X

X

X
UNIVERSITEIT VAN AMSTERDAM

MSc. SYSTEMS AND NETWORKING ENGINEERING
CYBER CRIME AND FORENSICS TRACK

Covert channel detection using flow-data

Author: Supervisors:
Guido PINEDA REYES Pepijn JANSEN
guido.pinedalos3.nl pepijn. janssen@redsocks.nl

July 7, 2014

Abstract

This research project is the second of two projects for the Master Education
of System and Networking Engineering at the University of Amsterdam, and
is the result of four weeks of research. It focuses on the detection of network-
based covert channels through the study of patterns of behavior of the selected
protocols within the context of historic flow-data. By analyzing the behavior
of these protocols, which are ICMP, HTTP and DNS protocol, it was possible
to obtain a baseline for comparing normal behavior and malicious behavior
generated by the specific tools for each tunneling technique. Finally, an im-
plementation of the proposed algorithms on a flow data-set was performed in
order to verify their effectiveness, these algorithms were defined based on the
analysis stage of this research. The final conclusion is that is possible to detect
malicious activity generated by network-based covert channels, by establishing
a baseline of normal behavior and comparing it with malicious behavior.

Acknowledgements

I would like to thank my supervisor, Pepijn Janssen for his help during this
research project and Leo Willems, for his help in the read of proof of this
document. I also would like to thank my family for their support and my wife
Glenda for her love and care during this year. But mostly to God, who has
given me this opportunity to continue with my studies and has blessed me
throughout this year.

Contents

(@)

IENEGCRN Nl

Introductiono e 4
1.1 Related work oL 4
1.2 Research questions L L 4
1.3 Approach e 4
1.4 Scope of the project L e 5
1.5 Netflow overview o e e 5
Experiments and data gathering L o Lo oL 6
2.1 Experimental environment L 0oL 6
2.2 Covert channel techniques 0 o e e e e e 6
2.3 Data gathering e 8
Data analysis L e e e e e e e 11
3.1 Protocol level oL 11
3.2 Flow level 0 e e 12
3.3 SUMMATY . . . v v vt ettt e e e e e e e e 23
Implementation oL L e e 26
4.1 Proposed algorithms L L 26
4.2 Data-set o . e e 27
Results. 0 o e e e 29
Conclusions o e e e e 31
6.1 Future work L Lo 32
ICMP tunnel and reverse shell L 34
HTTP reverse shell« . o o oo o e 35
HTTP.METHOD e e e e e e e e e 36
SQL queries for the proposed algorithms o0 37
4.1 ICMP tunnel 0 o 37
4.2 ICMP reverse shell o o 37
4.3 DNS tunneling e e e e e e e 38
4.4 HTTP reverse shell o . o . o 0 38
Algorithms flow diagram L e 40
5.1 ICMP-based tunneling techniques L L. 40
5.2 DNS-based tunneling techniques oo 41
5.3 HTTP-based tunneling techniques, 42

List of Figures

Experimental setup L e e e 6
ICMP tunneling e e e e e e e 7
ICMP Reverse shell o o . e e e e e e 7
DNS tunneling oL e 8
HTTP reverse shell o o o 0 o e 8
Echo or Reply message o . o e e e e e e e e 11
Regular ICMP traffic variables 14
Tunnel traffic variables e e e e 14
ICMP reverse shell variables e 15
Packet ratio distribution for regular DNS traffic. L. 16
Packet distribution for top 4 destination IP addresses 17
DNS traffic distribution for the analyzed flows 19
Packet ratio distribution for DNS tunnel traffic 19
Packet distribution e e e e e 20
Packet ratio distribution for ICMP traffic 29
TTL distribution for ICMP traffic, 29
Packet distribution for DNS traffic o o o o 30
POST/GET methods distribution 30
Echo or Reply message L e 34
ICMP Echo request message carrying HT'TP 0 o0 .. 34
ICMP Echo request message carrying shell commands 34
ICMP-based tunneling techniques 40
DNS-based tunneling techniques L o 41
HTTP-based tunneling techniques o 42

List of Tables

=W N

o J O Ot

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Captured regular network traffic summary L. 9
Captured malicious network traffic summary oL, 9
Flow-data summary for regular traffic 0oL, 9
Flow-data summary for malicious traffic00 10
IPFIX template for ICMP 0. 0 e 12
IPFIX template for DNS e e 16
Number of packets per flow distribution 17
Packet distribution analysis oL 18
DNS_QUERY_TYPE distribution L 18
DNS_RET_CODE distribution e 18
Top destination IP addresses for DNS tunnel 19
Top destination IP addresses for DNS tunnel 20
DNS_QUERY_TYPE field analysis for DNS tunnel 21
DNS_RET_CODE field analysis for DNS tunnel 21
IPFIX template for HTTP o e e e s e e e e 22
TCP_FLAGS options v v v i e 22
TCP_FLAGS field in analyzed protocols 23
HTTP_METHOD for the analyzed flows 23
HTTP method analysis for top 10 destination IP addresses 24
ICMP summary 0o ot e e e e e e e e 24
DNS summary oo e e e e e e e e 24
HTTP summary o o o o e 25
HTTP_METHOD for analyzed flows 28
HTTP_METHOD analysis oo e e e e e e e 36

1 Introduction

Covert channels are effective mechanisms that enable communication via unauthorized methods. They
can go undetected by security monitoring tools like IDS/IPS or firewalls. Network Covert Channels
are based on the idea of tunneling, which allows encapsulation of any protocol within another, carrying
hidden information inside specific fields of the protocol header. They can be used by an attacker for
malicious purposes such as data exfiltration from a compromised system, botnet control, malware updates
and many other types of usage that can be considered as illegal.

1.1 Related work

The detection of covert channel is a widely researched topic. There are several investigations into
techniques for detecting covert channels. For example, through packet classification proposed by Dong
Ping et al [1], in which covert information is encoded by modulating the varieties of packets on the
Internet. Another technique for detecting covert channels, proposed by Jiangtao Zhai et al, who based
their research on the behaviors of TCP flows which are modeled by the Markov chain composed of the
states of TCP packets [2]. Another approach proposed by Vincent Berk et al, which describes a method
for detecting covert timing channels based on how close a source comes to achieving that channel capacity
[3]. Another approach for detecting specific DNS tunnels proposed by Wendy Ellens et al, which focuses
on statistical methods to detect this kind of covert channels [4].

This research focuses on network-based covert storage channels with historic flow-data. Historical
data is relevant to study because it contains information that has been collected over a period of time.
And in some cases, research of this information may be needed to determine whether there has been any
kind of malicious activity. In cases of forensic investigation, it may be relevant to conduct this type of
research to determine if a system was compromised to some kind of suspicious or malicious attack.

1.2 Research questions

In order to perform this research project, the following question will be analyzed:

Is it possible to detect network-based covert channel malicious activity by using
flow-data?

To answer this question, the following sub questions will be answered:

1. How do the selected covert channel techniques work?

2. What is the difference between normal traffic and covert channel traffic behaviour using the chosen
techniques?

3. What algorithms can be used to detect covert channel traffic?

4. How can these results be validated?

1.3 Approach

The approach of this project is to investigate the chosen tunneling techniques, and use different tools in
order to reproduce malicious traffic that will be analyzed in a testing environment. The characteristics
of the normal traffic behaviour and the malicious traffic behaviour will be studied to determine if it
is possible to detect such traffic, based on the comparison of normal and malicious behaviour. This
approach will be focused on historic flow-data, therefore, previously captured network traffic considered
as normal network traffic will be reproduced in the testing environment for further analysis. Furthermore,
malicious traffic will be generated by the chosen tools and it will be reproduced for further analysis. This
flow-data will be analyzed and based on the behaviour analysis, different algorithms should be proposed
in order to detect malicious traffic. Finally, a validation procedure should be established to validate the
effectiveness of the proposed algorithms.

1.4 Scope of the project

This project is focused on the research of network-based covert channels that use the ICMP, HTTP
and the DNS protocol, as they are one of the most common protocols in use on the Internet, and they
can be misused by an attacker to exfiltrate unauthorized information. Furthermore, the analysis will
be performed on historical flow-data that will be provided by the sponsoring company. The Netflow
standard that will be used in this research is the current version (v10), also known as IPFIX.

1.5 Netflow overview

Netflow is a network traffic monitoring tool, initially developed by Cisco, and now it has evolved to
become an IETF standard called IP Flow Information Export (IPFIX) [5], that describes the method
for a flow-collector, to export statistics about IP packets passing an observation point in a network
during a certain time interval. Every IP packet that belongs to a particular flow, has a set of common
properties, also called attributes, and these attributes are used to distinguish one flow from other flows.
When a new packet arrives to the collector, it determines whether it belongs to the current flow, or to
any other flow. The main attributes that are used to uniquely identify a flow are: source address and
port number, ingress interface, destination address and port number, network layer protocol, and type
of service (TOS).

Also, the accumulated traffic in bytes and packets per flow is recorded. It is relevant to note that the
payload is not recorded in flow-data, therefore any type of analysis should be made based on behaviour.

IPFIX, the latest version of Netflow (v10), extends NetFlow v9 by adding new attributes. This
attributes are used to gain more information about individual flows and also IPFIX allows to export
bidirectional flows, which is helpful when analyzing this kind of information [6]. For example, some tools
provide the ability to add DNS information such as DNS query types and responses to the flows. This
information can help to get a better understanding about the flows and in general, the network traffic.
However, for IPFIX, the support provided by the currently used collection framework is limited and
might not be fully supported in every flow collector [7].

2 Experiments and data gathering

This section describes the experimental procedures performed in this research. First, the description of
the experimental environment is made, which was used in order to conduct the experiments. Secondly,
a description of the tested tunneling techniques is made and how the experiments were conducted.

