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Abstract

The Domain Name System (DNS) is an old system, dating back to the year 1983. Security was
not an issue back then and, therefore, not under consideration during the design of DNS. When
using the UDP protocol to send a DNS query to a server, the server cannot verify the source IP (i.e.
IP spoofing) as opposed to the three-way handshake of TCP. A DNS amplification attack exploits
source IP spoofing by sending a small query (e.g. 40 bytes) and getting the largest response possible
(e.g. 4096 bytes) delivered to the spoofed IP, consequently flooding its network causing a Denial of
Service (DoS).

To address this issue, an Internet Draft called DNS Cookies by Eastlake proposes an extension
to the Extension mechanism for DNS (EDNS0). The concept is to provide authentication for the
source IP in queries and responses by providing each component (i.e. stub resolver, recursive server
and authoritative name server) with a secret known only to the component. It is designed to require
no pre-configuration.

The goal of this research is to analyse the effectiveness of DNS Cookies. The conclusion is that
DNS Cookies can be effective against DNS amplification attacks in theory. However, some changes
need to be made to make a viable solution. Based on our measurements, we suggest a different policy
where the default response size is limited to 240 bytes, whilst DNS servers are still able to serve 99%
of the DNS clients without an DNS Cookie implementation using UDP. Responses higher than this
value should either switch to TCP or must be authenticated using DNS Cookies. If this policy is used
an incremental implementation is possible, and the amplification factor is severely reduced without
requiring pre-configuration.
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1 Introduction

The Domain Name System (DNS) is an old application that dates back to 1983. At that time, Distributed
Denial of Service (DDoS) and computer security in general were not an issue. In the original specifications
of DNS[1][2] it was decided to use User Datagram Protocol (UDP) for communication. However, UDP
is vulnerable to spoofing of the source IP address field as there is no authentication whatsoever.

A DNS resolver should only process queries for its local network. However, a lot of resolvers on the
Internet are misconfigured to process queries for the whole internet, which are called Open Resolvers.

The vulnerability to IP spoofing and the availability of Open Resolvers enables DNS amplification
attacks, an attack that has a big impact nowadays1. An attacker spoofs the source IP address of the
target in a DNS query and sends it to an Open Resolver. The DNS response is sent to the spoofed source
IP address, consequently flooding the target with the response. Attackers intend to make the response
bigger than the query giving it the amplification factor in the amount of traffic invested and amount of
traffic sent to the target, calculated as response size

query size . This amplification factor is even further increased in

modern DNS implementations that support the Extension mechanism for DNS (EDNS0), which enables
UDP packets bigger than 512 bytes to for instance 4096 bytes.

An Internet Draft entitled DNS Cookies[3] by Eastlake specifies a lightweight security mechanism
to mitigate DNS amplification attacks. The big advantage is that it does not require pre-configuration.
Pre-configuration is the fact that a user has to configure a given software program before he or she is able
to fully use the program. For example: in order to prevent Open Resolvers, users must first configure
their resolvers to process DNS queries only for its local network. The DNS Cookies Internet Draft will
be analysed in this study.

1.1 Research question

The main research question is:

Are DNS Cookies effective against DNS amplification attacks?

Which includes the following sub-questions:

A: Is it feasible to combine DNS Cookies with Response Rate Limiting (RRL) in a normal
network environment for an incremental implementation?

B: Are there any possible improvements to the DNS Cookie Internet Draft?

C: How can we maintain a low amplification factor using DNS Cookies?

1.2 Related work

The effect of DDoS attacks is notable since 1999.[4] A possible defensive approach is to actively filter out
the attackers traffic, which is not a trivial task and not always effective. Actively responding to DDoS
attacks could be effective, but does not eliminate the real cause of the problem. A DNS amplification
attacks is only one of the possible vulnerabilities to create a DDoS attack.

A possible solution to mitigate IP spoofing in UDP, hence DNS amplification attacks, is that all
networks must adhere to Best Current Practice (BCP) 38. BCP 38[5] specifies ingress traffic filtering
on the edge of networks. However, not all networks implement ingress filtering and possibly never will2,
consequently making DNS amplification attacks still viable in the future.

Vixie [6] proposes a technique called DNS Response Rate Limiting (RRL) which limits the rate at
which responses are sent back from a DNS server. RRL is intended for responses that do not repeat
often and is designed for authoritative name servers. In fact common authoritative name server software
already support this feature3 in recent releases. RRL works for example by limiting an IPv4 network
only to five queries per second, after which it will not send any response anymore until a time limit
has passed. For recursive servers, RRL is not suitable, as stub resolvers cannot be expected to cache

1http://www.bbc.com/news/technology-21954636
2http://spoofer.cmand.org/summary.php
3BIND ≥ 9.9.4 and NSD ≥ 3.2.15
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responses. If RRL is implemented, it implies a Denial of Service (DoS) for stub resolvers even though
they are legitimate clients.

