case 2

and follows the reverse path

as in NDN.

In-Network

Caching

Performed at Resolution

Handlers (RHs).

Performed at the Content

Routers (CRs).

Performed to the Routers

among the Data delivery

path. Not so efficient

since Request message

can follow a completely

different route.

Performed at Content

Routers(CRs). Also possible

at NRS using agreements

between NRSs.

Table 2: Summary of ICN approaches characteristics reviewed at this Research Project

12

3 Persistent Identifiers

At the beginning of the World Wide Web, its‟ creator Tim Bernes-Lee proposed in

the Internet Engineering Task Force (IETF) the Uniform Resource Identifier (URI) as

the naming scheme for describing identifiers for the Web contents. The IETF rejected

the use of URIs as the identifier of Web contents due to the fact that they wanted to

allow the WWW users to change the URIs of Web contents when they moved to

another location. Therefore, Uniform Resource Locators (URLs) where chosen as the

Web content identifiers. Although, this way of retrieving digital objects was found to

be working fine in the early stages of the World Wide Web(WWW), several studies

[26] [27] have found out that approximately 50% of the URLs in scholarly

publications fail to retrieve the digital object after a period of seven to ten years. This

problem is well known as „link rot‟ and it can be caused by several reasons some of

which are shown below:

 The digital object has moved to another server and is no longer accessible

through the given URL (The 404 error „Page not Found‟ does not gives any

insight on what happened to the digital object).

 The URL is accessible but it now points to another digital object (The user

may not be informed of that change).

 The website registration has expired.

 The web server hosting the digital object has been upgraded to a new machine

with a new web address.

 The website directory structured is rearranged.

The „link rot‟ problem has led to the need for persistent identification (PID) of the

digital objects. A persistent identifier is a long lasting, globally unique identifier

which can be resolved to a representation of the digital object that gives information

about how to access it, meta-data about the digital object and even more. The PID

resolved representation can be updated when the digital object changes location, or is

no longer available so that it can continuously give appropriate resolve representation

of the same digital object. From our research in the current PID standards, we found

that all the PID standards have the same hierarchy in naming their digital objects.

Specifically, each PID standard is consisted by three parts as shown in Figure 5 which

makes the PID globally unique.

Fig. 5: PID hierarchical scheme

In this chapter we will review the current PID standards and services that were

developed in order to overcome the “link rot” problem of the URL.

13

3.1 Uniform Resource Name (URN)

The Uniform Resource Name (URN) concept is a PID standard which was first

introduced in RFC 1737. The URN syntax (RFC 2141) is based on the Uniform

Resource Locator (URI) syntax and is shown below:

“urn:” <NID> “:” <NSS>

The first part specifies that the specific PID is a URN, thus it uses the naming syntax

of the URN standard.

The second part <NID> is the Namespace Identifier which identifies the namespace

or in other words the authority that publishes the specific URN.

The last part <NSS> is the Namespace Specific String which syntax depends on the

authority identified by the NID. The <NSS> can be used from the authority for further

delegation to sub-authorities.

URNs were developed to be independent of any one specific resolution service, thus

although some resolution mechanisms were proposed (NAPTR[RFC 2168] ,Trivial

HTTP [RFC 2169]) there is no universal resolution system for URNs. As a result

different authorities that are using the URN to name their digital objects has

established online services [28] for resolving a URN to a URL which it can be then

used to retrieve the digital object.

3.2 The Handle System

The Handle System [29] is an infrastructure designed to provide naming services. The

Handle System is composed by an open set of protocols, a name space and a reference

software implementation. It uses handles to uniquely name a digital object. Its main

functionalities are specified on RFC 3650. The naming scheme of the handle system

is shown below:

“handle:”<Handle Naming Authority>”/”<Handle Local Name>

The Handle Naming Authority is a prefix that it is assigned by the Global Handle

Service. It has hierarchical structure similar to the DNS domain names. Specifically,

the Handle Naming Authority is sequence of decimals that are separated by the

dot(„.‟) character (e.g. 1.2.3). The path is read from the left to the right and the dot(„.‟)

character is used to define the hierarchy of the Naming Authorities. The hierarchy

does not imply any technical implication. That is, a Handle Naming Authority „1.2.3‟

can be independent of the HNA „1.2‟. The protocol specification ensures that in order

to create a new HNA (e.g. „1.2.3‟), an authorization from the higher HNA (e.g. „1.2‟)

in the hierarchy is required but no further dependencies are implied.

The slash „/‟ is used to separate the Handle Naming Authority from the Handle Local

Name

14

The Handle Local Name syntax is specified by its Handle Naming Authority policies.

The only limitation is that it can only contain printable characters from Unicode‟s

UCS-2 character set.

The resolution mechanism of the Handle System is based on the Handle System itself.

The Global Handle System hosted by the Corporation for National Research

Initiatives (CNRI) is the root server of the Handle System and has knowledge about

all the Handle Naming Authorities. Each Handle Naming Authority can establishes its

own resolution infrastructure, thus queries for handle resolution can be delegated by

the Global Handle System to the corresponding Handle Naming Authority. Each

Handle Naming Authority has a web accessed handle resolver (e.g. [30]) that can

resolve a handle to a URL which it can be then used to retrieve the digital object.

3.3 Digital Object Identifier (DOI)

Digital Object Identifier (DOI) [31] is another PID service that is managed and

controlled by the DOI Foundation (IDF). DOI uses the Handle System as the

underlying communication technology for managing and resolving DOIs. It has been

assigned the <Handle Naming Authority> value 10 in the Global Handle System. The

DOI is mostly an administrative framework for assuring common practices and

standards for publishing and maintaining handles between the Registration Agencies

(RAs). An RA is an organization or institution that must fulfill specific quality

standards in order to participate in the DOI project. The RAs are responsible for

assigning DOIs to digital objects. The naming syntax of a DOI is as shown below.

“doi:10.”<unique number”/”<name>

The “doi:” identifies the PID as a DOI and the <unique number> is an identifier for

the RA which is locally unique. The <name> identifies the name of the digital object

and is unique among the RAs‟ scope. The resolution of a DOI to the digital object is

achieved by web accessed resolver. The DOI Resolver [32] is the higher in the

hierarchy DOI resolver and it can resolve any RAs‟ DOI to a URL from which the

digital object can be retrieved. A list of the current RAs can be found here [33].