2.1 Experimental environment

The system architecture of the experimental environment consists of one flow collector, the tool used in
this project is nProbe™[8], which gets all the incoming network traffic from sources such as pcap format
files or replayed packets by using the tool tcpreplay [9]. It is also possible to configure the flow collector to
receive network traffic from a specific network card interface, but for the purpose of this research project,
it is out of the scope, since it focuses on analyzing historical data. This network traffic is processed and
latter it is saved in a MySQL database as flow-data format for further analysis, see Figure 1.

Replayed
packets

Nprobe —Flow-data Analysis

Packets MySQL
database

PCAP format

files

Figure 1: Experimental setup

2.2 Covert channel techniques

Covert channels can be deployed in many ways by using different kinds of protocol headers to carry hidden

data. This research focuses on commonly used protocols such as the Internet Control Message Protocol

(ICMP), the Domain Name System protocol (DNS) and the Hypertext Transfer Protocol (HTTP).
The following techniques were tested:

e ICMP tunneling

o ICMP reverse shell
e DNS tunneling

e HTTP reverse shell

ICMP tunneling

This tunneling technique uses ICMP echo and reply packets to carry hidden data. The architecture
consists of one client, one destination and a proxy, see Figure 2. The client communicates with the proxy
by using ICMP echo requests, and the proxy forwards these packets by opening a TCP connection to
the destination, then, in the reply from the destination to the client, those packets are converted into
ICMP replies by the proxy and then delivered to the client. All the communication is transported in the
“Data” field of the ICMP packet. This technique can be exploited by malicious software in order to leak
sensitive information out of the compromised machine. For the purpose of this research, the tool that
was used is Ptunnel [10]. The proxy is a virtual machine running Ubuntu 14.04 LTS that can be reached
over the Internet, and is not blocking ICMP messages. The destination is the same proxy server, which
has a web server running on port 80 and an SSH server running on port 5022. The client connects to
the proxy over the Internet, and it is running a Kali Linux as the operating system.

- Destination

Figure 2: ICMP tunneling

This technique was tested in several ways, by performing different types of behavior. Since a web
server was running, a simple login web page was set, where the client has to enter a user name and
password, this checks if the user is correct and displays a successful login, otherwise, an error will
display. Also, files of different sizes were downloaded from the web server. Another type of behavior
was recorded with the SSH server, by typing random commands in the terminal, and also downloading
files of different sizes using an SFTP client, that runs over the SSH protocol to communicate with the
endpoint.

In order to capture this traffic generated by the client and the proxy, a network traffic sniffer was
located at the client side. This network traffic, captured as pcap format file, will be replayed and analyzed
by the flow collector to determine the characteristics that identify this type of network traffic.

ICMP reverse shell

This is a technique that uses ICMP packets to carry hidden information in the “Data”’ field. As well
as the ICMP tunnel technique, it uses echo requests and echo replies to communicate between the two
endpoints. The network architecture consists of the client which in this case would be the victim’s
machine and the server which in this case is the attacker’s machine, see Figure 3. When the server is
running, it waits for the client to connect in order to send remote commands to it.

Private IP Public IP/
e

NAT Public IP

Figure 3: ICMP Reverse shell

The tool used for this purpose is ICMPsh [11]. This tool also provides a time delay between command
option, that waits for a specific time between the commands sent from the server to the client. This
tool was tested, while random commands were issued at the client, like getting the configuration of the
network, creating and erasing files, reading the content of text files, etc, with the purpose of trying
to emulate the behavior of an attacker. This setup was tested running the client on a Windows 7 and
Windows 8 machines that connect to the server through the Internet. The server is running on an Ubuntu
14.04 LTS server. The client was also tested for Windows Server 2003 with no successful attempts.

The network traffic generated by this technique was recorded with a network sniffer at the client side.

DNS tunneling

This technique allows to carry hidden information by using DNS queries and replies. This technique
can be exploited in systems where the DNS incoming and outgoing traffic is allowed, and this is the
case for most systems, therefore it can be exploited by several types of malicious software like Feederbot
(Dietrich, 2011) and Moto (Mullaney, 2011), where both use DNS TXT records for command control. The
architecture of this system consists of the client side, the DNS tunnel server, which is the authoritative
name server for the controlled domain, and this DNS tunnel server is typically accessible over the Internet
and controlled by the client. The client side initiates a DNS request to the authoritative name server

in order to start sending data, and this information included in the DNS payload, can be encoded to
increase performance by using different techniques such as Base32, Base64, Hex, etc. The tool used for
this research is Iodine [12], where the client side is a machine that connects to the DNS tunnel server
through the Internet and there are services running like SSH server and SFTP to transfer files, see

Figure 4.
0 O =

[—
Tunnel DNS Internet DNS
client Tunnel
) server
DNS

server

Figure 4: DNS tunneling

The DNS queries performed by the client are sent to the DNS server which is controlled by the
client. This traffic is processed as a regular request, and at the end of this operation, this information
is handled by the tunnel server, which retrieves the encapsulated data and replies to the DNS query by
encapsulating the response in the answer section of the DNS response message.

This technique was tested by imitating behaviors like downloading files from different sizes up to 100
Megabytes and using an connecting to an SSH server and typing random commands at the tunnel server.
All the network traffic generated was recorded with a network sniffer at the client side.

HTTP reverse shell

This is a tunneling technique that uses the HTTP protocol to send hidden commands in GET and POST
methods. It consists of two main components, the client, which is the compromised machine, and the
server, which is the attacker’s machine that is listening to port 80, where the client connects. Once the
client connects to the server, it polls for incoming commands to the server. For this research project the
tool used is Matahari [13], which also offers several types of polling types like insane, aggressive, normal
and others. These polling types are used to evade IDS/IPS and firewall systems since they use a time
interval between requests to the server. For this project, the polling techniques that were tested are:
adaptive (dynamically increases polling period when no commands are received until reaching stealth
type), aggressive (25 seconds between requests), normal (60 seconds between requests), polite (5 minutes
between requests) and ids-evasion (randomly selects the time between the polling intervals). The client
is running on a Kali Linux machine and the server is running on an Ubuntu 14.04 LTS and they are
connected over the Internet, see Figure 5. All this traffic generated by the communication between these
two hosts was recorded with a network sniffer on the client side.

I:I HTTP_ ___ WP
T GET T eEn

— < HTTP < HTTP
“ost “osti

Client

Server
Internet

Figure 5: HTTP reverse shell

2.3 Data gathering

To be able to differentiate between regular and malicious traffic, several captures of all previously men-
tioned techniques were conducted in order to establish a baseline of behavior-based analysis of network

traffic once it has been converted to flow-data format.

Network captures: Regular traffic

In order to have a baseline to compare the malicious traffic to normal activity from different users was
captured during the period of one week. The summary of this captured traffic is shown in Table 1. To
capture ICMP traffic, experimental ping messages of different types were sent, for example, messages
with different sending intervals between 0.1 and 1 second message, with a larger size to the default size,
which is 64 bytes, messages to firewall protected devices, messages to virtual machines, where it was
observed that the messages are redirected by it the gateway to which the devices are connected. To
capture DNS traffic, besides the regular DNS traffic, it also worth to take into account DNSSEC traffic,
which was generated through the dig command with requests to servers that have DNSSEC enabled.
Finally, HTTP traffic was captured during one week at a user’s computer, recording all communication
that uses HTTP.

Table 1: Captured regular network traffic summary

Protocol | Total bytes of traffic (MB) | Total packets
ICMP 698.5 3445152
DNS 1638.6 3981600
HTTP 1956.27 1818293

Network captures: Malicious traffic

Every session and network traffic was recorded by using a network sniffer for all the previously described
techniques, several pcap files were generated, by performing different kinds of behavior. This traffic will
be considered as malicious traffic. The capture time of this network traffic was not fixed, therefore,
some pcap files were extensible large and others were relatively small. Table 2 shows a summary of the
captured traffic.

Table 2: Captured malicious network traffic summary

Technique Total bytes(MB) | Total packets
ICMP tunnel 3957.08 4491868
ICMP reverse shell 196.26 3481308
DNS tunnel 2746.75 3376230
HTTP reverse shell 311.39 470985

Flow-data

Once the packet capture procedure has been completed, it is possible to reproduce this traffic in order
to convert it into flow-data by the flow collector. This information will be stored in a MySQL database,
and this data will be analyzed later. Two different databases will be created, one for reqular traffic, and
one for malicious traffic.

The summary of the flow-data is shown in Table 3 for regular traffic and in Table 4 for malicious
traffic.

Table 3: Flow-data summary for regular traffic

Protocol | Total bytes (MB) | Total packets | Total bidirectional flows
ICMP 698.5 3445152 169

DNS 1638.6 3981600 53490

HTTP 1956.27 1818293 40107

Table 4: Flow-data summary for malicious traffic

Technique Total bytes (MB) | Total packets | Total bidirectional flows
ICMP tunneling 3957.08 4491868 30
ICMP reverse shell 196.2 3481308 75
DNS tunneling 2746.7 3376230 172
HTTP reverse shell 311.39 470985 166

10

3 Data analysis

This section describes the analysis procedure for every type of protocol used in this research in order
to get a better understanding of how they work and how they can be interpreted while working with
flow-data. This research project is focused only in analyzing flow-data, but a quick overview on how
these protocols are used in this techniques, can help to have a better understanding of the operation of
them.

3.1 Protocol level

In this section, the analysis will focus on the protocols that are used by the tunnel techniques. This
analysis will allow a better understanding of how information is sent via these tunnels. Furthermore,
this analysis will allow us to understand the behavior of these techniques in flow-data format.