The aforementioned solutions are ones against DNS amplification attacks. Having said that, IP
spoofing with UDP stays a vulnerability on the Internet. The feature EDNS0[7] was introduced in the
year 1999. EDNS0 enables UDP packets bigger than 512 bytes to for instance 4096 bytes. Research
by Rijswijk-Deij et al.[8] shows the impact of using EDNS0 in DNS amplification attacks. The latter
is shown in a theoretical example in Table 1 where the amplification factor is calculated as response size

query size
using a 40 byte query on a 100 Mbps link.

Q-Size R-Size Amplification factor Attacker Victim
40 512 12.8 100M 1.28G
40 1472 36.8 100M 3.68G
40 4096 102.4 100M 10.24G

Table 1: Theoretical amplification attacks[8, p. 3]

This leads to the question: how easy would it be to conduct a DDoS attack? Research by Santanna
et al.[9] showed that no advanced knowledge of computer networks is required. They developed a crawler
that uses Google’s Custom Search[10] to search for offers of DDoS-as-a-Service, also known as Booters.
When the crawler found a Booter, they tried to rent its service to attack a target in a testing environment.
It measured the attack and analysed its characteristics. The results of all attacks are that 7 out of 14
booters were using a DNS amplification attack, and that a DDoS would cost less than $5 for up to 25
Gbps.

1.3 Scope

The focus of this research is to prevent DNS amplification attacks using DNS Cookies. The Internet
Draft of DNS Cookies specifies other attacks[3, section 2], for example Cache Poisoning. However, this is
out of scope for this research as the Domain Name System Security Extensions (DNSSEC) [11] already
addresses this issue.

1.4 Contribution

This paper gives an overview on how effective DNS Cookies could be and what could be improved. The
proof of concept in the new BIND software is analysed and compared to the draft. Furthermore, it
describes how an incremental implementation could be achieved.

To strengthen the arguments, this research uses data from a general environment to examine if the
proposed incremental implementation is realistic. We encourage others to do the same measurements in
different environments. The tools used are open source[12] and the experiments are easily repeated. The
steps required to repeat the measurement are included with the source code.
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2 State-of-the-art

This section is divided into three parts. The first part describes the theoretical concept of DNS Cookies
and analyses the effectiveness. In the second part, the results of the analyses of the implementation of
BIND are described. BIND includes an experimental feature called Source Identity Token (SIT), which
is based on the DNS Cookies concept. To our knowledge, BIND is the only existing implementation,
most likely due to the fact that DNS Cookies is a relatively new concept. In the third part, a comparison
of the two is made in the third part. Finally, a short impact analysis is done to look ahead at what DNS
components are effected if these new technologies would be implemented.

2.1 Internet Draft: DNS Cookies

There are five versions of the draft[3] including the first release in 2006. The draft is designed to
provide protection from off-path attackers4 against DNS amplification attacks, DNS DoS attacks5 or
cache poisoning attacks. The goal is to provide a solution that works without pre-configuration. The
draft proposes to include an OPT RR[13], called the COOKIE OPT, that is restricted to only one entry
per DNS query or response.

In Figure 1, the terminology used in the Internet Draft is shown on the top, i.e. client, resolver and
server. Although it is not described in the Internet Draft, the author confirmed that a resolver and a
client can be a stub resolver or a recursive server and a server can be a recursive server or an authoritative
name server[14].

Client/
Resolver Server

Stub resolver Recursive server Authoritative server

Client/
Resolver Server

Figure 1: Clarifying terminology of DNS Cookies

2.1.1 Concept

The DNS Cookies draft requires every DNS client and server to have a secret with at least 64 bits of
entropy[15]. Figure 2 shows an overview of the sizes and position of the fields in a COOKIE OPT.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPTION-CODE = TBD OPTION-LENGTH = 18

Resolver Cookie

Server Cookie

Error Code

Figure 2: The COOKIE OPT RR

The fields of the COOKIE OPT are defined in the following list.

4attackers that are not in the position to read legitimate traffic of a service
5attacks that cause only the DNS server to stop working
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• OPTION-CODE = To Be Determined (TBD):
The RR number identifier which will be determined by Internet Assigned Numbers Authority
(IANA).

• OPTION-LENGTH:
The length in bytes until the related option ends.