3.4 Archive Resource Key (ARK)

The Archive Resource Key (ARK) [34] is another concept for persistent identification

of digital objects. ARKs naming syntax is shown below:

“ark:/”<NAAN>”/”<Name>[<Qualifier>]

The Name Assigning Authority Number (<NAAN>) identifies the Naming Assigning

Authority (NAA) that assigned the specific ARK. The NAAN is a string of five to

nine decimals that uniquely identify each NAAN.

The <Name> is an identifier of the digital object which is unique among the NAAN

scope. The <Name> is a string composed of printable ASCII characters and should be

less than 128 bytes in length.

15

The Qualifier is an optional parameter of the ARK that specifies a variant of a digital

object. It is added to the ARK identifier by appending a “.” after the <Name>.

The resolution of an ARK is achieved by web accessed resolver called Naming

Mapping Authority (NMAH). Each NAA has its‟ own NMAH that resolves the ARK

to a URL which it can be then used for retrieving the digital object.

3.5 Persistent URL (PURL)

Persistent URL (PURL) [35] is another PID service that was developed from the

Online Computer Library Center (OCLC) [36] The PURL naming syntax is shown

below:

“purl:”<protocol><resolver address>”/”<name>

The <protocol> specifies the protocol used to access to resolver of the PURL and the

<resolver address> the location of the resolver from which the digital object specified

in the <name> field can be resolved.

A PURL is basically a URL that instead of pointing directly to the location from

which the digital object can be retrieved, it points to a resolver that does the mapping

between the <name> and the actual URL from which the digital object can be

retrieved.

3.6 Summary of PID standards

From our research in the current PID standards, we found that all the PID standards

have the same hierarchy scheme in naming their digital objects. Moreover, the

resolution of each PID type to a locator is achieved by a web accessed resolver that

resolves the PID to a URL through which the digital object can be retrieved. Table 3

shows the values that the PID standards reviewed in this research project have in their

hierarchical naming scheme shown above in figure 5.

PID Types PID Type

Identifier

Delimiter Authority Delimiter Name

URN urn : <NID> : <NSS>

HANDLE handle : <Handle Naming Authority> / <Handle Local Name>

DOI doi : 10.<Naming Authority> / <doi name syntax>

ARK ark : /<NAAN> / <Name>[<Qualifier>]

PURL Purl : <protocol><resolver

address>

/ <name>

Table 3: Hierarchical scheme of PID standards review at this Research Project Values

The hierarchy scheme followed by the current PID standards was the key in creating

the name-space implementation of our Mapping Architecture as we will show later.

16

4 Delivering PID objects via NDN

In this chapter we present our proposed architecture for mapping PIDs to NDN OIs.

First, we define our Mapping Architecture Design Goals. Then we continue with the

namespace-implementation of our architecture. The functionality of each component

of our architecture design is then explained and the PID resolution procedure is

specified. Finally, we show how a PID is resolved to an NDN name (OI) using our

Mapping Architecture Design.

4.1 Schema mapping between PID and OI

Our main goal during the design of the Mapping Architecture was to provide a

solution that will be:

 Generic: Can support many different PID types.

 Extensible: New PID Types could be easily added later on.

 Scalable: Can provide PID resolution for a large number of requests per time

unit (size scalability) and across large geographical distances (geographical

scalability).

 Availability & Performance.

In general there are two approaches for mapping a PID to an NDN Name.

The first approach could be based on rules that can be applied on a PID and

transforms it to an NDN Name. For example if a PID is urn:isbn:0-7645-2641-3 and

the NDN name is /urn/isbn/0/7645/2641/3 a simple rule that will replace all the “:”

and “-“ to “/” will have successfully transform the PID to an NDN name. The rule

could be installed to each client ndn-enable browser which given the PID would have

applied the appropriate rule, forward the NDN name to the NDN network and

eventually receive the digital object that corresponds to that PID. Although this

approach of mapping PID to an NDN Name sounds simple it has a lot of

disadvantages. Firstly, the mapping will be highly depended on the clients‟ ndn

browser which will need to be updated every time new rule would be appeared or

changed. Moreover, if for some reason the NDN Name that corresponds to a PID

changes, the digital object could not be retrieved although the PID would be valid.

Furthermore, since the name of the digital object field in the PID could be used for

further delegation and each authority can choose to use any delimiter it wants to

divide the hierarchy of its‟ sub-authorities, a vast number of rules could be needed in

order for an ndn browser to be able to perform mapping for all the authorities that

exists. Finally, each PID authority that wants to publish a PID for an NDN name it

will also need to develop a rule for resolving the PID to the NDN name. Finally, due

to the fact that some PIDs formats may not be easily transform to an NDN name by

applying a rule, a publisher will not have the opportunity to choose any PID type it

likes,

The second approach is a PID resolution service that will keep bindings between the

PIDs and their corresponding NDN names. By using this approach, the clients ndn

browser would not have to be updated with the rules of each authority, thus all the

aforementioned disadvantages would not be present. Moreover, the authorities would

17

not have any limitations on which PID type to choose for publishing their NDN

digital objects. This approach is more generic and extensible and for these reasons we

decided to follow this approach for mapping PIDs to NDN Names.

4.2 NDN gateway for PID

The Mapping Architecture design goals specified above lead us to create a name-

space implementation in which the PID resolution process along with the name-space

management will be hierarchically distributed across multiple machines. The

hierarchy layers on our Mapping Architecture name-space implementation was based

in the hierarchical naming scheme of the PID standards reviewed in the previous

chapter. Figure 6 shows the name-space implementation of our Mapping Architecture.

As shown in figure 6, the name-space is hierarchically distributed in a tree structure.

The tree is consisted of three layers, the Root PID layer, the PID Type layer and the

Authority PID layer. Each layers‟ components have a unique NDN name.

Fig. 6: Mapping Architecture Namespace Implementation

The Root PID layer is the top of the tree and the main component is the Root PID

Server. A Root PID Server maintains a mapping table between PID types and their

corresponding NDN name. Its‟ main functionality is to resolve the PID Type

Identifier field of a PID to the NDN name of the server responsible for this PID Type.