ICMP

Since the tested tunneling technique only uses the “Echo request” and “Echo reply”” to send messages,
this research is only interested in this type of messages, therefore, it is possible to filter out other types
of ICMP messages. In the normal operation of this protocol, Echo request messages are generated in the
source with an ICMP type 8 and subsequently, they are replied in the destination with an ICMP type
0. According to the standard specification (RFC 792), the data received in the echo message must be
returned in the echo reply message [14]. Figure 6 shows the structure of an ICMP packet for echo and
reply messages, where the “Type” field is the ICMP message type (8 for echo requests and 0 for reply
messages). The “Code” field is always 0 when echo and reply messages are sent. The “Checksum” field is
used for error controls and the “Data” field contains data according to the specific type and code values.
For echo requests and echo reply messages, this field contains numbers and for other implementations
this field contains letters of the English alphabet, see Appendix 1, where the “Data” field is represented
by the alphabet letters in the ASCII dump.

7 8 15 16 31
Type Code Checksum

Identifier Sequence number

Data...

Figure 6: Echo or Reply message

ICMP tunnel

This tunneling technique uses the “Data” field of the ICMP packet header to carry information. For the
tested tool (Ptunnel), this information is not encoded, compressed or encrypted, therefore it is possible to
read the content of the packet with a network sniffer, see Appendix 1 for examples of how this information
is transported using the ICMP headers. The length of the “Data” field can be flexible, carrying a decent
amount of information.

ICMP reverse shell

This technique uses the ICMP echo request and echo reply messages to transfer information, therefore
it is also possible to filter out other types of ICMP messages. The information carried in the “Data”
field is sent without compression or encrypted, and it is possible to retrieve it with a network sniffer,
see Appendix 1 for an example of how data is embedded in the packet header. With the specific tested
tool (ICMPsh), the echo requests are performed by the attacker’s machine and the reply messages are
performed by the victim’s machine. It is also noticeable that the TTL for every packet it is never less
than 230, which shows strange behaviour, and this should be checked when working with the flow dataset.

DNS

In this technique the client, will send DNS requests to the tunnel server. The first requests are referred as
standard queries, but later the information of the DNS packets is classified as “Unknown operation” or

11

“Malformed packet”, indicating some suspicious behaviour, that will have to be checked in the flow-data
set. When comparing this behaviour with regular DNS packets, for every request there is a response,
this behavior is different to that found during the analysis of malicious traffic, since for one DNS request,
there are many responses, which are assumed to be the data being transferred from the client to the
tunnel server. For DNSSEC traffic, the amount of outgoing traffic is much higher than the incoming
traffic, which also must be checked in the analysis of the flow dataset.

HTTP

For this technique, the client sends request messages to the server for commands to execute locally, these
requests are sent in a GET method that contains information such as a URI, a protocol version, client
information and the content of the message, which is encoded in Base64 for the tested tool (Matahari).
The response message from the server to the client, is an HTTP response message with code 200 OK,
stating that the request was successful, see Appendix 2 as an example of command requesting for the
available space in the client’s disk.

If for any reason, the client gets an empty message from the server, the client will not execute any
command locally.

3.2 Flow level

In this section, the analysis will focus on the flow level, that is by analyzing the output of the flow-data
set which was generated by reproducing the captured packets and later captured by the flow collector.
For this purpose, Netflow version 10, also known as IPFIX was used. It allows a flexible way to analyze
flow-data by specifying different kinds of key fields in a given template. Therefore, different types of
templates, specific for each protocol were used, and this is for regular traffic and malicious traffic.

ICMP

An analysis of the ICMP protocol in the flow-data set is performed. First, the behavior of the protocol
will be analyzed under normal conditions and in different situations, then the behavior of the protocol
is analyzed when being used as a tunnelling technique.

The template used for ICMP has the key fields to analyze the behaviour of the flows, see Table 6.

Table 5: IPFIX template for ICMP

Field Description
IPV4_SRC_ADDR | IPv4 source address
IPV4_DST_ADDR | IPv4 destination address
PROTOCOL IP protocol byte
IN_.BYTES Incoming flow bytes (src ->dst)
IN_PKTS Incoming flow packets (src ->dst)
OUT_BYTES Outgoing flow bytes (dst ->src)
OUT_PKTS Outgoing flow packets (dst ->src)
MIN_TTL Min flow TTL
MAX_TTL Max flow TTL
ICMP_TYPE ICMP Type * 256 + ICMP code

Regular ICMP

When using the ping utility, which uses ICMP, two unidirectional flows are generated. A flow from
source to destination that contains the echo request, and another flow from the destination to the
source, that contains the echo reply. The tool used (nProbe) by default generates a unique bidirectional
flow, therefore, in this research, for every analyzed flow, it is referred as a bidirectional flow. For tests
where the Ping tool is used, messages of different lengths and even different size messages and sending
interval were generated. For each message, a flow is generated, and a total of 169 flows were generated.
During the analysis, it may be noted that one difference between the flows generated, is the number of
packets and bytes sent and received, but always a symmetry between the number of bytes and packets
sent and received is kept. That is, the packet ratio or byte ratio is almost always equal to 1. There

12

are some cases where this value is slightly less than one, and that is due to packet loss, but for the
analysis performed, this value varies from 0.9833 to 1 for the packet ratio and 0.8519 to 1 for the byte
ratio. Since, the packet and byte ratios show the same behavior, for the purpose of this research, we will
analyze only the packet ratio, see Figure 7a This analysis is valid only for ICMP echo request messages
that have been answered back by the ICMP echo reply messages. When sending messages to a device
that is blocking ICMP messages or that is offline, the number of incoming bytes is zero, because no
echo reply messages are being received, therefore the rate of bytes and packets will be zero (Received
packets/Sent packets). Other messages were sent to virtual machines, and the behavior that could be
seen in the flow format was that the echo reply message is sent by the bridge device where the virtual
machine is connected to, and this is because ICMP messages are being redirected, but the flow-data
still show symmetry in the sent and received packets and bytes. Another variable, that can be used to
determine regular or malicious behavior is the number of bytes per packet per flow. For regular ICMP
traffic, this value is between 28 and 84 for bytes sent and received, depending on how the ping messages
were generated, see Figure 7b. When the size of the message is altered by making a ping test with more
than the default value, which for Linux machines is 56 bytes, which are translated to 64 ICMP data
bytes when combining with the 8 bytes of ICMP header data, and for Windows machines this value is 32
bytes for a regular Ping message, which are translated to 40 ICMP data bytes. To all of these values, the
IP header of 20 bytes is also added. But, it is possible that the number of bytes per packet per flow can
be bigger than this range of values, when ICMP messages are being sent using different sizes of messages
by altering the default value, and this is still not considered to be malicious traffic, since it can be used
for troubleshooting purposes. However, it was found that the symmetry between the number of sending
and received bytes is still maintained. For this analysis, the amount of packets sent is considered, since
it’s exactly the same as the amount of packets received. The variable ICMP_TYPE, which shows the
ICMP type and the ICMP code per flow, shows the value 2048 for every analyzed flow that has an echo
reply and echo response. This value represents the ICMP type times 256 plus the ICMP code, which is
8 for echo requests and 0 for echo reply, and the ICMP code is always 0 for this ICMP type. Therefore,
2048 represents a successful ping connection. The variable MIN_TTL or MAX_TTL show typical values
that vary from 48 to 128 for the analyzed flows, see Figure 7c

ICMP Tunnel

For this technique, one bidirectional flow is generated per communication attempt regardless of the
amount of data being transferred. For this technique, 30 flows were generated. Since the tested tunneling
technique, in order to work, must not have the ICMP messages blocked at the sender or receiver side, it
is possible to filter out every flow that has the byte or packet ratio equal to zero, see Figure 8a.

For every type of behaviour that was recorded, the byte or packet ratio is higher than expected,
for example, when testing a user logging into a test web page using this technique, the number of
bytes received is approximately twice the number of bytes sent. Another anomaly can be found, when
downloading a 5 MB size file, since the the amount of received bytes is almost 300 times the amount of
the sent bytes. This behaviour was found for every test when downloading a file with this technique.

The number of bytes per packet per flow, do not show much difference from normal behaviour, ranges
for outgoing bytes per packet per flow varies from 56 to 104 bytes per packet, while for the incoming
bytes, this range varies from 60 to 970 bytes per packet, see Figure 8b.

The ICMP_TYPE field for all flows show a value of 2048, and as it was previously described, it
represents a successful connection between two hosts, therefore it is not relevant in the analysis.

Also the variable MIN_TTL or MAX_TTL do not show any difference from regular ICMP traffic,
although, its values are 128 for every flow, it is still considered to be normal behaviour, see Figure Sc.

