Covert channel detection using flow-data

Guido Pineda Reyes

MSc. Systems and Networking Engineering University of Amsterdam

July 3, 2014

Guido Pineda Reyes (UvA)

Outline

- 1 Introduction
- 2 Research questions
- 3 Approach

- ICMP
- DNS
- HTTP

- 6 Implementation
 - ICMP
 - DNS
 - HTTP

🔞 Q&A

э.

★ ∃ ►

< 一型

Lampson, 1973

"... A communication channel that is used for information transmission, but that is not intended for communications..."

National Computer Security Centre Maryland Meade, 1985

"Communication channel that can be exploited ... to transfer information in a manner that violates the system's security policy"

- Data exfiltration
- Intrusion maintenance
- Botnet control

- Malware updates
- Gathering of sensitive information

• ...

- ICMP tunnel
- ICMP reverse shell
- DNS tunnel
- HTTP reverse shell

.∃ >

Flow-data Overview

- Netflow is a monitoring tool
- Describes the method for a collector to export statistics about IP packets passing an observation point.
- Netflow v10 aka IPFIX (RFC 5101)
- Payload is not included

Flow

Packets with a set of common properties:

- source address and port number
- ingress interface
- destination address and port number
- network layer protocol
- type of service (TOS)

- Is it possible to detect network-based covert channel malicious activity by using flow-data?
 - How do the selected covert channel techniques work?
 - What is the difference between normal traffic and covert channel traffic behaviour using the chosen techniques?
 - What algorithms can be used to detect network-based covert channel traffic?
 - How can this results be validated?

Regular traffic

Protocol	Total bytes (MB)	Total packets	Total bidirectional flows
ICMP	698.5	3445152	169
DNS	1638.6	3981600	53490
HTTP	1956.27	1818293	40107

Guido Pineda Reyes (UvA)

æ

Malicious traffic

Technique	Total bytes (MB)	Total packets	Total bidirectional flows
ICMP tunneling	3957.08	4491868	30
ICMP reverse shell	196.2	3481308	75
DNS tunneling	2746.7	3376230	172
HTTP reverse shell	311.39	470985	166

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

July 3, 2014 10 / 46

æ

Field	Description		
IPV4_SRC_ADDR	IPv4 source address		
IPV4_DST_ADDR	IPv4 destination address		
PROTOCOL	IP protocol byte		
IN_BYTES	Incoming flow bytes (src ->dst)		
IN₋PKTS	Incoming flow packets (src ->dst)		
OUT_BYTES	Outgoing flow bytes (dst ->src)		
OUT_PKTS	Outgoing flow packets (dst ->src)		
MIN_TTL	Min flow TTL		
MAX_TTL	Max flow TTL		
ICMP_TYPE	ICMP Type * 256 + ICMP code		

July 3, 2014

æ

Field	Description		
IPV4_SRC_ADDR	IPv4 source address		
IPV4_DST_ADDR	IPv4 destination address		
PROTOCOL	IP protocol byte		
IN_BYTES	Incoming flow bytes (src ->dst)		
IN_PKTS	Incoming flow packets (src ->dst)		
OUT_BYTES	Outgoing flow bytes (dst ->src)		
OUT_PKTS	Outgoing flow packets (dst ->src)		
MIN_TTL	Min flow TTL		
MAX_TTL	Max flow TTL		
DNS_QUERY	DNS query		
DNS_QUERY_ID	DNS query transaction Id		
DNS_QUERY_TYPE	DNS query type (e.g. $1=A$, $2=NS$)		
DNS_RET_CODE	DNS return code (e.g. 0=no error)		