The PID Type layer is the second layer of the tree structure and it consists of the

server responsible for each PID Type. Each PID Type server maintains a mapping

table between the authorities that uses the specific PID type to publish PIDs and their

corresponding NDN name. The functionality of a PID Type server is to resolve the

18

Authority identifier field of a PID to the NDN name of the server responsible for this

Authority.

The Authority PID layer is the last layer on our tree structure and it consists of the

server responsible for each authority. Further delegation to sub-authorities is allowed

on this layer. In this case, the parent authority server maintains a mapping table

between their sub-authorities and their corresponding NDN name. The components

that are leafs (authorities or sub-authorities) in the tree, maintain the mapping table

between the PIDs and their corresponding NDN names.

Our name-space implementation ensures that each PID can be resolved to its‟

corresponding NDN name by following the path from the Root PID server towards

the Authority (leaf) server which maintains the mapping between PIDs and their

corresponding NDN names. Moreover, our name-space implementation meets our

Mapping Architecture design goals defined in the previous section by the following:

The name-space implementation is generic since it can support all the current PID

types reviewed in chapter 3. The naming scheme of all the reviewed PID types and

specifically the delimiter used to separate the PID Type field with the Authority field

can be used by the Root PID server to extract the PID Type from a PID and do the

look up to its‟ mapping table.

Extensibility is achieved by allowing new PID types to easily be added to the name-

space implementation. The only requirement for a PID type that wants to register to

the mapping infrastructure is to have a PID schema from which the PID type can be

easily extracted from the Root PID server. PID types that follow this requirement can

be easily added to the Mapping Architecture.

From the availability and performance point of view, servers in each layer have to

meet different requirements. Servers higher in the hierarchy are expected to have

higher availability since if a server fails, a large part of the name space will be

unreachable. Moreover, higher level servers‟ performance is also important since

more request per time unit will be send to these servers. Since changes in the Root

PID layer and the PID Type layer are expected to rarely occur (i.e. New PID Types

and new Authorities are not every day registered in the Mapping System), replication

of the servers at these layers can easily be deployed and maintained. Replicas should

be geographically and efficiently distributed all around the world in order to

overcome geographical scalability delays. Furthermore, since answer from look up

operations at these layers remains valid for a long time, caching these answers to the

client side (e.g. clients‟ resolver) can be effective and will significantly reduce the

burden from the servers at these layers. On the other hand, servers at the Authority

PID layer have completely different requirements from the availability and

performance point of view. PIDs are expected to register to each authority in a daily

basis, thus replication of the servers will introduce difficulties in keeping all the

replicas consisted and should be avoided. Client resolver caching side is also

considered inappropriate since it will burden the resolver with a vast amount of

information. These lead us to the solution of high performance machines for running

the servers at the Authority PID layer. Table 4 shows an overview of the availability

and performance requirements for each layer.

19

Item Root PID PID Type Authority PID

Geographical

Scalability

Worldwide Worldwide Organizational

Update

Propagation

Small Small-Medium High

Number of

Replicas

Many Many None

Clients’ Resolver

Caching

Yes Yes No

Servers High Performance

is Recommended

High Performance

is Recommended

High Performance

is Required
Table 4: Availability and Performance Requirements for each Layer

4.3 Interoperable PID/OI handling

The hierarchical distribution of the Mapping architecture name-space across multiple

servers defined above, affects the implementation of the PID resolution. In order to

explain the resolution of a PID in a large-scale environment (Worldwide), we assume

for now that there is no cache information in the clients PID resolver. A client PID

resolver is the equivalent of a name resolver in the DNS system thus is responsible for

resolving the PID to an NDN name. Moreover, the NDN name of the Root PID server

is required to be known by the Clients‟ PID resolver and the Client is required to

know the NDN name of its‟ PID resolver. Referring to figure 6, assume that the PID

to be resolved is the ark:/12345/Sub-Ath-1/SSL. In general there are two ways to

implement the PID resolution, iteratively and recursively.

In the iterative PID resolution the server that has received a PID is responsible to

resolve this PID to its‟ corresponding NDN name and return it to the requester.

In the recursive PID resolution the server that has received a PID is responsible to

resolve the PID as far as it can on the tree and return information about how to

continue the resolve procedure to the requester.

In our implementation of the PID resolution we use both iterative and recursive PID

resolution as shown on Figure 7.

20

Fig. 7: PID Resolution Implementation

Specifically, the servers in the Root PID layer and the PID Type layer perform

iterative PID resolution and the servers in the Authority PID layer implement

recursive PID resolution. Our choice was based in the fact that the servers in the Root

PID layer and the PID Type layer can have replicas efficiently geographically

distributed, thus the communication with the Clients‟ PID Resolver will not introduce

high time delays. On the other hand the servers on the Authority PID layer implement

recursive PID resolution that is the parent Authority PID server from which the

Clients‟ PID resolver will request the resolution of a PID will return the NDN name

of that PID. The choice was based in the fact that as mentioned on the previous

section of this chapter, Authority PID servers cannot easily manage geographically

distributed consisted replicas and also to the expectation that parent Authority servers

will be in a close geographical distance with their sub-Authorities servers (e.g. same

country) thus the recursive PID resolution perform in this layer will not introduce

high time delays. To finalize, the use of iterative PID resolution in the Root PID layer

and PID Type layer and the recursive PID resolution in the Authority layer meets our

design goal about geographical scalability of the Mapping Architecture.

4.4 Prototype

In the previous sections, we describe our name-space implementation, the

implementation of the PID resolution and we analyze how our initial design goals can

be meet using the proposed Mapping Architecture. In this section we describe how the

Mapping Architecture can to be implemented in an NDN network infrastructure.

21

As mentioned in the review of the NDN architecture at chapter 2 the packet types

defined in the specification are the INTEREST packet and the DATA packet. The

forwarding of the INTEREST packet is achieved by the Content Routers (CRs) that

perform longest prefix match between the NDN Name in the INTEREST packet and

their Forwarding Information Base (FIB). In order to be able to forward INTEREST

packet to the components of our Mapping Architecture, the Name inside the

INTEREST packet has to contain the NDN name of the component to which the

INTEREST message has to be delivered. Furthermore, the PID must be also

forwarded to the component in order for the Mapping Architecture to work. Based on

this requirements the NDN name of the INTEREST packets for the communication

between the components of our Mapping Architecture must have the scheme shown in

Figure 8.