13

Packet ratio

1.01

T 500
Packet ratio per flow ~ « RS Bytes per packet per flow ~ «
1.005 700
Wn‘m»oonnwmomm 600
= .
0.995 2 500
8
R e Y a
099 g 400
a
8
0.985 = 300
[ix)
098 200
0975 100 “’
o . e
.0 + ¢
097 0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 0 5 10 15 20 25 20 35 40 45 50 55 60 65 70 75 80 85
Flows Flows
(a) Packet ratio distribution (b) Bytes per packet
Min/Max TTL distribution for narmal ICMP traffic
135 Min/Max TTL &
a0
120
105
90
i
[
5 15
= 60 L. 44w R A eI I seat R 2
£ - . 3
25 e B0, LGNS S 400 S H0 S 4NN 0N G0 b ese | of
30
16
0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Flows
(¢) Min/Max TTL
Figure 7: Regular ICMP traffic variables
Packet ratio distribution for ICMP tunnel traffic Bytes per packet per flow for ICMP tunnel traffic
20
Packet ratio per Tlow + 1100 Bytes per outcoming packets +
e i 1000 Bytes per incoming packets .
+
P soe . . ® Lssedses .,
900
15
800
° . sres ey A % 100
] a
=10 5 600
5 @ 500
& 2 .o
& 400
5 300 .
200
. . e . : L) .
+* . * . . 100 PO A ,,z",’QQQQOQQO"OO‘
0 0
5 10 16 20 25 30 0 5 10 15 20 25
Flows Flows

Packet ratio distribution for normal |CMP traffic

Bytes per packet per flow for normal | CVIP traffic

(a) Packet ratio distribution

Min/Max TTL distribution for ICMP tunnel traffic
150

Bytes per packet

MinMax TTL e

4+ 4085400000000 000400000480

120

Min/Max TTL

0 2 4 6 8 10 12 14 16

Flows

18 20 22 24 26 28 30

(¢) Min/Max TTL

Figure 8: Tunnel traffic variables
14

30

ICMP reverse shell

This technique may generate several flows per session. Since a reverse shell is generated on the attacker’s
side, it can be possible that the attacker would generate ping commands from this command shell,
therefore, it was found that these messages are also part of the communication and can be recorded
as flow-data. These ICMP messages are seen as regular ICMP traffic, therefore it is not interesting to
analyze them. But, other flows are of interest to analyze.

When analyzing the bytes or packet ratio, there seems not to be a marked difference between regular
traffic and malicious traffic, the amount of incoming bytes or packets is nearly the same as the amount
of outgoing bytes or packets, therefore the packet ratio is close to one for every flow, see Figure 9a.

One characteristic of these flows, is that the TTL value of every flow is never less than 230, and for
the same flow, the amount of sent and received bytes is particularly high, from 20 MB up to 100 MB,
which is not normal behaviour for ICMP messages. This minimum and maximum TTL value being more
than 230, also shows suspicious behaviour, therefore another test was performed in order to possibly
determine that can be causing it. A server located 22 hops away running CentOS, shows a TTL value of
236, which is something not possible in normal conditions, because the TTL value for an echo request to
the same server is 48, see Figure 9b which shows the distribution of this value for every analyzed flow.

Another pattern that can be found is that the number of outgoing bytes per packet per flow is always
around 28 regardless the amount of traffic being sent. In fact, the standard deviation of this value, for all
the flows, is around 0.064, which means that there is not much variation of this value for this analysis.
This value of 28 bytes per packet per flow is also in the range of regular ICMP traffic as it was previously
discussed, therefore it does not show any suspicious behaviour by itself, see Figure 9¢ which shows the
distribution of this value for ever analyzed flow.

The ICMP_TYPE field for all flows show a value of 2048 as the previously described tunneling
technique, therefore it is also not relevant in this analysis.

Packet ratio

1.01

1.005

0995

099

0985

098

0975

087

Packet ratio distribution for ICMP reverse shell traffic

Packet ratio per flow

-

Flows

(a) Packet ratio distribution

Min/Max TTL

350

300

250

200

150

100

50

Min/Max TTL distribution for ICMP reverse shell traffic

+

Min/Max TTL

. * L
* LR A R R I

*

.

Flows

(b) Min/Max TTL

Bytes per packet per flow for ICMP reverse shell traffic

90 .
80
L]
70 .
©
5 60 e
g
2
5 50
2
P
2 4 ©
[5a]
30 §E
20
10
0
0o 2 4

.
FRTEETEE R T8

Bytes per outcoming packets
Bytes per incoming packets

.

.

(c) Bytes per packet

Flows

Figure 9: ICMP reverse shell variables

15

DNS

In this section, an analysis of the behaviour of the DNS protocol will be analyzed within the flow-data
set. The template that was used for the analysis of this protocol is presented below, see Table 6.

Table 6: IPFIX template for DNS

Field Description
IPV4_SRC_ADDR IPv4 source address
IPV4_DST_ADDR IPv4 destination address
PROTOCOL IP protocol byte
IN_.BYTES Incoming flow bytes (src ->dst)
IN_PKTS Incoming flow packets (src ->dst)
OUT_BYTES Outgoing flow bytes (dst ->src)
OUT_PKTS Outgoing flow packets (dst ->src)
MIN_TTL Min flow TTL
MAX_TTL Max flow TTL
DNS_QUERY DNS query
DNS_QUERY_ID DNS query transaction Id
DNS_QUERY_TYPE | DNS query type (e.g. 1=A, 2=N8S..)
DNS_RET_CODE DNS return code (e.g. 0=no error)

Regular DNS

For regular DNS traffic, the analysis shows some patterns in the normal behaviour. A total of 53490
flows, considered as regular DNS traffic were analyzed. The analysis shows that the traffic packets ratio
for sent packets over the number of packets received, is always equal to 1 for 96.6% of the flows, that
means that there is a degree of symmetry in the number of incoming and outgoing packets, 2.57% of
the flows have a packet ratio of equal to zero, meaning that the received packets is zero, see Figure 10.
However, having a packet ratio equal to 1 is not the case for the byte ratio, because the values vary
depending on the type of the DNS request, eg, for DNSSEC traffic type, which generates relatively high
amounts of incoming traffic, the number of incoming bytes is greater than the number of sent bytes and
is on the order of about 20 times the number of outgoing bytes, but even for the same DNSSEC traffic,
the packet ratio is always equal to 1. Therefore, the byte ratio will not be analyzed in this research for
this specific type of network traffic. It is also interesting to note that the range for the packet ratio varies
between 0.25 and 1 for regular DNS traffic.

Packet ratio distribution for normal DNS traffic

" Packetratio <

Packet ratio
o

05 o
b - " . .o
. -

O i i i 1 L
0 5000 10000 1500020000 25000 30000 35000 40000 45000 50000
Flows

Figure 10: Packet ratio distribution for regular DNS traffic

Another type of analysis will focus on determining what are the top IP addresses to which there is
the greatest amount of flows. Once these destinations are identified, an analysis of the number of sent
and received packets per flow will be made. The top ten flows are shown in Table 7. For example, for IP

16

address A, 99.85% of the flows have one packet that is being sent, 0.09% of the flows have two packets
that are being sent and 0.03% of the flows have 3 or 4 packets that are being sent. The same analysis
was also performed for the number of received packets per flow. IP address A, shows that 99.3% of the
flows have 1 incoming packet per flow, 0.009% of the flows have 3 incoming packets per flow and 0.7% of
the flows have 0 incoming packets per flow. This analysis was performed for all the connections, and it
shows that for the majority of the flows the number of received packets per flow is 1. It is clear to note
that for the analyzed data, the maximum number of sent packets per flow is 4, the maximum number of
received packets is 3, and for most flows, the number of sent and received packets per flow is 1. Figure 11
shows this packet distribution for the top four destination IP addresses. An analysis on the average and
standard deviation for the packet distribution was analyzed, Table 8 shows that the standard deviation
for every flow is not bigger than 0.1, for the top 4 analyzed flows, this calculation was performed for every
connection with a distinct destination IP address, and the maximum value for the standard deviation is
0.5, which means that the number of packets for every flow is about the same and the values are not too
separated from each other.

Table 7: Number of packets per flow distribution

Destination IP | Flows #1ﬂows V;’lth I;’ sent Izlkts ;ég ﬁowslw1th2n rece1ve3d pkts
A 23287 | 23251 21 8 7 163 | 23122 | O 2
B 22190 | 20860 | 1323 | 7 0 6 22184 | 0 0
C 895 868 17 10 0 11 884 0 0
D 764 764 0 0 0 0 764 0 0
E 544 544 0 0 0 0 544 0 0
F 472 457 312 3 0 0 470 0 0
G 254 254 0 0 0 0 254 0 0
H 234 234 0 0 0 0 234 0 0
I 234 234 0 0 0 88 146 0 0
J 190 190 0 0 0 0 190 0 0

Packet distribution for destination IP address A Packet distribution for destination IP address B

Sent Packets Sent Packets
Received Packets x Received Packets x

Total Packets
w

Total Packets
©

0 5875 11750 17625 23500 5625 11250 16875
Flows Flows

(a) Destination IP address A (b) Destination IP address B

Packet distribution for destination IP address C Packet distribution for destination |P address D

Sent Packets Sent Packets
Received Packets « Received Packets x

Total Packets
w

Total Packets
w

0 225 450 675 900 0 190 380 570 760

Flows Flows

(c) Destination IP address C (d) Destination IP address D

Figure 11: Packet distribution for top 4 destination IP addresses

Another approach in order to detect suspicious activity, is by analyzing the DNS fields provided by

17

Table 8: Packet distribution analysis

Destination Av Std dev Av .
IP # Flows sent,pgkts sent_pkts receivedg,pkts Std dev received pkts
A 23287 1.0025 0.075 0.9932 0.0845
B 22190 1.063 0.2396 0.9997 0.0164
C 895 1.0413 0.2490 0.9877 0.1102
D 764 1 0 1 0

the IPFIX export. The DNS_QUERY field shows all the DNS host names, the DNS_QUERY_ID field
is not too interesting for this analysis, since it is a unique identifier value for the DNS query. The
DNS_QUERY_TYPE for all the analyzed flows is shown in Table 9, and it shows that 75.5% of the flows
are related with the “A” DNS type, 15.03% of the flows contain the “DNSKEY” DNS type, and this is
because DNSSEC traffic was also generated. And the third biggest DNS type present in this analysis is
the “AAAA” type which is used for IPv6 addresses. For this analysis, is clear that the majority of flows
for DNS traffic contain the “A” DNS type, commonly used to map hostnames to an IP address.