• Resolver Cookie: hash(Resolver Secret | Server IP Address) 6

The Resolver Cookie (can be a recursive or stub resolver) concatenates the Resolver Secret and the
Server IP address7 and uses it as input to generate a hash. The author of the DNS Cookie draft
propose the use of Fowler–Noll–Vo (FNV)-64 [16], a non-cryptographic hash algorithm with good
dispersion. The output of FNV function is the contents of this field. FNV-64 is non-cryptographic
for multiple reason[16, section 6.1], although it is non-cryptographic a secret is included to make
the resolver cookie unique. If no secret would be used only the server IP address is left as input
causing all resolver cookies to lookalike on the server side. The effect would be that the Server
Cookie, discussed in the next bullet, is easily recreated by off-path attacks and vulnerable to DNS
amplification attacks.

• Server Cookie: hash(Server Secret | Client IP Address |Resolver Cookie)
The Server Cookie (can be an authoritative or recursive server, but not a stub resolver) concatenates
the Server Secret, Client IP address and the Resolver Cookie as input to generate a FNV-64 hash.
The hash output is the contents of this field. Note that if the Resolver Cookie would not use a
secret, as discussed in the previous bullet, off-path attackers could easily recreate a valid Server
Cookie hash and create a DNS amplification attack.

• Error Code:
The values of this field depend on whether its a query or a response. In the case of a query, these
values are possible:

– Zero: the resolver has set the Server Cookie field and presumes it is correct

– CKPING (Cookie PING): the resolver does not have the Server Cookie in cache yet and asks
the server to send one.

If it is a response, the following values are possible:

– Zero: if the related query has a valid cookie OPT RR, implying a valid Resolver and Server
Cookie.

– NOCOOKIE: No cookie found, send a response with refused in the RCODE.

– BADCOOKIE: Cookie is not valid, send a response with refused in the RCODE.

– MANYCOOKIE: More than one cookie, send a response with refused in the RCODE.

– CKPINGR (Cookie PING response): send a response with the calculated Server Cookie.

Figure 3 shows a conversation when a query to a domain occurs for the first time where C shows the
important changes in the DNS Cookie OPT RR. The client first sends a query to the domain with its
Resolver Cookie, an empty Server Cookie field and the Error Code set to CKPING. The server uses the
same message and fills in the Server Cookie field and sets the Error Code to CKPINGR. Both sides have
each other Cookies cached and in our example normal DNS query and responses behaviour can start.
However, the actions taken on valid, invalid and empty cookie fields may depend on the policy being
used.

It is important that the initial phase is done before using traditional DNS. If traditional DNS is
started before this phase, by for example combining the initial phase with traditional DNS, one could
still cause a DNS amplification attack by filling up the response depending on the query.

The conversation shown in Figure 3 adds the following new performance costs to DNS:

• In the initial phase, the query has to travel two times the Round-Trip Time (RTT)

• The cost of calculating the hash using FNV-64[16]

• Keeping state of each other by caching each others cookie

6the | symbol represents concatenation
7can be IPv4 or IPv6
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C(Resolver Cookie + CKPING)

C(Resolver Cookie + Server Cookie + CKPINGR)

Resolver Server

C(Resolver Cookie + Server Cookie)
Q(delaat.net.  IN A )

C(Resolver Cookie + Server Cookie)
R(delaat.net. 600 IN A 212.84.157.4)

C(Resolver Cookie + Server Cookie)
Q(delaat.net. IN AAAA)

C(Resolver Cookie + Server Cookie)
R(delaat.net. 600 IN AAAA 2001:9e0:....)

Figure 3: Queries to a domain for the first time using DNS Cookies

2.1.2 Policy

The draft specifies three policies with the same names on the resolver and server. However, depending
if it is a resolver or server, they could have different meanings. The draft specifies three policies for
resolvers:

• Disabled:
Do not use cookies in queries and ignore them in responses.

• Enabled:
Include a COOKIE OPT in queries and process responses without a COOKIE OPT with no
consequences.

• Enforced:
Include a COOKIE OPT and ignore responses without a COOKIE OPT.

The draft specifies three policies for servers:

• Disabled:
Do not use cookies in responses and ignore them in queries.

• Enabled:
Include a COOKIE OPT in responses and process queries that include a COOKIE OPT. If no
cookie (or one that is invalid) is present, it is recommended to use RRL.

• Enforced:
Always include a COOKIE OPT option in responses. If no cookie (or one that is invalid) is present,
return only a COOKIE OPT including the appropriate Cookie error which may use RRL.

The draft also includes a section defining the rollover time for the private secret. It states that
resolvers and servers must not use the same secret for more than 14 days, but recommends 1 day. In
order for a smooth transition for responses in transit, the old secret should not be saved less than 1
second or more than 3 minutes in the case of a rollover. The draft does not motivate why the secret
needs to be rolled with this frequency.