Fig. 8: NDN Name in the INTEREST packet

Since the NDN Name field of the INTEREST packet starts with the Components

NDN Name it ensures that the INTEREST(<Components‟ NDN Name><PID>)

packet will be forwarded to the appropriate component. Moreover, bearing in mind

the each component knows its NDN name, when it receives an

INTEREST(<Components‟ NDN Name><PID>) it can easily extract the <PID> field

from the NDN Name. On the other hand, a DATA packet in NDN must contain the

NDN Name of the INTEREST packet due to the coupled data routing used in NDN

and a data field containing the data that corresponds to the INTEREST request, thus a

DATA packet exchanged between the components of our Mapping Architecture will

have the scheme shown in Figure 9.

Fig. 9: DATA packet scheme for Mapping Architecture communication

The DATA field inside the DATA packet must contain information about what would

be the next step in the PID resolution procedure. The possible values that the DATA

field of a DATA packet can have are shown on table 5.

Value Meaning
FOUND:<NDN Name of PID> The NDN Name of the PID was found.

<NDN Name of PID> contains the NDN Name of the PID

NOT_FOUND:<Description Message> The PID could not be resolved.

<Description Message> contains information about the failure

REDIRECTION:<NDN Name of

Component>

A redirection to another Component of the Mapping Architecture

<NDN Name of Component> is the NDN Name of the Component that

needs to be queried

Table 5: Possible Values of DATA field of the DATA packet

22

Referring again to figure 6, assume that the PID to be resolved is the ark:/12345/Sub-

Ath-1/SSL and that no caches exists in the Clients‟ PID Resolver. The client types

ark:/12345/Sub-Auth-1/SSL to its‟ NDN enable browser. Its‟ browser under the hood,

constructs the INTEREST(<Clients‟ PID_Resolver_NDN name>ark:/12345/Sub-

Auth-1/SSL) and sends it to its‟ default NDN gateway. This INTEREST packet will

be forwarded through the CRs to the Clients‟ PID resolver. The PID resolution

procedure is shown on figure 10.

Fig. 10: PID Resolution Procedure in NDN

Upon arrival of the INTEREST packet in the Clients‟ PID resolver (arrow 1), it will

extract the PID(ark:/12345/Sub-Auth-1/SSL) and will construct an

INTEREST(<Root_PID_Server_NDN_Name>ark:/12345/Sub-Auth-1/SSL) packet

and send it to its‟ default NDN gateway. This INTEREST packet (arrow 2) will be

forwarded by the CRs to the Root PID Server which in turn will first extract the

PID(ark:/12345/Sub-Auth-1/SSL) from the INTEREST packet and then the PID

Type(ark) from the PID(ark:/12345/Sub-Auth-1/SSL). Extracting the PID Type from

the PID is not trivial since the delimiter used (:) for separating the PID Type field

from the Authority field in each PID standard defines where the PID Type field ends

inside the PID. The Root PID server will then perform a look up on its‟ PID Type –

PID Type NDN name mapping database and will construct the answer message

REDIRECT:<ARK PID Server NDN Name> that will add in the DATA(<Root PID

Server NDN Name>ark:/12345/Sub-Auth-1/SSL, REDIRECT:<ARK PID Server

NDN Name>) and send it to the Clients‟ PID resolver server (arrow 3). This PID

resolution procedure will continue (arrows 4 - 9) until eventually the Clients‟ PID

resolver will receive the DATA packet (arrow 9) that contains the NDN name of the

PID. At this point the Clients‟ PID resolver will construct the DATA packet (arrow

10) and send it to the client NDN enabled browser which can then construct an

INTEREST(/UvA/OS3/SSN/SSL.pdf) packet, forward it to the NDN network and

23

receive the DATA(/UvA/OS3/SSN/SSL.pdf,<data>) packet that contains the data that

corresponds to the PID(ark:/12345/Sub-Auth-1/SSL) requested.

In the aforementioned scenario the PID exists on the Mapping Architecture. In the

case where the PID requested does not exists, the Clients‟ PID resolver will

eventually receive a DATA packet that will contain in the <data> field the

NOT_FOUND:<Description Message> that will in turn return to the Client.

Our Mapping Architecture porting in NDN ensures that if the NDN name of the PID

requested for resolution exists, the clients‟ NDN enabled browser will eventually

receive the DATA packet containing the NDN Name of the PID which in hence can

use to get the actual data that correspond to the PID requested.

4.5 Summary of Gateway Architecture

In this chapter, we describe our proposed Mapping Architecture Design for resolving

PIDs to their corresponding NDN names. Firstly, based on our design goals explained

in section 1 and the hierarchical scheme of the PID standards, in section 2 we defined

the name-space implementation of our Mapping Architecture. In section 3, we

propose a hybrid PID resolution by the components of our Mapping Architecture in

order to achieve the best geographical scalability. Finally, in section 4 we explained

how the communication between the components of the Mapping Architecture can be

achieved using the INTEREST and DATA packet specified in NDN.

24

5 Caching Strategies and Experimental Studies

Caching is an important mechanism in ICN for delivering data objects. In this chapter,

we review the most well-known caching strategies implemented in NDN, and

investigate how they influence the delivery of a Big Data object. The experiments in

this chapter will be based on simulations.

5.1 Caching mechanisms

The key parameters of the caching mechanisms on an NDN network are the

Forwarding Strategy (FS), the Decision Strategy (DS) and the Replacement Strategy

(RS). Below, we briefly describe the functionality of each strategy and the most well-

known algorithms used in each strategy.

5.1.1 Forwarding Strategy (FS)

The Forwarding Strategy (FS) is used to determine the route that an INTEREST

packet will follow towards its‟ final destination in the network. Each router in the

network that received an INTEREST packet for which it has no entry in his PIT will

use the FS to decide in which output interface will send the INTEREST packet. There

different FS algorithms for NDN networking some of which we briefly present below.

 Shortest Path Routing (SPR): In the shortest path routing FS the INTEREST

packet is forwarded through the shortest path towards the repository that

contains the requested content. SPR is the current FS that is used as the de

facto FS in NDN.