Table 9: DNS_QUERY_TYPE distribution

DNS_QUERY_TYPE | # of flows % Type Meaning
1 40395 75.5 A A host address
2 1807 3.39 NS An authoritative name server
6 4 0.007 SOA Marks the start of a zone of authority
12 438 0.08 PTR A domain name pointer
16 1 0.002 TXT Text strings
28 2461 4.6 AAAA IPv6 Address
33 18 0.03 SRV Server Selection
43 723 1.35 DS Delegation Signer
48 8083 15.03 | DNSKEY | DNSKEY

The DNS_RET_CODE field, which indicates the resulting state of a request for the analyzed flows
are shown in Table 10. It shows that for most flows (97.7%), the DNS queries were successful, and for
some queries, there is a nonexistent domain response.

Table 10: DNS_RET_CODE distribution

DNS_RET_CODE | # of flows Description
0 52272 No Error
2 39 Server Failure
3 1132 Non-Existent Domain
5 47 Query Refused

The last approach is to determine the amount of sent and received bytes per destination IP address.
For a covert channel using DNS traffic, it could be expected to produce high amounts of traffic, therefore,
it is relevant to consider this approach. The different domains will be identified and the amount of sent
and received bytes to each IP address. For the analyzed flows, destination IP address A has a total of
7734.77 MB received, and a total of 1524.7 MB sent, destination IP address B, has a total of 1601.4 MB
sent and 3449.4 MB received, Figure 12 shows the top 30 destination IP addresses.

18

8000

7000

6000

5000

4000

3000

Total bytes (MB)

2000

1000 Hii

0 M Lbininin s oe ainininieinieinininiaiaiaie

Figure 12: DNS traffic distribution for the analyzed flows

DNS tunnel

For this technique the total number of flows collected is 172. The analysis of the packet ratio shows
that for 68.02% of the flows, this ratio is equal to 1, for 23.84% percent of the flows, the ratio is zero,
which means that the number of received packets is zero. There are other values in the packet ratio
that may raise an alarm on suspicious behaviour, and those are the values with rates that vary from 1.7
to 2.5, which means that the amount of received packets is almost twice as much as the sent bytes, see

Figure 13.

Traffic distribution for DNS

Sent-Byles E===
Received-Bytes m=—==1

ABCDEFGHI JKLMNOPQRSTUVWXY Z
Destination IP addresses

Packet ratio distribution for DNS tunnel traffic

Packet ratio
*

Figure 13: Packet ratio distribution for DNS tunnel traffic

Other analysis is to determine the destination IP address to which the largest amount of flows are
directed to, and once this IP addresses are detected, an analysis of the packet distribution will be made
in an attempt to detect suspicious behaviour. Table 11 shows the different destination IP addresses,
where A is the IP address of the DNS tunnel server, B and C are IP addresses of regular DNS servers.
The analysis on the standard deviation for the sent and received packets shows that for destination IP
address A, where the tunnel server is, these values show suspicious behaviour. The average value suggests

Flows

"Packet ratic ¢

that a big amount of sent and received packets are detected, see Table 12.

Table 11: Top destination IP addresses for DNS tunnel

Destination IP address | Flows
A 87
B 68
C 17

19

flows.

Table 12: Top destination IP addresses for DNS tunnel

Destination # Flows Avg Std dev Avg Std
P sent_pkts | sent_pkts | received_pkts | dev received_pkts
A 87 303.6207 877.0426 5037.4138 15680.588
B 68 1.04 0.245 0.997 0.0164
C 17 1.056 0.2789 0.9756 0.1098

This analysis shows that the destination IP address A where the tunnel server is active has more

The packet distribution of all flows, where the DNS tunnel is present, show a very irregular

pattern, because there are flows with suspiciously high amounts of sent and received packets. And this is
not the case of the other destination IP addresses, see Figure 14, where the packet distribution is similar
to the normal behaviour. At this point, irregularity of the packet distribution for the flows generated by

the DNS tunnel is visible.

Total Packets

Packet distribution for destination IP address A Packet distribution for destination IP address B

120000 T Srpale T T T T T T T Sentpadkes e
i Received Packets m=m 35 : Rece\ved Packets —
100000 - T : i
30
80000 :
o 25
2 :
S :
80000 g 2k
= :
R S 0 | ECE) ERRRRNEER | 1) RS SUUOS COOCROE SERNS S | ERSPPOE NP IR PRSI
40000 A i :
’I: : | . 3 H
‘ | “\ \NH\ I HHH‘\HH w I
N EENEEE EENERR AR . AN ASNWAMAR]
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 10 15 20 25 30 35 40 45 50 55 80 65 70 75

Flows Flows

(a) Destination IP of the DNS tunnel server (b) Destination IP address B

Packet distribution for destination IP address C

4 -
3 n I ' ! : Sent Packets pmmm
: H : . RecelvedPackets I:I

Total Packets

0 2 4 6 g 10 12 14 16 18 20

Flows

(c) Destination IP address C

Figure 14: Packet distribution

The next analysis focuses on the DNS_QUERY _TYPE field, Table 13 shows this distribution for the

DNS tunnel flows. What is interesting to note here is that 13 flows are using a DNS_QUERY_TYPE of
value zero, and this is a reserved value, which must never be allocated for ordinary use, according to
the TANA specification [15]. This number of flows match the number of tests performed with the tool
Todine, therefore as a hypothesis, every flow that has a value in the DNS_QUERY_TYPE field of zero,

can be considered as suspicious.

20

Table 13: DNS_QUERY _TYPE field analysis for DNS tunnel

DNS_QUERY_TYPE | # of flows | %
12 60 34.88
10 57 33.14
1 26 15.12

13 7.56

16 5 2.92
5 3 1.74
15 3 1.74
33 3 1.74
255 1 0.58
28 1 0.58

The DNS_RET_CODE distribution for the DNS tunnel flows, see Table 14, shows that most of the
flows have a successful query response, that is DNS_RET_CODE of 0, 13 flows have a server failure
response and 23 flows have a non existent domain response.

Table 14: DNS_RET_CODE field analysis for DNS tunnel

DNS_RET_CODE | # of flows
0 136
2 13
3 23

Now, in order to validate the previous hypothesis that states that for every flow that has a DNS_QUERY_TYPE
value of 0, the flow will be marked as suspicious. In order to do this, the flow source and destination
IP addresses will be obtained, and if the destination IP address corresponds to the DNS tunnel server,
then the suspicious flow will correspond to malicious traffic. Also by analyzing the packet ratio and the
amount of traffic being transferred, this hypothesis becomes stronger.
Once that this analysis was performed, it was determined that the destination IP addresses which have
a value of 0 in the DNS_QUERY_TYPE correspond to the DNS tunnel server, and also, the amount of
traffic being transferred is particularly high. The packet ratio of these flows, also show lack of symmetry,
because the amount of received packets is almost twice as the amount of bytes sent.

HTTP

In this section, an analysis is made of the behaviour for HTTP within then flow-data set. The template
used for this analysis, is shown in Table 15.

Regular HTTP

A total of 40107 flows were analyzed for regular HT'TP traffic. This analysis shows that the packet ratio
is not 1 for every flow. 40.62% of the flows have a packet ratio of 1, which means that the amount of
sent and received packets is the same, 16.12% of the flows have a packet ratio of 0.5, and other values
of packet ratio where found. The same analysis for the byte ratio were performed, and the conclusion is
that the packet or byte symmetry is not a variable that can be used to detect any suspicious behaviour.

An analysis of the TCP_FLAGS field was performed, see Table 16 for all possible TCP_FLAGS in one
flow. This field, in the flow-data set, is represented as the cumulative OR of this value for every packet
in one flow, Table 17 shows the number of flows that are using a certain TCP_FLAG value. It shows
that most of the flows use the value 24, which have the PUSH and ACK flags set, and they are used at
the beginning and at the end of the data transfer to make sure the data segments are handled correctly.
Also, the PUSH flag is used to send HTTP or other types of requests through a proxy to ensure that
the requests are handled properly. TCP_FLAG of 26 uses the SYN flag to initiate TCP connections.
TCP_FLAG of value 27 also use the FIN flag, used to close a TCP connection. For the other flows, the
RST flags is also used, and it indicates that the remote host has reset the connection.

21

Table 15: IPFIX template for HTTP

Field Description
IPV4_SRC_ADDR IPv4 source address
IPV4_DST_ADDR IPv4 destination address
PROTOCOL IP protocol byte
IN_.BYTES Incoming flow bytes (src->dst)
IN_PKTS Incoming flow packets (src->dst)
OUT_BYTES Outgoing flow bytes (dst->src)
OUT_PKTS Outgoing flow packets (dst->src)
MIN_TTL Min flow TTL
MAX_TTL Max flow TTL
TCP_FLAGS Cumulative of all flow TCP flags
HTTP_URL HTTP URL
HTTP_METHOD HTTP METHOD
HTTP_RET_CODE | HTTP return code (e.g. 200, 304...)

Table 16: TCP_FLAGS options

Flag Description Binary | Decimal
CWR | Congestion Windows Reduced | 10000000 | 128
ECE | ECN-Echo 01000000 | 64
URG | Urgent 00100000 | 32
ACK | Acknowledgment 00010000 | 16
PSH | Push 00001000 | 8
RST | Reset 00000100 | 4
SYN | Syn 00000010 | 2
FIN | Fin 00000001 | 1

Other type of analysis is made in the HTTP fields of the IPFIX template. The HTTP_URL field is
not interesting, because it does not show any suspicious behaviour when analyzing it, since it only shows
the HTTP URL, commonly used for web pages or other resources, such as file transfers (FTP), etc.

The HTTP_METHOD field shows the type of method used in the flow. For this analysis, 52.78% of
the flows are using the GET method which is used to retrieve information from the server, 21.87% of
the flows are using the HEAD method, which is used to get information about the entity implied by the
request without transferring the entity-body itself. 20.49% of the flows do not show the HTTP method
that was used, and this can be an issue on the collector. A minority part of the flows, a 4.84% of the
flows, are using the POST method, which is used to request a web server to accept the data enclosed
in the request message’s body for storage, see Table 18. An interesting analysis can be to determine
the amount methods that a unique destination IP address is receiving, because this could indicate that
something suspicious is occurring, see Table 19. It shows the top 10 destination IP addresses with more
flows.