2.1.3 Effectiveness

The effectiveness of DNS Cookies is shown in Figure 4. Initially an attacker 1 is trying to send a query
to a recursive server (e.g. an Open Resolver), with its source IP address set to the target’s address. The
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Target

Stub resolver
Attacker

         Recursive server
         (Open Resolver)

1

3

Authoritative server

2

Figure 4: A DNS Amplification attack with DNS Cookies

recursive server queries 2 an authoritative name server and caches its response. The attacker tries to get
the biggest amplification factor possible (i.e. small query causing a big response). However, the recursive

server sends target 3 merely a small sized packet and also rate limits that response. The contents of the
reply only includes the related Cookie error message without an answer in the response.

In the aforementioned situation the policy on the server would be set to enforced and the resolver to
enabled or enforced. However, it is not realistic to expect that every DNS component implements cookies
in their software with the enforced policy.

The draft shows a theoretical solution that can prevent off-path DNS amplification attacks, but
depends on what policy is being used and assumes the ability of using DNS RRL. RRL can not work in
all situations as queries from stub resolvers frequently repeat themselfs a lot as they are not expected to
cache responses[17], effectively causing a denial-of-service for clients without DNS Cookies implemented.
The latter is a sub-question of this research which will be looked into in chapter 3.

2.2 Implementation: BIND SIT

Internet Systems Consortium (ISC) released in its latest version of BIND8 a feature called Source Identity
Token (SIT). SIT is based on DNS Cookies but some differences9 exist. Note that the feature is explicitly
stated as experimental and is expected to change in future versions of BIND.

As opposed to DNS Cookies, SIT:

• Does not include an error code field

• Applies a different method for calculating and creating the SIT value

• Does not verify the source IP before starting traditional DNS (not the costs of initially two times
a RTT)

2.2.1 Hashing

Instead of using the hashing algorithm FNV-64 as proposed by the draft, SIT offers: AES, SHA1 or
SHA256.

8https://kb.isc.org/article/AA-01162/81/BIND-9.10.0-P1-Release-Notes.html
9Slide 7 of http://www.ietf.org/proceedings/89/slides/slides-89-dnsop-7.pdf

7

https://kb.isc.org/article/AA-01162/81/BIND-9.10.0-P1-Release-Notes.html
http://www.ietf.org/proceedings/89/slides/slides-89-dnsop-7.pdf


The BIND source code shown in Appendix D shows how the AES cryptography is used. It encrypts
the given input and uses the first 8 bytes of the encrypted results as a type of hash. Appendix D shows
the SHA functions to generate a SIT. The difference with AES is that SHA is designed to create a
cryptographic hash. AES is not designed to generate hashes and the reason to use this non-standard
technique is not described in the BIND documentation.

Figure 5 shows (where T represents the SIT OPT RR) what happens with DNS communications
from a chronological perspective. Note that the first query actually is an invalid SIT, as both sides do
not have each other’s SIT cached. However, it sends an answer in the response anyway.

Figure 5: Queries for a domain for the first time using SIT

An analysis of the BIND source code shows the algorithm being used to generate the SIT. When
both sides have empty caches, the resolver starts creating the SIT in the first 8 bytes.

Hash(Secret, Nonce, T ime stamp)

The server SIT adds 16 bytes:

Hash(Secret, Resolver Cookie, Nonce, T ime stamp, Resolver Address)

The lifetime of a SIT is valid for 1 hour with a tolerance of 300 seconds difference. The algorithm is
similar to the draft, except for the Nonce and the Time stamp. The nonce value is used to presumably
prevent replay attacks. The Time stamp is used to give the cookie a limited lifetime. The server secret
has an infinite life time, unless the SIT is manually changed to have a limited life time.

2.2.2 Configuration

There are three options for the BIND configuration to control behaviour of SIT.

• nosit-udp-size[18, p. 98]: requires a value between 512 to 4096. When no SIT is verified, this is
the maximum size in bytes of an UDP response. Anything above this threshold would imply the
use of Transmission Control Protocol (TCP). The default value sets it to disabled.

• request-sit[18, p. 74]: include a SIT RR by default in all requests[18]

• sit-secret[18, p. 74]: can manually define the SIT secret

If DNS RRL is configured, the server automatically whitelists the source IP of queries with a valid
SIT. As RRL is enabled by default in the latest release of BIND, SIT does provide some benefit using
the default configuration. However, to prevent DNS amplification attacks, the configuration requires
changes in order to be effective, a maximum response sizes have to be manually configured. It must also
be noted that RRL cannot be used on recursive servers, as stub resolvers repeat queries and are not
expected to cache responses[17].
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2.3 Comparison

The previous parts described the original Internet Draft for DNS Cookies, followed by the BIND imple-
mentation called SIT. There are conceptual differences between the theoretical (i.e. the Internet Draft)
and the implementation (i.e. BIND). Table 2 lists these differences in an overview.