 Nearest Replica Routing (NRR): In the Nearest Replica Routing FS the

INTEREST packet is forwarded towards the nearest CR that has a replica of

the requested content, or in the worst case scenario towards the server that

hosts the permanent copy of the requested content. The implementation of the

NRR requires the CRs to send meta-interest packets in order to discover a CR

that contains the requested content.

5.1.2 Decision Strategy (DS)

The Decision Strategy (DS) is used to determine which router along the reverse path

of an INTEREST request will cache the contents of the DATA packet. Each router in

the reverse path of an INTEREST packet runs the DS to decide if it will cache or not

the contents of the incoming DATA packet. There are different DS algorithms in the

bibliography from which the most-well known and used are briefly described below.

 Leave Copy Everywhere (LCE): In the LCE DS, each router caches the

contents of every DATA packet it receives. LCE is the DS currently used on

NDN.

25

 Leave Copy Down (LCD) [37]: In the LCD DS, each router in the reverse

path caches the contents of the DATA packet it receives only if the previous

router in the reverse path had a replica of the contents on its‟ Content Store or

if it had received the DATA packet from the permanent repository (the

publisher itself) meaning that it was the first CR in the reverse path. Therefore,

in LCD only one CR caches the content of the DATA packet on its Content

Store (CS).

 Fix Probability (FIX(p)): In the FIX(p) DS, each CR on the network caches

the incoming DATA packet on its‟ Content Store with a probability p(e.g. with

p=0.5 each CR caches the half of the DATA packet it receives).

 Probabilistic In-Network Caching (ProbCache) [24]: In the ProbCache DS

algorithm, the DATA packets are cached by each CR in the reverse path with

a different probability. In general, in ProbCache, CRs that are closer to the

node (CR or Server) from which the content of the requested object was

retrieved have higher probability in caching the received DATA packet.

5.1.3 Replacement Strategy (RS)

Replacement Strategy (RS), is used to determine which object in the Content Store

will be pulled out in order to make space for the new incoming object to be pushed in.

The replacement algorithm runs on each router in the NDN network. There are many

RS algorithms for NDN in the bibliography, from which the most-well known and

widely used are briefly described below.

 First In First Out Cache (FIFO): In the FIFO cache RS, each router replace the

Object that was first pushed in the Content Store.

 Random Cache (Random): In the Random cache RS, each router replaces an

object randomly in order to make space for the incoming one.

 Least Recently Used (LRU): In the LRU RA, each router replaces the least

recently used Content. The LRU, is the most used replacement algorithm

within the literature and the replacement algorithm used for NDN.

 Least Frequently Used (LFU): In the LFU RA, each router replaces the least

frequently used Content.

5.2 Simulation Methodology and Scenarios

In this section, we describe the simulation parameters used in our scenarios, the

simulation metrics along with the method we use for collecting these metrics. Since

our main focus is on Big Data objects our main simulation goal were to investigate

how the Content Store size (C) of a CR to the Big Data object size (B) ratio (C:B)

affect the performance of the caching mechanisms used in NDN. Moreover, we

investigate if the segmentation of the Big Data objects to multiple equal sized sub-

26

objects (c) affects the performance of the caching mechanisms. The ccnSIM [9]

caching simulator for NDN was used as the platform for performing all the simulation

experiments.

5.2.1 Simulation setup

Table 6 shows an overview of the simulation parameters investigated in this research

project. Afterwards, follows a brief description of each parameter.

Parameter Description Values

R Big Data Repository Size 51.2TBytes

|R| Num. of Big Data Objects

in R

150

B Size of Big Data Object 350GBytes

c Num. of equal size sub

Objects a Big Data Object

is segmented

[1,2,4,6..20]

C The Content Store Size in

each Content Router

expressed as Size of Big

Data Object

[0.5B,1B,2B,6B,8B]

a Zipf exponent 1

FS Forwarding Algorithm SPR

DS Caching Algorithm [LCE,LCD,FIX(0,5),FIX(0.25),ProbCache,NoCache]

RS Replacement Algorithm LRU

T The Big Data Object

Client has request and

received so far

-

Network

Topologies

The network topologies

used in simulations

String(figure 11), Binary Tree (figure 12)

Table 6: Overview of Simulation Parameters Investigated in this Research Project

 Big Data Repository(R,|R|,B,c,a)

In order to determine a realistic size for our Big Data Repository we investigate

different public Big Data repositories available in the Open Data Science

Cloud(ODSC) [38].Table 7 shows an overview of the public Big Data Sets

available on OSDC.

Big Data Repository Size

(TBytes)

Num. of Big

Data Objects

Average Size of

Big Data Objects

(GBytes)

Complete Genomics

Public Data

50.4 150 350

Earth Observing-1

Mission

80.5 Unknown Unknown

ASTER 23.7 Unknown Unknown

Table 7: Public Data Sets Available in ODSC

27

From our investigation on public Big Data sets we find out that Big Data

Repositories can have a size of 25-100TBytes (e.g. Complete Genomics Public

Data [39], Earth Observing-1 Mission [40]), and contain Big Data objects of

approximately 350GByte(e.g. In Complete Genomics Public Data each Genome

has approximately 350 GBytes of information [41]). Based on these observations

in our simulation experiments we consider a Big Data Repository size equal to

51.2TBytes(R), 150 Big Data objects (|R|) each one with 350 GBytes size (B).

Due to the fact that Big Data Objects consumes a big amount of memory to be

saved as one piece of data, we wanted to investigate how the number of equal size

sub-Objects a Big Data Object is segmented can affect the performance of the

caching strategies. Therefore, in our simulations, we investigate different number

of equal size sub-Objects (c) a Big Data Object is segmented. In the case where

the Big Data Object is consisted of multiple sub-Objects a Client that wants to

receive a Big Data Object, starts sending request for the first sub-Object and when

it received the content it proceeds with a request for the second sub-Object and so

on until it has received all the sub-Objects of the Big Data Object.

Finally, as we could not have any insights on the distribution of the popularity of

the Big Data Objects, in our experiments, the popularity of the Big Data Objects is

calculated as a single sequence using Zipf law [42] with exponent (alpha)

parameter set to 1.

 Content Routers (C)

As we wanted to investigate how the Content Store size (C) of each CR affects the

efficiency of the caching strategies, we used variable Content Store size starting

with CS size of half of the Big Data Object size and we doubled it each time up to

the point where the Content Store size is eight times bigger the Big Data Object

size.