The HTTP_RET_CODE field shows the HT'TP response code used in the request-response between
the source and destination address. Appendix 3 shows the detailed analysis for all flows. It shows that
for most of the flows, there is a successful connection with code 200. For other flows, there is a response
0, which is not documented, but it indicates that the request was empty.

HTTP reverse shell

The analysis of this technique, is performed with a total of 166 flows.

Since a unique server was used to test this setup, there is just one destination IP address. If other
servers were used, this analysis would simply have more destination IP addresses.

The analysis of the packets ratio does not show any visible suspicious behaviour as established in the
normal behaviour of this protocol. Also, the amount of bytes being transferred is not high enough to
raise suspicion.

22

Table 17: TCP_FLAGS field in analyzed protocols

TCP_FLAG | # of flows Meaning %
24 22088 ACK+PUSH 55,0727
26 10284 ACK+PUSH+SYN 25,6414
27 5039 ACK+PUSH+SYN+FIN 12,5639
19 2223 ACK+FIN+SYN 5,6427
17 163 ACK+FIN 0,4064
31 162 ACK+PUSH+RST+SYN+FIN | 0,4039
30 93 ACK+PUSH+RST+SYN 0,2319
23 38 ACK+RST+SYN+FIN 0,0947
25 15 ACK+PSH+FIN 0,0374
21 1 ACK+RST+FIN 0,0025
18 1 ACK+SYN 0,0025

Table 18: HTTP_METHOD for the analyzed flows

HTTP METHOD | # of flows | %

GET 21167 52,776
HEAD 8773 21,874
- 8217 20,488
POST 1940 1,837
PUT 10 0,025

A research on the distribution of packets per destination IP address contained per flow was performed.
This approach did not make much difference from regular HT'TP traffic because there are visible peaks
of sent and received packets in both normal and suspicious traffic.

The analysis on the TCP_FLAGS field shows that almost 97% of the flows have a TCP_FLAGS value
of 27, which indicates that every connection is sending data and closing the connection after the data
has been transferred. Almost 2.5% of the flows have a value of 26, and less than 1% of the flows have a
value of 31, which indicates that the connection has been reset by the server. Therefore, it is possible to
filter out flows with other values than 27 in the TCP_FLAGS field.

The analysis on the HTTP_METHOD field, shows that the 49.36% of the flows are using the GET
method, 48.08% of the flows are using the POST method, and 2.6% of the flows do not specify what
method is being used. When analyzing how the tool works, when the client or the victim’s machine,
connects to the server, it requests for a command from the server with a GET method, which is replied
by the server by a return code of 200 OK and the content encoded in Base64, then, the answer is later
replied by the client with a POST method sending the answer of the command encoded in Base64. When
the client does not get any command from the server, it will poll for commands every specific time period
by using the GET method. But for every GET method there will be a POST method if the server is
sending commands. If the server does not send any command back to the client, the amount of GET
methods will be larger than the amount of POST methods. But in a regular malicious behaviour, the
attacker will be sending commands to the client every specific time period. Therefore, it might indicate
suspicious behaviour if a unique destination IP address has about the same amount of GET and POST
methods, therefore a ratio of POST and GET methods should be established in order to classify these
types of flows. For regular HT'TP traffic, this ratio varies from 0 to 0.4, while for malicious traffic, this
ratio is close to 1 (0.974), therefore, the ratio that will be used should be between 0.5 and 1.5 in order
to classify a flow as suspicious.

The HTTP_RET_CODE analysis shows that 54.22% of the flows have a 200 code and indicates that
the request is successful. 45.78% of the flows have a return code of 0. This analysis does not show any
relevant difference between regular HT'TP traffic.

3.3 Summary

In this section, a quick summary is shown about some key features that were observed and are relevant
for each of the tested techniques.

23

Table 19: HTTP method analysis for top 10 destination IP addresses

Destination IP address GET# cg(])?écr)rws Egkgetgﬁ;TY
A 104 - 1722 105
B 114 - 1482 107
C 267 25 849 94
D - - - 979
E 18 - 729 3
F 700 - - 10
G 628 - - 33
H - - - 618
I - - 555 4
J 371 136 - 39

ICMP

Table 20: ICMP summary

Variable

Regular ICMP

ICMP Tunnel

ICMP reverse shell

Packet ratio

Value very close to 1.
It can be 0 when it is a
request without a response.

It is never less than 2.

Values are close to 1.

Bytes per packet

Varies depending on
how the message was

Incoming packets have
a larger value than

Similar to regular ICMP

per flow generated. Packet ratio is outeoine packets traffic.
still maintained to 1. gOME P '
ICMP_TYPE 2048 for every flow. 2048 for every flow. 2048 for every flow.

MIN/MAX TTL

Varies from 28 to 128
for all analized flows.

Varies from 28 to 128
for all analized flows.

High TTL values,
from 230 to 255

DNS

Table 21: DNS summary

Variable

Regular DNS

DNS Tunnel

Packet ratio

Value varies from 0 to 1 for all
analyzed flows.

Value varies from 0 to 1 for most
of the flows, but there are some visible
peaks for specific flows.

Packet distribution
per unique destination
IP address

Majority of the flows have 1 packet

per flow. This value varies from
1 to 4 for all analyzed flows.
Maximum standard deviation
value of 0.5.

Irregular distribution for the IP
address where the DNS tunnel
server is running.

High standard deviation values.

DNS QUERY TYPE

It does not show any suspicious
behaviour by itself.

Reserved or restricted values
are being used.

DNS RETURN CODE

It does not show any suspicious
behaviour by itself.

It does not show any suspicious
behaviour by itself.

24

HTTP

Table 22: HTTP summary

Variable

Regular HTTP

DNSTunnel

Packet ratio

Does not show a pattern for every
analyzed flow.

Does not a pattern for every
analyzed flow.

TCP FLAGS

Most of the flows have a value
of 24. Does not show any
particular suspicious behaviour.

This value is set to 27 for
every analyzed flow.

POST/GET method
distribution

It does not show any suspicious
behaviour by itself.

About the same amount of
POST and GET methods per flow.

HTTP RET CODE

It does not show any suspicious
behaviour by itself.

It does not show any suspicious
behaviour by itself.

25

4 Implementation

This section discusses about the implementation of the algorithms to be able to detect malicious traffic,
based on the analysis performed in Chapter 3 of this report. Then, an implementation with data provided
by the sponsoring company will be made in order test the algorithms and determine if false positives
can be detected. Finally, malicious traffic generated by all the techniques previously discussed will be
injected, to determine the effectiveness of the proposed algorithms by trying to detect such traffic.

4.1 Proposed algorithms
ICMP tunnel

Every flow that has a value of 1 in the PROTOCOL field must be filtered, this field represents the
protocol field in the IPv4 header. After having all flows with ICMP traffic, the packet or byte ratio
should not be zero, because that indicates the received packets or bytes are zero, and for the analyzed
techniques, this value is never 0.

After having all this filtered flows, a threshold in the packet or byte ratio should be set, which states
that the amount of received packets or bytes should not be greater than 1.5 times the amount of packets
or bytes sent. This threshold was selected because in the previously analyzed normal behaviour showed
that the maximum packets or bytes ratio is never more than one. Also, for malicious behaviour, the
minimum packets or bytes rate is never less than 1.

Finally, the source and destination IP addresses should be checked, if these addresses are considered
as unknown by the network administrator, after a deeper analysis, which is out of the scope of this
research, then the flow should be considered as malicious.

The analysis of the traffic being generated is not considered in this algorithm, since it was found that
for normal ICMP traffic, large amounts of traffic were found because of the different tests performed.
And we can also note that a network administrator can use the Ping utility for troubleshooting and thus
generate large amounts of ICMP traffic, so at this point, if large amounts of traffic are found, variables
that can help to detect malicious traffic are the bytes or packets ratio.

See Appendix 4 for the SQL queries used in this algorithm.

ICMP reverse shell

For the ICMP reverse shell technique, every flow with a PROTOCOL value of 1 should be filtered. The
minimum TTL value found in the ICMP reverse shell technique was 236, therefore, a threshold of 230
minimum value will be used. Thus, every packet with a minimum TTL value below 230 will be filtered
out. After having checked this variable, the amount of bytes being transferred should be checked to be
able to validate if the flows are considered to be malicious, and lately, check the destination IP address
to determine what are the destinations of these flows.

Appendix 4 shows the SQL queries used in this algorithm. Appendix 5 shows the flow chart of how
this algorithm along with the ICMP tunnel detection.

DNS tunnel

In order to obtain every flow with the DNS protocol, the “L4_DST_PORT” field should match the value
of 53. After having all DNS flows, the packet ratio should be checked. For this algorithm, the threshold
value will be 1.5, therefore, for every flow with a threshold value more than 1.5 will be further analyzed.
The destination IP address should be extracted, and the packet distribution of these flows should be
checked. If the standard deviation for this distribution exceeds a value of 2, then it will be passed for
further analysis, otherwise, the flow will be discarded. The DNS_QUERY_TYPE field should also be
checked, since it was found that for some flows this value is equal to 0, which is a reserved value, and
it should not be used. Another check on the DNS_RET_CODE should be made in order to determine
the result value. Finally, a validation of the destination IP address should identify to which server is the
DNS traffic going.
Appendix 4 shows the SQL queries used in this algorithm.