Component DNS Cookies SIT
Hashing FNV-64 AES, SHA1, SHA256
RRL suggests RRL on unauthenticated clients always RRL unauthenticated clients
Incremental Depends on policy Depends on configuration
implementation

Table 2: Comparison overview for DNS Cookies and SIT

Hashing

The DNS Cookies Internet Draft proposed the algorithm FNV-64. A non-cryptographic hashing al-
gorithm that is published in a different Internet Draft[16]. The reason for choosing this algorithm is
performance[14], as it describes itself as non-cryptographic hash with good dispersion[16]. For both the
DNS Cookies and BIND, the output of the algorithm is a hash which in turn represents the DNS Cookie
or SIT value.

The FNV-64 hashing algorithm in the DNS Cookie Internet Draft is not well known or tested as
opposed to other algorithms like SHA[19]. SIT offers more options including SHA1 and SHA256, but
also uses a non-standard algorithm in combination with AES. The AES hashing function can be seen
when looking at the related BIND source code snippet in Appendix D.

From a performance perspective, an important difference in SIT is that with every query or response
the SIT has to be recalculated to update the time stamp and nonce. A positive effect of the recalculation
is that the server does not have to cache any SIT.

RRL

Both techniques expect the use of RRL, which can not be done on recursive servers because stub resolvers
are not expected to cache responses[17]. The draft uses RRL when sending error messages to clients
that fail to verify. SIT has a direct impact on its RRL policy. Without pre-configuration, every source
IP that is verified using SIT is automatically whitelisted and free from any RRL.

Incremental implementation

The draft intends to achieve an incremental implementation by having a permissive policy (called En-
abled) that can allow clients with and without cookie support. However, it assumes RRL should be used
for clients with no cookie support in order to prevent DNS amplification attacks, which should not be
expected to work for recursive servers.

SIT is able to limit the size of EDNS0 replies, but requires pre-configuration on the server side which
defeats the purpose10.

2.4 Analysis of implementation

This subsection analyses the impact when implementing DNS Cookies for all DNS components. Figure
6 shows the relations where the blue frame on the left (i.e. stub resolver and recursive server) is the first
part and the red frame on the right (i.e. recursive server and authoritative server) the second. Analysing
the changes in a possible implementation is relevant, as it can determine the success of DNS Cookies in
the future.

10if pre-configuration could be expected Open Resolvers would not exist
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Stub resolver Recursive server Authoritative server

Figure 6: the DNS relations

2.4.1 Stub resolver - recursive server

Most stub resolvers (e.g. libc) are stateless, meaning it runs once and exits after completion without
saving state information in storage. Therefore, we expect it would be difficult to cache cookies, as stub
resolvers will have to be redesigned to keep state (i.e. cookies) somewhere in storage in order to work.

Stub resolvers reside in all end devices that use IP communication such as desktops, laptops and
smartphones. Evidently there are more stub resolvers than recursive servers or authoritative name
servers. To illustrate the difference in numbers, a 10 minute measurement of the DNS communications
of a recursive server at SURFnet, described in more detail in section 3, shows 7453 unique IP addresses
of clients. Updating stub resolvers is not a trivial task; most software is limited by release cycles and
requires a lot of time before new features are implemented.

2.4.2 Recursive server - authoritative name server

Both sides already keep state of each other. Recursive servers already cache responses from authoritative
name servers; authoritative name servers keep state to implement RRL, which is already default to
some DNS software11. Having said that, the relation of these two should be less of a problem when
implementing DNS Cookies in the related software.

11BIND version 9.10-P1 enables RRL by default
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3 Measurements

The original design of DNS[17, section 2.2] describes that stub resolvers query recursive servers, which
query authoritative name servers recursively. A recursive server is a background process that saves
previous queries and responses for caching purposes. Our expectations are that recursive servers have
more advanced features, such as EDNS0 support. For this research we want to measure the properties
of DNS responses and find out if they include EDNS0 and what the responses sizes are.