 Caching Strategies(FS,DS,RS)

For the caching strategies:

o SPR described earlier in this chapter as the FS algorithm. Our choice

was based in the fact that SPR is the current FS algorithm used in

NDN.

o LRU also described earlier in this chapter as the RS algorithm. Here

our choice was based in the fact that is the most-well known and used

RS.

o For the DS algorithms we used LCE, LCD, FIX(0.5), FIX(0.25),

ProbCache and NoCache. As we wanted to see how the different DS

algorithms proposed in the bibliography perform when they are used

for Big Data Objects we choose to evaluate all the well-known DS

algorithms in our simulations. NoCache was used in order to have a

comparison of the other DS algorithms with CRs that do not cache any

objects.

In our simulations when the Big Data Object is segmented to multiple equal size

sub-objects, each sub-object of a Big Data Object is treated by the Caching

28

strategies independently of all the others. That means that a sub-object of a Big

Data Object may be cached by a CR and another may be not cached

 Clients Request (T)

The parameter T indicated how many Big Data Objects a client has request and

received so far. In the case of multiple clients each client in the simulation have to

finish the request and the reception of the Big Data Object T before any other

client proceeds in requesting the T+1 Big Data Object.

 Network Topologies

String and binary tree as shown in figure 11 and figure 12 are the network

topologies investigated in our simulations. In both topologies the distance of each

client from the repository is 5 hops (4 CRs and 1 Hop for the Big Data

Repository).

Fig. 11: String Topology

Fig. 12: Binary String Topology

29

5.2.2 Performance Metrics
The main goal of the in–network caching in ICN can be described by the following

three aspects:

 From a customer point of view, ICN aims to reduce the average time for

downloading a requested content.

 From the provider point of view, ICN aims to reduce the number of requests

that the provider needs to serve.

 From the network point of view, ICN aims to reduce the network traffic.

All the above aspects can be express as the average number of Content

Routers(Hops), a customer request need to travel before finding a temporary(in a

routers Content Store) or a permanent copy(In the Providers Repository) of the

requested object. Therefore, in our simulation the metric that we used to describe the

benefit for all the aforementioned aspects is the average number of hops a request

needs to be routed in order to find the requested object.

5.2.3 Collection of measurements

As described above the main metric that we use to evaluate the performance our

simulation scenarios is the average number of Hops that the request from the clients

need to be routed before hitting the Big Data Object requested. One of the issues to

take in to account when taking measurements within a network of caches is when to

start collecting the metrics. In our simulation scenarios we start to collect the average

number of hops metric when the average number of hops converges. More

specifically, each simulation scenario runs until the average number of hops metric is

stable for at least 50T as shown on figure 13.

Fig. 13: Collection of measurements at convergence point

By performing the simulations described above, we can have valuable results for

evaluating the performance of in-network caching for the most well-known caching

strategies, the effectiveness of segmenting the Big Data Object in multiple equal size

sub-Objects and the impact introduce by the CR Content Store size (C) to the Big

Data Object size (B) ratio (C:B).

30

5.3 Results and Evaluation

In this chapter, we present and analyze the results of our simulations. First we present

and analyze the result for the string topology and then we proceed with the results of

the binary tree topology. For each topology, we first evaluate how the cache size (C)

of a CR to the Big Data object size (B) ratio (C:B) effects the performance of the

caching strategies and then we proceed on how the number of equal sized sub-objects

a Big Data object is segmented, effects this metric. Finally, for each topology we

explain which caching decision (DS) algorithm gives the best performance results.

5.3.1 String Topology

The results gathered from the simulations of the string topology are shown on figure

14. X-axis shows the ratio of the Content Router Cache Size to the Big Data Object

Size (C:B). Y-axis shows the average number of hops metric collected at the

convergence point as described on the previous section. The dotted points in the graph

shows the average value of the different number of equal size sub-Objects a Big Data

Object is segmented and the error bar indicates the standard deviation.

Fig. 14: String Topology Simulation Results

 CRs‟ cache size (C) to Big Data Object size(B) ratio (C:B):

As we can clearly see from the graph the ratio of Content Router Cache Size

to Big Data Object Size (C:B) significantly effects the performance of the

Caching Algorithms. More specifically, for C:B ≤ 1 the performance of the

Caching Algorithms does not give any significant improvements in the

2,4

2,6

2,8

3

3,2

3,4

3,6

3,8

4

4,2

4,4

4,6

4,8

5

5,2

0,5 1 2 4 8 16

A
ve

ra
ge

 N
u

m
b

e
r

o
f

H
o

p
s

Content Router Cache Size/Big Data Object Size (C:B)

String Topology

No Cache

LCE

Fix(0.5)

Fix(0.25)

ProbCache

LCD

31

average number of hops metric. On the other hand for C:B ≥ 2 we can see that

for the LCD and ProbCache DS algorithms the average number of hops

decreases by approximately 18%, thus significant gains on the performance

metrics can be gained from that point and onwards.

 Number of equal sized sub-objects a Big Data object is segmented (c):

Referring to the graph of figure 14 we can see that the error bar that indicates

the standard deviation for all the different values of c has a small variation for

all points in the graph. From this result, we can clearly see that the number of

equal size sub-objects a Big Data Object is segmented does not significantly

affect the performance of the CD algorithms.

 Performance of different Caching Decision Strategy (DS) algorithms.

Referring again to the graph of figure 14 we can see that there is a significant

difference on the performance of the DS algorithms investigated in our

simulations. More specifically, the LCE algorithm that is the current DS

algorithm used in NDN gives significant performance benefits at the point

where C:B ≥ 8. On the other hand, the ProbCache and the LCD DS algorithms

are found to give the best performance gains since they manage to give

approximately the same performance results with the LCE at the point where

C:B ≥ 2. Finally, the Fix(p) DS algorithms also perform better than the LCE.

5.3.2 Binary Tree Topology

The results gathered from the simulations of the binary tree topology are shown on

figure 15. Again in this graph the axis, the dotted points and the error bar has the same

meaning as in the string topology.