HTTP reverse shell

Every flow with the L4_DST_PORT field should match the value of 80 or 8080. After having every
flow with the HTTP protocol, an analysis on the TCP_FLAG field, by filtering every flow with the

26

TCP_FLAG value of 27. Then, out of these flows, the distinct destination IP addresses should be
determined, and then analyze the percentage of GET and POST methods per destination IP address.
The ratio should be between 0.5 and 1.5 for the flow to be classified as suspicious. After analyzing
this, the HTTP_RET_CODE distribution should be established, in order to determine the amount of
successful connections, because that means that for every GET method issued by the client, the server
should respond with a 200 code.

Appendix 4 shows the SQL queries used in this algorithm.

4.2 Data-set

After having these algorithms, an implementation of real historic data was performed. This is a data-set
provided by the sponsoring company, which consists of 1 day capture of different network protocols and
applications. It contains HT'TP traffic generated by more than 150 web crawlers, DNS traffic, which is
generated along the HTTP requests, it also has ICMP traffic that was generated by the Ping utility,
where random commands were issued and for different periods of time. This analysis was performed
in order to detect false positives within the data-set and determine the effectiveness of the proposed
algorithms by injecting malicious traffic which was previously generated.

The data-set provided by the company consists of 3.05 Gigabytes of network traffic, 7925899 packets
and 370172 flows.

ICMP tunnel and ICMP reverse shell detection

For these techniques, the proposed algorithms were tested. The data-set has 12323 ICMP flows. When
calculating the packet ratio, and filtering out the values that are zero, the number of valid flows is 5615.
After analyzing the packet ratio for every flow, every flow has a packet ratio lower than 1, which shows
normal behaviour. The TTL values are lower than 68 and the amount of ICMP traffic is lower than 4
Megabytes, which is also considered as normal behaviour therefore, any false positive was shown during
this analysis.

DNS tunneling

The provided data-set has 35186 DNS flows. The packet ratio distribution of these flows is that 35165
flows, that is 99.94% of the flows have a packet ratio of 1, which is considered as normal according to
the algorithm, and the other packet ratio values are less than 1.

When analyzing the packet distribution for every destination IP address, it shows that 35089, that is
99.72% of the flows have 1 packet per flow. The minimum packet per flow value is 1 and the maximum
packet value is 4, which is considered as normal behaviour.

The DNS_QUERY_TYPE analysis shows that 19515, that is 55.46% of the flows have a DNS RR type
of 28 (AAAA), which is used to resolve host names with TPv6 addresses. 15589, that is 44.31% of the
flows have a DNS RR type of 1 (A), which is used to resolve hostnames with IPv4 addresses. The rest
of DNS query types are 6 (0.02%), 12 (0.04%), 16 (0.17%), but are not considered as malicious traffic.

The DNS_RET_CODE analysis showed that 26431 flows (75.12%) have a return code of 0, which
indicates no error, 189 flows (0.54%) have a return code of 2, which indicates a server failure, and further
analysis for this flows do not show any suspicious behaviour. And finally, 8566 flows (24.35%) have a
return code of 3, which indicates that the query has been refused.

The conclusion of this analysis is that any false positives were found, according to the proposed
algorithm, since every flow seems to be normal DNS traffic.

HTTP reverse shell

This data-set has 68988 HT'TP flows. When analyzing the TCP_FLAGS field, 56545 (81.93%) flows have
a value of 27, other TCP_FLAGS values are not relevant for this analysis since it was determined that
only TCP_FLAGS with value 27 were found when testing the HTTP reverse shell technique.

After determining the distinct IP addresses that have the TCP_FLAGS set to 27, 1679 distinct
destinations were found. Table 23 shows the top five destination IP addresses for the analyzed flows.
And the analysis does not show any suspicious behaviour, because the amount of GET methods are not
the same as the POST methods for the distinct destination IP addresses.

27

Table 23: HTTP_METHOD for analyzed flows

Destination IP address

Flows with HTTP_METHOD

POST | GET EMPTY
A 0 43203 228
B 0 1176 0
C 2 636 1
D 0 180 0
E 0 99 6

Injecting malicious traffic

Malicious traffic, which was previously generated will be injected in the provided data-set, in order to

detect it and test the effectiveness of the algorithms.

For every technique, three kinds of malicious traffic were injected. For ICMP tunneling, captured
network traffic that simulates the download of an 1 Megabyte file, a simple login to a web page and a
simulation of a ssh session were used. For the ICMP reverse shell, three sessions that emulate different
types of behaviour will be used, one that emulates an idle session, other session with a delay of 30 seconds
between commands, and other session that emulates several random commands. For DNS tunneling,
three network captures that simulates the download of 1 Megabyte file, a ssh session, and access to a
database will be used. And finally, for HTTP reverse shell, three network captures that simulate normal,

aggressive and ids-evation behaviour will be used.

28

5 Results

When performing analysis on the data set provided by the company, any false positives were found that
may indicate malicious activity generated by the discussed techniques. All flows analyzed showed normal
behavior, however, to verify that injecting malicious traffic, this behavior can be affected.

After injecting this traffic into the data-set, the total amount of ICMP flows is 12352. When querying
for every flow that has a packet ratio higher than 2, which is the threshold set in the algorithm, the
output gives three flows, which are the previously injected flows, see Figure 15a. For ICMP before the
malicious traffic was injected, the packet ratio for every flow is close to one, but when the malicious
traffic has been injected, there are tree visible peaks, see Figure 15b.

Packet ratio distribution Packet ratio distribution
2 Packet ratio — ® Packet ratio -
20
15
=} o 15
® ®
o 1 == e T T
S IRIERE I =
& i (| £ 0
1T |
1| - ‘I‘
05 (B !
l 5
0 L 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100001100012000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100001100012000
Flows Flows
(a) normal ICMP traffic (b) ICMP tunnel traffic

Figure 15: Packet ratio distribution for ICMP traffic

When querying for every flow with a TTL higher than 230, then the output gives also three flows
which correspond to the injected network traffic, see Figure 17a, Figure 17b. By analyzing the incoming
bytes being transferred between the two endpoints, we can determine that suspicious activity is taking
place.

TTL distribution TTL distribution

140 300

120 1 250

100
200

80
150

TTL
TTL

60
100

40

20] 50 ’_|

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

Flows Flows
(a) normal ICMP traffic (b) ICMP reverse shell

Figure 16: TTL distribution for ICMP traffic

There is a total of 35219 DNS flows. Before injecting malicious traffic, the packet distribution shows
that 99.94% of the flows have a packet ratio of 1, and the rest of flows is below 1, see Figure 17a. When
implementing the algorithm to find DNS tunneling traffic, it only returns one flow that has a packet
ratio more than 1.5, see Figure 17b. Then, an analysis of the packet distribution for the destination IP
address of this flow was made, the standard deviation value for the incoming packets is 91.42, which
marks this flow as suspicious. And the amount of sent and received bytes is particularly high (45.19 sent
and 1124.38 received Megabytes).

29

packet ratio distribution packet ratio distribution
25

25

Packet ratio

Packet ratio

Packet ratio
Packet ratio

05 b

0 ; ; ; ; ; ; ; 0
0 3500 7000 10500 14000 17500 21000 24500 23000 31500 25000 0 3500 7000 10500 14000 17500 21000 24500 28000 31500 35000
Flows Flows

(a) normal DNS traffic (b) DNS tunnel

Figure 17: Packet distribution for DNS traffic

When analyzing the DNS_QUERY_TYPE field, it is possible to detect all three malicious flows,
because the 0 value for this field is reserved, and for this technique, this value is used, therefore it
becomes easier to detect this kind of suspicious flows.

For HTTP, there is a total of 64095 HT'TP flows. When implementing the algorithm, after filtering
out every flow with the TCP FLAG set to 27, the different destination IP addresses were analyzed.
It becomes very difficult to find the destination IP that is using this technique because the amount of
traffic being generated per flow is not high. Once analyzing every destination IP, the amount of GET and
POST methods per IP were determined. This analysis shows that for the malicious flows, 34 flows use
the POST methods and 69 flows use the GET method, which is a POST/GET ratio of 0.49. Figure 18
shows the top 20 destination IP addresses with the TCP_FLAGS field set to 27, in which the amount of
POST and GET methods is shown. For the IP address E, it shows that the number of GET and POST
methods are relatively close, therefore this destination IP address can be marked as suspicious, and in
fact, this analysis showed that this is the IP address where the reverse shell client is communicating to.
Even though, three types of behaviour were injected, the algorithm only shows one connection, and this
is because this analysis is based on destination IP addresses, and for this technique, only one server that
acts as the reverse shell server was used. The amount of flows with HTTP return code of 200 OK is
70, which are the successful connections. This analysis demonstrates that the threshold for the amount
of GET and POST methods can affect on the false positives rate, because a ratio of POST over GET
methods per destination IP address was set between 0.5 and 1.5, therefore, this threshold can be stated
to a lower ratio.

POST/GET method distribution per destination |P address

12005!““‘;; e
GET‘:
1000 | e
o
B
2 500 |
@
E
gaoow—f
=
(2]
&
T 400
'9 H
200 Hf{
. Mrﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂnnhnh
ABCDEFGH I JKLMNOPOQRST

Destination IP addresses

Figure 18: POST/GET methods distribution

30

6 Conclusions

This research has investigated how normal ICMP, DNS and HTTP traffic behaves based on analysis per-
formed in a historic flow data-set, to further detect covert channel techniques that use these protocols to
send information which is undetectable to security devices such as firewalls, IDS / IPS, etc. This analysis
shows some specific patterns for each protocol, and these patterns can be used to establish a baseline to
evaluate different types of behavior. Furthermore, by analyzing the behavior of these protocols, when
they are misused by tunneling techniques, it is possible to differentiate between normal behavior and
malicious behavior. It is important to note that this analysis was performed by analyzing specific tools,
that may behave in a different way from other tools. The chosen techniques were implemented with well
known tools that are commonly used, and that are not difficult to implement.