Our hypothesis is that EDNS0 is not being used for most communications between stub resolvers and
recursive servers. And that DNS could still function for most responses when lowering the traditional
512 bytes limit. If this is possible the amplification factor could be further reduced. We did not look
into queries as they are not relevant in reducing the effectiveness of DNS amplification attacks. In order
to test this, the DNS data of the following sources were used:

• Three general desktops operating systems and their default web browser (three different systems
are used to increase the variety of stub resolvers) that open a popular Dutch website

• An Ubuntu Linux desktop opening the Alexa top 10 websites

• A 10 minute network dump of DNS traffic from one of SURFnet’s recursive server

• Available DNS monitoring data from SURFnet’s authoritative name server

3.1 Desktop sample of stub resolvers

The intention is to measure the general behaviour of the stub resolver of the default web browser on the
operating systems.12 We want to know if any EDNS0 or TrunCation (TC) responses are being used.

To gather the data, we captured network traffic for port 53 while opening a popular Dutch news
website13. When opening the website, more consecutive queries are sent in order to show advertisements
embedded in the website, effectively providing even more data about the stub resolver. The test was
repeated ten times for each desktop to reduce the chance of measurements errors.

Another data source includes a test that opens the Alexa top 10 websites14. This test was only
performed for the Ubuntu Linux operating system. The measurement is done in the same way as the
previous desktop measurement and is also repeated ten times to reduce measurement errors.

The data is saved in a pcap format and then parsed with a tool called Extensible Ethernet MOnitor
(eemo)[20]. Eemo includes a parser module specifically built for DNS. The eemo tool is forked[12] and
the DNS module is edited to measure the amount of EDNS0 and TC responses.

The results of the aforementioned tests show that none of the stub resolvers use EDNS0, and that
there were no TC responses or responses over 512 bytes.

The three desktop operating systems (Windows, OS X, Ubuntu Linux) and steps taken to create the
sample are described in more detail in Appendix C.

3.2 Recursive server of SURFnet

In order to get data that resembles a realistic situation, SURFnet provided data from its DNS servers.
SURFnet15 operates the National Research and Education Network (NREN) in the Netherlands, provid-
ing network and advanced ICT services to higher education and research. Users are primarily researchers,
students and employees of for example University of Amsterdam, Nyenrode University, Hogeschool van
Amsterdam and more16.

SURFnet provided network traffic in a pcap format which is parsed with the tool eemo[20]. The
eemo DNS module was edited to analyse response sizes in steps of 10 bytes in the 0 - 512 bytes range.

The data is a packet dump of only port 53 for a time of 10 minutes at noon on a regular workday.
To give an idea of the usage scale, the capture had a peak between 1500 and 2000 queries per second.
Figure 7 shows the results. The X axis are steps of 10 bytes going up to 512 bytes. As expected, no

12Internet Explorer, Firefox and Safari
13http://www.nu.nl
14http://www.alexa.com/topsites
15http://www.surfnet.nl/
16http://www.surf.nl/en/about-surf/subsidiaries/surfnet/about-surfnet/connecting-to-surfnet/

connected-institutions/index.html
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responses larger than 512 bytes were found. Every response is put into the corresponding X tick. The Y
axis is the amount of responses of the given size as a percentage.

The results from the recursive server showed an average response size of 133 bytes and 22% of all
replies include EDNS0 and no TC responses were found. The traditional DNS (i.e. no EDNS0) results
show a gap between 241 and 501 bytes, having less than 0.5% in response size (with an exception of 501
and 512 bytes having 1 %). Larger responses than 512 bytes were not found in traditional DNS.
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Figure 7: Response size in 10 minutes of recursive server ns0.amsterdam1.surf.net

3.3 Authoritative name server of SURFnet

The data of the authoritative name server is already gathered by SURFnet for monitoring purposes.
Note that this also uses the same tool (i.e. eemo) to gather data from a network dump and is only one of
the five authoritative name servers for the surfnet.nl domain. The users are not the same as the recursive
server, as any user on the Internet can query the surfnet.nl domain. However, the measurement gives
an even broader scope of users and is sufficient for our measurements. Figure 8 shows how much queries
and responses include EDNS0. The results from the authoritative name server show that about 66% of
the queries support and advertise EDNS0.

Figure 8: EDNS0 statistics of ns1.surfnet.nl
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3.4 Overview

Our expectation was that stub resolvers do not use EDNS0 in responses. The gathered data from the
perspective of all three DNS components seems to confirm our expectation between the stub resolver
and recursive server relation (the blue frame of Figure 6 on page 10). As can be seen in the following
overview:

• Stub resolvers: no EDNS0 found

• Recursive server: 22% of the responses are EDNS0

• Authoritative name server: 63% of the responses are EDNS0

More conclusions are drawn from the results of the measurements in section 5.
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4 Discussion

One of the questions that comes to mind after our analyses is: using cookies, do we need to authenticate
the authoritative name server? Looking from the perspective of DNS amplification attacks, there is no
reason to authenticate the authoritative name servers, as such attacks originate from the resolver.