2,4

2,6

2,8

3

3,2

3,4

3,6

3,8

4

4,2

4,4

4,6

4,8

5

5,2

0,5 1 2 4 8 16

A
ve

ra
ge

 N
u

m
b

e
r

o
f

H
o

p
s

Content Router Size/Big Data Object Size (C:B)

Binary Tree Topology

No Cache

LCE

Fix(0.5)

Fix(0.25)

ProbCache

LCD

32

 CRs‟ cache size (C) to Big Data Object size(B) ratio (C:B):

As we can see from the graph the results are the same as in the case of the

string topology. More specifically, the performance of caching algorithms give

significant benefits at the point where C:B ≥ 2 while for C:B ≤ 1 the gains are

insignificant.

 Number of equal sized sub-objects a Big Data object is segmented (c):

Again as in the case of the string topology, the number of equal size sub-

objects a Big Data object is segmented (c) does not affect the performance of

the CS. The only significant difference that can be observed is that the

standard deviation values are smaller compared to the case of the string

topology.

 Performance of different Caching Decision (CS) algorithms:

The performance of the CS algorithms for the case of the tree topology is

again approximately the same as in the case of the string topology. The only

significant difference that can be observed compared to the results of the string

topology is the performance of the LCD when the C:B = 0.5. At this point the

LCD in the binary tree topology has an average number of hops of

approximately 4.6 while at the string topology the average number of hops is

5. This difference is based on the fact that in the binary tree topology, there are

multiple clients requesting Big Data objects, thus some clients are benefit for

Big Data objects that are already cached in the CRs because other clients has

already requested them. This result gives motivation for evaluating the

performance of the in-network caching for more complex networks

To finalize, our results for both topologies, showed us that in order to have significant

benefits for In-Network caching in NDN the Content Router Cache Size has to be at

least twice the size of the Big Data Object size and that the number of equal size sub-

Objects a Big Data is segmented does not affect the performance of the caching

algorithms. Moreover, we find out that the LCE which is the current CS algorithm

used in NDN needs at least a C:B ≥ 8 to give significant performance benefits. On the

hand, LCD and ProbCache are more promising CS algorithms for delivering Big Data

objects since they give significant performance benefits from the point where C:B ≥ 2

and onwards.

33

6 Discussion

In this section, we discuss the advantaged and disadvantages of the proposed Mapping

Architecture, and the challenges with respect of the efficiency of in-network caching

for delivering Big Data in NDN.

During this research project a generic, extensible, scalable and efficiency Mapping

Architecture was proposed for resolving PIDs to NDN names. Although we show the

requirements that our solution needs in order to meet our design goals there are other

issues that can arise during the implementation of the Mapping Architecture. More

specifically, since each PID standard is allowed to use different delimiters for

separating the different fields (PID type, Authority, Sub-Authority, Name of Digital

Object) the PIDs it publishes, it is not possible to have a universal software (like

BIND in DNS) that could be installed for every new PID type, Authority or sub-

Authority. As a result, each PID type and authority must develop its‟ own software

that would be in compliance with the scheme that they use for publishing their PIDs

in order to be able to enter our Mapping System. One way to over-come this burden is

to specify a framework in which a general scheme with some elasticity will be

provided in order to limit the big number of possible different PIDs schemes that

could be chosen by the authorities. Based on this framework, a universal software

could be developed and each authority that use this framework can also use this

software instead of developing its‟ own.

After the proposed Mapping Architecture was introduce, we conducted experimental

studies by performing simulations in order to investigate what benefits can Big Data

objects have from the in-network caching of NDN. Our results showed that significant

benefits can be gained from the point where the cache size of the Content Routers is

double the size of the Big Data Objects. However the amount of cache size that a

Content Router need in the case of Big Data objects would be more than 1TBytes.

Adding 1TBytes in a Content Router cache size that needs to precede data at line

speed is a hardware limitation even in todays‟ state of the art Routers. However, the

technology of fast SSD is rapidly developed and we believe that in the near future

implementing TBytes of cache size in a Content Router will be possible.

34

7 Conclusions

This research project is a preliminary study on how Information Centric Networking

(ICN) can efficiently be used for delivering Big Data with Persistent Identifiers

(PIDs). Firstly, we reviewed the state of the art approaches in ICN and the current

PID standards, we chose the most mature ICN approach (NDN) and we proposed a

Mapping Architecture for resolving PIDs to NDN names. After, we evaluate the

efficiency of the in-network caching mechanisms proposed for NDN when delivering

Big Data objects.

The main design goals of our Mapping Architecture was to provide a solution that

support all the current PID standards, allow new PID standards to be ported in and

scale for a vast number of PIDs. Based on these goals, we design a name-space

implementation in which the PID resolution process along with the name-space

management is hierarchically distributed in a tree structure across multiple

components. We showed that the hierarchy layers defined in our name-space

implementation can support all the current PID standards and allows new PID

standards to be easily ported in. Moreover, we showed that by assigning specific

requirements for each hierarchy layers‟ components, the implementation of the PID

resolution can efficiently scale for a vast number of PIDs. Finally, we showed how the

Mapping Architecture can be efficiently ported in NDN.

In order to investigate the efficiency of the NDN in-network caching mechanisms

when delivering Big Data objects, we performed experimental studies based on

simulations. Our results showed that the cache size of the Content Routers (CR) to the

Big Data object ratio (C:B) plays an important role in the efficiency of the in-network

caching mechanisms in NDN. Specifically, for C:B ≤ 1 the in-network caching in

NDN has no significant performance benefits, while for C:B ≥ 2 significant

performance benefits can be gained for delivering Big Data objects. Furthermore, the

number of multiple equal sized sub-objects a Big Data object is segmented does not

affect the performance of the in-network caching mechanisms in NDN.

To finalize, based on the work done in this research project we can say that ICN is a

promising approach for delivering Big Data with Persistent Identifiers (PID) that

should be taken into account and further researched.

35

8 Future Work

Future work can be done both on improving the Mapping Architecture proposed and

evaluating the efficiency of caching mechanism for delivering Big Data objects. For

the Mapping Architecture future work can be done in specifying the exact protocol for

the communication between the components. Moreover, security mechanisms for the

Mapping Architecture were not taken into account during the design phase, thus

implementing secure communication between the components is another topic for

future work. For the efficiency of in-network caching mechanisms when delivering

Big Data objects further research is need to be done. More specifically, during our

experimental studies the only forwarding strategy investigated was the shortest path

routing towards the Big Data repository and experimental studies were based on two

simple network topologies (string and binary tree). The efficiency of in-network

caching mechanisms for more forwarding strategy algorithms (e.g. NRR) and more

complex network topologies must be also researched and evaluated.