July 3, 2014

イロト イ団ト イヨト イヨト

æ

12 / 46

Field	Description		
IPV4_SRC_ADDR	IPv4 source address		
IPV4_DST_ADDR	IPv4 destination address		
PROTOCOL	IP protocol byte		
IN_BYTES	Incoming flow bytes (src->dst)		
IN_PKTS	Incoming flow packets (src->dst)		
OUT_BYTES	Outgoing flow bytes (dst->src)		
OUT_PKTS Outgoing flow packets (dst->sr			
MIN_TTL	Min flow TTL		
MAX_TTL	Max flow TTL		
TCP_FLAGS	Cumulative of all flow TCP flags		
HTTP_URL	HTTP URL		
HTTP_METHOD	HTTP METHOD		
HTTP_RET_CODE	HTTP return code (e.g. 200, 304)		

イロト イ団ト イヨト イヨト

Outline

- Introduction
 - Research questions
 - Approach
- Data analysisICMP
 - DNS
 - HTTP
- 5 Algorithms
- 6 Implementation
 - ICMP
 - DNS
 - HTTP

7 Conclusions

Guido Pineda Reyes (UvA)

< 回 > < 三 > < 三 >

ICMP tunnel Packet ratio distribution

Regular ICMP

ICMP tunnel

< 3 >

ICMP tunnel Bytes per packet distribution

Regular ICMP

Bytes per packet per flow for ICMP tunnel traffic

ICMP tunnel

ICMP reverse shell

TTL distribution

Regular ICMP

ICMP reverse shell

Guido Pineda Reyes (UvA)

July 3, 2014 17 / 46

Outline

- Introduction
 - Research questions
 - B Approach
- 4 Data analysis
 - ICMP
 - DNS
 - HTTP
 - 5 Algorithms
- 6 Implementation
 - ICMP
 - DNS
 - HTTP

7 Conclusions

Guido Pineda Reyes (UvA)

< 回 > < 三 > < 三 >

DNS tunnel Packet ratio distribution

Regular DNS

DNS tunnel

(4) (3) (4) (4) (4)

July 3, 2014 19 / 46

Packet distribution for destination IP address C

Image: A math a math

Guido Pineda Reyes (UvA)

July 3, 2014 20

20 / 46

DNS tunnel Packet distribution per unique destination IP

Destination IP A

Destination IP B

3

Packet distribution for destination IP address B

Guido Pineda Reyes (UvA)

July 3, 2014 21 / 46

Packet distribution for destination IP address A

Destination IP C (Tunnel server)

July 3, 2014 22 / 46

★ 3 >

DNS_QUERY_TYPE	# of flows	%	Туре
1	40395	75.5	A
2	1807	3.39	NS
6	4	0.007	SOA
12	438	0.08	PTR
16	1	0.002	TXT
28	2461	4.6	AAAA
33	18	0.03	SRV
43	723	1.35	DS
48	8083	15.03	DNSKEY

July 3, 2014 23 / 46

2

<ロ> (日) (日) (日) (日) (日)

DNS_QUERY_TYPE	# of flows	%
12	60	34.88
10	57	33.14
1	26	15.12
0	13	7.56
16	5	2.92
5	3	1.74
15	3	1.74
33	3	1.74
255	1	0.58
28	1	0.58

July 3, 2014 24 / 46

2

<ロ> (日) (日) (日) (日) (日)

Outline

- Introduction
 - Research questions
 - B Approach
- 4 Data analysis
 - ICMP
 - DNS
 - HTTP
 - 5 Algorithms
 - 6 Implementation
 - ICMP
 - DNS
 - HTTP
- 7 Conclusions

< 回 > < 三 > < 三 >

- Cumulative OR-ed of TCP_FLAGS for all packets in one flow.
- For regular HTTP traffic, this value is well distributed.
- But, for malicious HTTP traffic, every flow has the TCP_FLAGS value = 27

TCP_FLAG	# of flows	Meaning	%
24	22088	ACK+PUSH	55,0727
26	10284	ACK+PUSH+SYN	25,6414
27	5039	ACK+PUSH+SYN+FIN	12,5639
19	2223	ACK+FIN+SYN	5,5427
17	163	ACK+FIN	0,4064
31	162	ACK+PUSH+RST+SYN+FIN	0,4039
30	93	ACK+PUSH+RST+SYN	0,2319
23	38	ACK+RST+SYN+FIN	0,0947
25	15	ACK+PSH+FIN	0,0374
21	1	ACK+RST+FIN	0,0025
18	1	ACK+SYN	0,0025