In theory, authoritative name servers already reduce the impact of amplification attacks by using
RRL. However, in some situations RRL could imply a denial-of-service for stub resolvers. For example
the TLSA validator17 directly queries authoritative name servers without caching the response.

When looking out of the scope of this research, DNS Cookies could provide a solution for a problem in
DNSSEC called the last mile[21] problem. The last mile problem is the fact that communication between
the stub resolvers and the recursive server is not validated in DNSSEC. As DNS Cookies authenticates
the response, it could address this problem against off-path attackers.

Both DNS Cookies and SIT offer a framework to reduce amplification attacks. However, an important
determinant of its success depends on the incremental implementation, which we think could be improved.
When looking at response sizes in traditional DNS on the recursive server of SURFnet at Figure 7 on
page 12, a response size of 240 bytes would still provide 99% of all clients with a response. Based on that
data, we suggest an incremental implementation that only allows responses below 240 bytes on recursive
servers. If a larger size than 240 bytes is required, return TC response and start a TCP connection.
Only if the client supports cookies it is allowed to use EDNS0. The effect can be seen when using the
calculations from Table 1 on page 1, it could only achieve a theoretical amplification of 240

40 = 6. This
would be a more effective solution and stub resolvers without cookies can still use DNS. However, more
data of recursive servers needs to be gathered to confirm these numbers.

17Uses DNSSEC to validate certificates: https://www.dnssec-validator.cz/

14

https://www.dnssec-validator.cz/


5 Conclusion

The main research question is: are DNS Cookies effective against DNS amplification attacks? To answer
this question, the sub-questions A, B and C were formulated and subsequently answered in the following
subsections.

A: Is it feasible to combine DNS Cookies with Response Rate Limiting (RRL)
in a normal network environment for an incremental implementation?

The draft assumes the use of RRL on all servers. RRL can not be expected to work on recursive servers
as queries from stub resolvers repeat often, causing legitimate clients to be rate limited effectively causing
a denial-of-service.

B: Are there any possible improvements to the DNS Cookie Internet Draft?

We suggest that the following improvements are made to the DNS Cookies Internet Draft:

• Policy: the current policies either exclude clients that do not support DNS Cookies or it assumes
RRL on the server. RRL can not be done on recursive servers as queries repeat themselves without
caching the response, causing a denial-of-service for legitimate clients. The policy is important as
it defines the required incremental implementation.

• Hashing: the draft suggests the algorithm FNV-64. The intended advantage of using FNV-64 is
for performance reasons[14]. However, FNV-64 has not been tested thoroughly enough as opposed
to for instance SHA[19] and more research is required before it may be used in implementations.

• Terminology: the draft’s terminology may be confusing to some readers. It uses clients and servers
and does not separate the relations of stub resolvers, recursive servers and authoritative name
servers.

C: How can we maintain a low amplification factor using DNS Cookies?

We suggest a different policy to provide incremental implementation whilst still maintaining a low am-
plification factor. Based on the measurements of DNS communications on the recursive resolver, we
suggest all servers should limit the response size to 240 bytes for all DNS communications using UDP.
When larger sizes are required, TCP or EDNS0 using DNS Cookies should be used. With this policy
and expecting the worst scenario were no one support DNS Cookies, the amplification factor is reduced
whilst still able to serve 99% of the DNS clients over UDP and forcing the remaining to communicate
over TCP by sending back responses with the TC flag set.

5.1 Future Research

The Internet Draft DNS Cookies suggests FNV-64 as the hashing algorithm to generate a DNS Cookie.
The intended benefit of FNV-64 is for performance reasons as it does not use cryptographical calculations.
However, more research into FNV-64 is required before it can be considered as a safe algorithm to use.
It is also unclear what requirements the hashing algorithm needs in the DNS Cookies draft.

One of the conclusions of this research is that we should limit the response size lower than 512 bytes
for all DNS communications. The suggestion of the 240 byte limit is based on data of real use. However,
more data of commonly used stub resolvers and recursive servers needs to be analysed in order to confirm
the proposed limit.
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B Acronyms

BCP Best Current Practice

DDoS Distributed Denial of Service

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

DoS Denial of Service

EDNS0 Extension mechanism for DNS

eemo Extensible Ethernet MOnitor

FNV Fowler–Noll–Vo

IANA Internet Assigned Numbers Authority

ISC Internet Systems Consortium

OS Operating System

RRL Response Rate Limiting

RTT Round-Trip Time

SIT Source Identity Token

TCP Transmission Control Protocol

TC TrunCation

UDP User Datagram Protocol
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C General desktop specifications

Microsoft offers virtual machine images18 to test web browsers. Table 3 shows the specifications of
the software. The OS X measurement uses a MacBook Pro with a browser and disabled addons. The
specifications are shown in table 4. The Ubuntu Linux specifications are described in Table 5.