36

9 References

[1] S. Sagiroglu and D. Sinanc, "Big Data: A Review", in IEEE International

Conference on Collaboration Technologies and Systems(CTS), May 2013.

[2] Environmental Research Infrastructures (ENVRI) project. [Online] ENVRI

project. Available: http://envri.eu/.

[3] TCP Throughput Over Long Fat Networks. [Online] ITPerformanceManagement.

Available: http://itperformancemanagement.blogspot.nl/2010/04/tcp-throughput-over-

long-fat-networks.html, April 2010.

[4] TCP Tuning. [Online] Wikipedia. Available:

http://en.wikipedia.org/wiki/TCP_tuning, June 2014.

[5] TCP Extensions for Multipath Operation with Multiple Addresses. [Online] IETF.

Available: http://tools.ietf.org/html/rfc6824, January 2013.

[6] Information-Centric Networking Research Group (ICNRG). [Online] IRTF.

Available: https://irtf.org/icnrg.

[7] Persistent Identifer. [Online] Ariadne.

Available: http://www.ariadne.ac.uk/issue56/tonkin, July 2008.

[8] G. Xylomenos et. al. "A Survey of Information-Centric Networking Research", in

IEEE Communications Surveys & Tutorials (Volume:16,Issue: 2), July 2013.

[9] R. Chiocchetti et. al. "ccnSim: an Highly Scalable CCN Simulator" in IEEE

International Conference on Communications (ICC), June 2013.

[10] T. Koponen et. al. "A data-oriented (and beyond) network architecture",

Proceedings of the 2007 conference on Applications, technologies, architectures, and

protocols for computer communication, October 2007.

[11] Named Data Networking (NDN). [Online] NDN. Available: http://named-

data.net/.

[12] Content Centric Networking Project. [Online] CCNx. Available:

http://www.ccnx.org/.

[13] Named Data Networking (NDN) project. [Online] PARC. Available:

https://www.parc.com/publication/2709/named-data-networking-ndn-project.html.

[14] NDN Specification Documentation. [Online] NDN. Available: http://named-

data.net/wp-content/uploads/2013/11/packetformat.pdf, March 2014.

[15] Uniform Resource Identifier (URI): Generic Syntax. [Online] IETF. Available:

http://tools.ietf.org/html/rfc3986, January 2005.

37

[16] L. Wang et. al. "OSPFN: An OSPF Based Routing Protocol for Named Data

Networking", Technical Report, NDN-0003, July 2012.

[17] PURSUIT. [Online] FP7. Available: http://www.fp7-pursuit.eu/PursuitWeb/.

[18] PSIRP. [Online] PSIRP. Available: http://www.psirp.org/.

[19] J. Rajahalme et. al. "On name-based inter-domain routing", Computer Networks

(Vol. 55, no. 4), March 2011.

[20] SAIL Project. [Online] SAIL. http://www.sail-project.eu/.

[21] FP7 4WARD Project. [Online] FP7. Available: http://www.4ward-project.eu/.

[22] Deepali D. Ahir, Sagar B. Shinde. "Caching Simulators for Content Centric

Networking", International Journal of Science and Research(IJSR), May 2014.

[23] D. Rossi, G. Rossini. "Caching performance of content centric networks under

multi-path routing (and more)", Technical report, Telecom ParisTech, November

2011.

[24] I. Psaras et. al. "Probabilistic In-Network Caching for Information-Centric

Networking", Proceedings of the second edition of the ICN workshop on Information-

centric networking, August 2012.

[25] W. K. Chai et. al. "Cache Less for More in Information-Centric Networks",

Proceedings of the 11th international IFIP TC 6 conference on Networking, May

2012.

[26] F. MvCown et. al. "The Availability and Persistence of Web References in D-Lib

Magazine", 5th International Web Archiving Workshop (IWAW05), November 2005.

[27] D. Spinellis. "The decay and failures of web references", Magazine

Communications of the ACM(Volume: 46, Issue: 1), January 2003.

[28] URN:NBN RESOLVER FÜR DEUTSCHLAND UND SCHWEIZ. [Online]

Available: https://nbn-resolving.org/.

[29] The Handle System. [Online] Handle. Available: http://handle.net/.

[30] UW-Madison Libraries Handle System.[Online] Madison, University of

Wisconsin. Available: http://digital.library.wisc.edu/webhandle/.

[31] The DOI System. [Online] DOI. Available: http://www.doi.org/.

[32] DOI Resolver. [Online] DOI. Available: http://dx.doi.org/.

[33] DOI Registration Agencies. [Online] DOI. Available:

http://www.doi.org/registration_agencies.html.

38

[34] ARK (Archival Resource Key) Identifiers. [Online] California Digital Library.

Available: https://wiki.ucop.edu/display/Curation/ARK.

[35] PURL. [Online] PURL. Available: http://purl.oclc.org/docs/index.html.

[36] PURL. [Online] PURL. Available:

http://www.oclc.org/research/activities/purl.html?urlm=160105.

[37] N. Laoutaris et. al. "The LCD interconnection of LRU caches and its analysis", in

Performance Evaluation Journal (Volume: 63, Issue: 7), July 2006.

[38] Public Data Sets. [Online] Open Data Science Cloud(ODSC). Available:

https://www.opensciencedatacloud.org/publicdata/.

[39] Complete Genomics Public Data. [Online] Open Data Science Cloud (ODSC)

Available: https://www.opensciencedatacloud.org/publicdata/complete-genomics-

public-data/.

[40] Earth Observing-1 Mission. [Online] Open Data Science Cloud (ODSC).

Available: https://www.opensciencedatacloud.org/publicdata/earth-observing-1-

mission/.

[41] Public Genome Data Repository. [Online] Open Data Science Cloud (ODSC).

Available: http://media.completegenomics.com/documents/PublicGenomes.pdf.

[42] Lada A. Adamic, Bernando A. Huberman. "Zipf's law of the Internet",

Glotometrics 3:143-150, 2002.