July 3, 2014 2

イロト イ団ト イヨト イヨト

2

27 / 46

Destination ID address	# of Flows with method:			
Destination IF address	GET	POST	HEAD	EMPTY
A	104	-	1722	105
В	114	-	1482	107
С	267	25	849	94
D	-	-	-	979
E	18	-	729	3
F	700	-	-	10
G	628	-	-	33
Н	-	-	-	618
l	-	-	555	4
J	371	136	-	39

2

• For HTTP reverse shell traffic, the amount of POST and GET methods per unique destination IP address is about 50% each.

Using a data-set provided by the sponsoring company.

- HTTP traffic generated by 150 different web crawlers (64095 flows)
- DNS traffic (35219 flows)
- ICMP traffic (12352 flows)

э

- ∢ ∃ ▶

Covert channel detection using flow-data

▶ < ≣ > ≣ ∽ ९. July 3, 2014 31 / 46

Proposed alorithms DNS

Guido Pineda Reves (UvA)

Covert channel detection using flow-data

July 3, 2014

32 / 46

Proposed alorithms HTTP

Guido Pineda Reyes (UvA)

Covert channel detection using flow-data

July 3, 2014 33 / 46

Outline

- Introduction
 - Research questions
- 3 Approach
- 4 Data analysis
 - ICMP
 - DNS
 - HTTP
- 5 Algorithms
- 6 Implementation
 - ICMP
 - DNS
 - HTTP

7 Conclusions

Guido Pineda Reyes (UvA)

< 回 > < 三 > < 三 >

ICMP Tunnel

July 3, 2014 35 / 46

Before injection

After injection

・ロト ・回ト ・ヨト

Outline

- Introduction
 - Research questions
- 3 Approach
- 4 Data analysis
 - ICMP
 - DNS
 - HTTP
- 5 Algorithms
- 6 Implementation
 - ICMP
 - DNS
 - HTTP

Guido Pineda Reyes (UvA)

< 回 > < 三 > < 三 >

- Analysis on the packet distribution per unique destination IP address shows suspicious standard deviation values for specific flows.
- DNS_QUERY_TYPE field is effective to retrieve unusual values.

Outline

- Introduction
 - Research questions
- 3 Approach
- 4 Data analysis
 - ICMP
 - DNS
 - HTTP
- 5 Algorithm
- 6 Implementation
 - ICMP
 - DNS
 - HTTP

< 回 > < 三 > < 三 >

• After filtering every flow with TCP_FLAGS field = 27

イロト イヨト イヨト イヨト

July 3, 2014 41 / 46

æ

イロト イヨト イヨト イヨト

July 3, 2014 42

æ

イロト イ団ト イヨト イヨト

42 / 46

- It is possible to detect the tested network-based covert channels by using flow data.
- By establishing a base line behaviour, it is possible to compare between regular and suspicious behavior.
- Even though, flow-data does not give an insight on the payload of a packet, is still a powerful tool for security analysis.

- Implement the proposed algorithms as a script or programming language and with live flow-data
- Test more tools for similar behaviour patterns
- Test other protocols
- Test a bigger data-set for possible false positives
- Compare results with other types of malicious traffic
- Investigate flow-data with network-based covert timing channels

Questions?

Guido Pineda Reyes (UvA)

Covert channel detection using flow-data

▶ < ≣ ▶ ≣ ∽ ৭.ে July 3, 2014 45 / 46

<ロ> <問> <問> < 回> < 回>

- Covert Storage Channel
 - Carries information inside protocol fields
- Covert Timing Channel
 - They use time emission between packets.
 - A time interval can be defined: if a packet is sent during the interval, this codes a one, if no packet is sent this codes a zero.