Combating DNS amplification attacks using Cookies

Supervisor: Roland van Rijswijk SURFnet

By: Sean Rijs

Agenda

• I am going to do my presentation

DNS amplification attacks

Target

 $\frac{response\ size}{query\ size}$

	Q-Size	R-Size	Amplification factor	Attacker	Victim
	40	512	12.8	100M	1.28G
EDNS0	40	1472	36.8	100M	3.68G
	40	4096	102.4	100M	10.24G

Table by Rijswijk-Deij et al. [DNSSEC and its potential for DDoS attacks]

DNS Cookies IETF Internet Draft

- By Donald Eastlake 2006-2014
 - Authentication of source IP
 - Off-path
- <u>No pre-configuration required</u>

- Research question:
 - Is the draft effective against DNS amp. attacks?

Terminology confusing?

Cookies OPT RR (EDNS0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31							
OPTION-CODE = TBD	OPTION-LENGTH = 18						
Resolver Cookie							
hash(Resolver Secret Server IP Address)							
Server Cookie							
hash(Server Secret Query IP Address Resolver Cookie)							
Error Code							

- May occur once
 Proposed hash = FNV-64
- Max. 22 bytes

- Costs?
 - Initially 2x RTT
 - Hashing
 - Caching

What if?

Policy

- Disabled: do nothing with cookies
- Enabled: opportunistic (recommends RRL on server side)
 - Not a solution for recursive servers
- Enforced: Ignore everything without Cookies
 - Not gonna happen (in the near future)
- <u>Policy is important</u>, as it determines the incremental implementation

Source Identity Token (SIT)

• BIND 9.10-P1 (two months ago)

2x RTT has disappeared?

Differences SIT / Internet Draft

- Similar except:
 - Hashing: FNV-64, AES-MAC, SHA1, SHA256
 - RRL: whitelists valid clients
 - Policy: no one is going to use it

Analysis of impact

- Stub resolvers are stateless
- A lot of end devices: bound by release cycles
- Recursive server and authoritative are stateful
- Already use RRL

Measurements

- What do want to find out?
 - Do we need EDNS0 for normal use?
 - Do we need large response sizes for normal use?
- How?
 - PCAPs and EEMO

Measurement sources

- Stub resolver: www.nu.nl (with its adds) using:
 - Windows Internet Explorer
 - OS X Safari
 - Ubuntu Linux Firefox
- Stub resolver: Alexa top 10 using:
 - Ubuntu Linux Firefox
- Recursive server: SURFnet
 - 1500 2000 queries per second
 - 10m during a workday on noon

Stub resolver

- No EDNS0 found
- No large response responses:
 - Size <= 512 bytes
 - truncated/TCP communication = 0

Recursive server

Conclusion/Discussion

- Based on our results, we suggest unauthenticated stub resolvers should be limited to a max. response size of 240 bytes
- Amplification reduced further:
 - 240 bytes = 6 amplification factor
 - 100M = 600 Mbit/s

Q-Size	R-Size	Amplification factor	Attacker	Victim		
40	512	12.8	100M	1.28G		
40	1472	36.8	100M	3.68G		
40	4096	102.4	100M	10.24G		
Table by Diawiik Daii at al [DNCCEC and its natential for DDaC attacks]						

Table by Rijswijk-Deij et al. [DNSSEC and its potential for DDoS attacks]

Conclusion

- RRL should not be used
 - Especially on recursive server
 - But authoritative can also be effected
- Policy for incremental implementation must be changed
- Terminology:
 - stub/recursive/authoritative
 - The cookie is actually a Message Authentication Code (MAC) and not just a hash

Discussion

- Do we need to authenticate the server?
- Yes, it provides off-path defense against:
 - Last mile problem in DNSSEC
 - Cache poisoning (by Kaminsky)

Future research

- Need more measurements
 - to confirm suggested DNS maximum response size
- FNV-64
 - The non-standard and untested hashing algorithm, which could provide performance gain. Is a performance gain required?

Questions