Except for the Mac OS X install, all are new installations use their default browsers. The steps for
recording the network traffic are the following:

• Start recording with using tcpdump or windump.

• After configuring the starting page(s) to the target(s), start the web browser

• Close the web browser (to prevent any possible caching in the browers process)

• Stop the recording by closing tcpdump or windump

The stub resolvers in the operating systems shown in the tables did not seem to cache any responses,
as consecutive measurements showed that identical responses repeated and the received responses did
not descrease systematically.

Operating System (OS) Windows 7 32 bit
Web browser Internet Explorer 11.0.9600.16428
Packet capturing windump 3.9.5
Parameters WinDump.exe -s0 -ni 1 -w out.pcap port 53

modern.IE image version VMBuild 20131127

Table 3: Windows

OS OS X 10.9.3 64 bit
Web browser Safari 7.0.4 (9537.76.4)
Packet capturing tcpdump 4.3.0 (Apple version 56)
Parameters tcpdump -w out.pcap -ni en0 port 53

Table 4: OS X

OS Ubuntu Linux 14.04 64 bit
Web browser Firefox 28
Packet capturing tcpdump 4.5.1
Parameters tcpdump -w out.pcap -ni eth0 port 53

Table 5: Ubuntu Linux

18using the Virtualbox images from http://www.modern.ie
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D SIT source code snippet

The below source code snippet is from lib/dns/resolver.c from BIND version 9.10.0-P1 of line 1744
to 1818.

#ifdef ISC_PLATFORM_USESIT
static void
compute_cc(resquery_t *query , unsigned char *sit , size_t len) {
#ifdef AES_SIT

unsigned char digest[ISC_AES_BLOCK_LENGTH ];
unsigned char input [16];
isc_netaddr_t netaddr;
unsigned int i;

INSIST(len >= 8U);

isc_netaddr_fromsockaddr (&netaddr , &query ->addrinfo ->sockaddr );
switch (netaddr.family) {
case AF_INET:

memmove(input , (unsigned char *)& netaddr.type.in , 4);
memset(input + 4, 0, 12);
break;

case AF_INET6:
memmove(input , (unsigned char *)& netaddr.type.in6 , 16);
break;

}
isc_aes128_crypt(query ->fctx ->res ->view ->secret , input , digest );
for (i = 0; i < 8; i++)

digest[i] ^= digest[i + 8];
memmove(sit , digest , 8);

#endif
#ifdef HMAC_SHA1_SIT

unsigned char digest[ISC_SHA1_DIGESTLENGTH ];
isc_netaddr_t netaddr;
isc_hmacsha1_t hmacsha1;

INSIST(len >= 8U);

isc_hmacsha1_init (&hmacsha1 , query ->fctx ->res ->view ->secret ,
ISC_SHA1_DIGESTLENGTH );

isc_netaddr_fromsockaddr (&netaddr , &query ->addrinfo ->sockaddr );
switch (netaddr.family) {
case AF_INET:

isc_hmacsha1_update (&hmacsha1 ,
(unsigned char *)& netaddr.type.in , 4);

break;
case AF_INET6:

isc_hmacsha1_update (&hmacsha1 ,
(unsigned char *)& netaddr.type.in6 , 16);

break;
}
isc_hmacsha1_sign (&hmacsha1 , digest , sizeof(digest ));
memmove(sit , digest , 8);
isc_hmacsha1_invalidate (& hmacsha1 );

#endif
#ifdef HMAC_SHA256_SIT

unsigned char digest[ISC_SHA256_DIGESTLENGTH ];
isc_netaddr_t netaddr;
isc_hmacsha256_t hmacsha256;

INSIST(len >= 8U);

isc_hmacsha256_init (&hmacsha256 , query ->fctx ->res ->view ->secret ,
ISC_SHA256_DIGESTLENGTH );

isc_netaddr_fromsockaddr (&netaddr , &query ->addrinfo ->sockaddr );
switch (netaddr.family) {
case AF_INET:

isc_hmacsha256_update (&hmacsha256 ,
(unsigned char *)& netaddr.type.in , 4);

break;
case AF_INET6:

isc_hmacsha256_update (&hmacsha256 ,
(unsigned char *)& netaddr.type.in6 , 16);

break;
}
isc_hmacsha256_sign (&hmacsha256 , digest , sizeof(digest ));
memmove(sit , digest , 8);
isc_hmacsha256_invalidate (& hmacsha256 );

#endif
}
#endif
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