When analyzing ICMP traffic, normal behavior patterns are clearly established by using variables
such as the packet ratio, which is the difference between the number of received packets by the number
of sent packets. This variable is practically constant for every case of normal use of the ICMP protocol,
while when used to transport encapsulated information in the data field of the ICMP, the packet ratio
is very effective in detecting these behaviors. In the case of the ICMP reverse shell, the packet ratio
shows no difference from the regular traffic, and thus, this variable cannot be used. During the stages
of experimentation and analysis, it was found that the tool with which the experiments were performed,
is using a suspiciously high TTL value compared with the normal values for other flows, therefore, this
variable was used to detect such malicious traffic. Although this variable can not show any irregular
activity, it is possible to mark these flows as suspicious, and later analyze them more closely and look at
other variables such as the number of bytes sent and received, where indeed such flows contain malicious
traffic.

The analysis of the DNS protocol shows that there are visible patterns of behavior for most of the
analyzed flows. The packet ratio shows that for most flows, this is a constant value, while for malicious
traffic, this variable does not show a constant value. Once flows are marked as suspicious, a classification
of the different destination IP addresses, to where the DNS requests are made, and an analysis of the
packet distribution is conducted. The standard deviation is used to determine how close the values of
the packets are to each other are. This analysis shows that for regular traffic, the value of the standard
deviation is less than 1, whereby a threshold of 2 was established to classify a flow as suspect. When
working with NetFlow version 10 (IPFIX), one can use some DNS protocol related fields. An analysis in
the DNS_QUERY_TYPE field, shows that for regular DNS traffic, these values are in the normal range
because values are clearly established by the standard, while for malicious traffic generated by the DNS
tunneling technique, it was found that the flows that carry hidden information are using prohibited or
reserved values, which under normal circumstances should not be used.

For HTTP traffic, the analysis showed that the variable packets ratio cannot be used because there
is no visible pattern for regular traffic and malicious traffic behavior. During testing and analysis, it
was possible to detect that all flows generated by this technique, have the TCP_FLAGS field set to 27.
This value is the sum of all flags for each flow, and indicates that each flow starts, sends and closes
a communication. Further analysis was performed to identify the different destination IP addresses
and analyze the POST/GET ratio, that is the difference between POST and GET methods per unique
destination IP address. The analysis of normal HTTP traffic, showed that this rate is between the
values of 0 and 0.4, while for malicious traffic, this value is close to 1, but for the algorithm, a threshold
between 0.5 and 1.5 was established. This algorithm can produce false positives, because it is possible
to find short duration flows, with the same amount of POST or GET methods. But this check could
not be performed due to time constraints, but identifying these suspicious flows may allow to identify
the destination IP address in order to maintain such flows constantly monitored. HTTP traffic can also
be proxied through other known ports such as 8080, therefore, this option should also be noticed when
filtering HTTP traffic.

Once the differences between regular and malicious traffic were identified, certain parameters and
steps as algorithms, in order to detect such suspicious flows, were established. To verify the effectiveness
of the operation of these algorithms, a dataset provided by the sponsoring company was analyzed. This
data set consisted of a capture of network traffic for a day, generated by 150 web crawlers that simulate
human behavior while browsing the Internet. Furthermore, this data set contains DNS traffic and ICMP
traffic generated randomly through different duration ping commands. The analysis of this dataset
produced no false positive, ie, any malicious traffic related to any of the previously mentioned techniques
was found. Subsequently, malicious traffic was injected in this dataset, in order to verify whether the
proposed algorithms can detect this traffic. It was determined that for the traffic generated by the ICMP

31

tunnel technique, all kinds of injected traffic were detected. Similarly, the injected traffic generated by
the DNS tunneling and the HTTP reverse shell technique was detected, by performing the analysis of
proposed algorithms.

Finally, the analysis of flow-data may have some disadvantages compared to other types of analysis
such as IDS/IPS or firewalls, since it does not look into the content of the packets. But, it is still
a powerful tool to analyze anomalies based on the behaviour of specific flows. Analysis based on the
packet content inspection, may also be time and resource consuming, therefore flow-data analysis should
be considered as an alternative to security analysis.

6.1 Future work

This research has extensively investigated the behavior of several tunnelling techniques or covert channels.
However, only specific tools were tested, therefore, it is important to investigate the behavior of such
protocols with other tools, to further assess the effectiveness of the proposed algorithms regardless of
the tool that was used. Moreover, the techniques of covert channels vary depending on the creativity
of those who create them, therefore, it is difficult to establish a unique approach to identify each type
of malicious traffic generated by these techniques. There are many other techniques and protocols that
are used to transmit information in a hidden way, so it is worth looking at other protocols, tools and
techniques to generate covert channels.

The proposed algorithms were tested with historical data in order to find patterns in regular and
malicious traffic. The same analysis should be performed with live flow-data, to compare the results of
the behavior of these flows. Also, to compare the effectiveness of the algorithms in such an environment.

For this project, database queries were used to obtain the results presented in this research. When
working with large databases, these queries can take a long time to run, so one should find out how to
implement the proposed algorithms by way of scripting or programming languages. Such improvements
could help the analysis to be much more effective in terms of time.

In order to test whether the proposed algorithms generate false positives, several tests should be
performed with bigger datasets and longer period of capture. Also, analyzing other techniques than
covert channels that may use the protocols analyzed to determine if they produce the same results, or
have a similar behavior as the analyzed techniques.

This analysis was performed without sampling features that allow flow-data to be sampled in a
particular way. This option is widely used in high speed networks that do not collect every single packet
because of performance issues and only analyze sampled packets. The observed behaviour should not
differ from sampled data because there are specific patterns that are common for every packet in one
flow, but it should be relevant to investigate these techniques with sampled data in order to compare
the differences.

32

Bibliography

Zhongjun Lu Ping Dong, Huanyan Qian and Shaohua Lan. A network covert channel based on
packet classification. International Journal of Network Security.

Taeshik Sohn, JungTaek Seo, and Jongsub Moon. A study on the covert channel detection of tcp/ip
header using support vector machine. In Sihan Qing, Dieter Gollmann, and Jianying Zhou, editors,
Information and Communications Security, volume 2836 of Lecture Notes in Computer Science,
pages 313—-324. Springer Berlin Heidelberg, 2003.

Vincent Berk, Annarita Giani, George Cybenko, et al. Detection of covert channel encoding in
network packet delays. Rapport technique TR536, de [Université de Dartmouth. Novembre, 2005.

Anna Sperotto Harm Schotanus Michel Mandjes Erik Meeuwissen Wendy Ellens, Piotr Zuraniewski.
Flow-Based Detection of DNS Tunnels. 2013.

Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP Traffic
Flow Information. http://tools.ietf.org/html/rfc5101.

Bidirectional Flow Export Using IP Flow Information Export (IPFIX). http://tools.ietf.
org/html/rfc5103.

Petr Velan. Practical experience with IPFIX flow collectors. 2013.

nprobe. http://www.ntop.org/products/nprobe/.

Tcpreplay. http://tcpreplay.synfin.net/.

Ping tunnel. http://www.cs.uit.no/~daniels/PingTunnel/.

Simple reverse ICMP shell. https://github.com/inquisb/icmpsh.

Todine. http://code.kryo.se/iodine/.

MATAHARI, a simple reverse HT'TP shell. http://matahari.sourceforge.net/.
RFC 792 - Internet Control Message Protocol. http://tools.ietf.org/html/rfc792.

Domain Name System (DNS) Parameters. http://www.lana.org/assignments/
dns—-parameters/dns—-parameters.xhtml.

33

http://tools.ietf.org/html/rfc5101
http://tools.ietf.org/html/rfc5103
http://tools.ietf.org/html/rfc5103
http://www.ntop.org/products/nprobe/
http://tcpreplay.synfin.net/
http://www.cs.uit.no/~daniels/PingTunnel/
https://github.com/inquisb/icmpsh
http://code.kryo.se/iodine/
http://matahari.sourceforge.net/
http://tools.ietf.org/html/rfc792
http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml
http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml

1 ICMP tunnel and reverse shell

This appendix shows some examples of how information can be hidden inside a protocol header

is a capture of a regular ICMP message.

Offset

0x0000 :
0x0010:
0x0020:
0x0030 :
0x0040 :

Hexdump

c8be
003c
682c
6768
7761

198a
4fe3
0800
696 a
6263

066e
0000
3862
6b6c
6465

6036
8001
0100
6d6e
6667

Figure 19:

dda8
3041
13 fa
6£f70
6869

258¢c
c0a8
6162
7172

Echo or

Below is a capture where a HTTP GET method is

Offset

0x0000 :
0x0010:
0x0020:
0x0030:
0x0040 :
0x0050 :
0x0060 :
0x0070:
0x0080 :
0x0090 :
0x00a0 :
0x00boO:
0x00cO:
0x00dO0:
0x00e0 :
0x00f0 :
0x0100:
0x0110:
0x0120:
0x0130:
0x0140:
0x0150:
0x0160 :
0x0170:

Figure 20: ICMP Echo request

Below is a capture where shell commands

Offset

0x0000 :
0x0010:
0x0020:
0x0030:
0x0040 :
0x0050:
0x0060 :

Figure 21: ICMP Echo request message

Hexdump

0016
0164
6965
0000
012b
2f31
6c68
2d41
352e
7838
2047
4669
7765
6570
7070
2b78
2f78
3d30
6775
713d
636 f
666¢c
6e3a
0a00

3ell
0000
0800
0000
0001
2e31
6f73
6765
3020
365 f
6563
7265
6173
743 a
6c69
6d6c
6d6c
2e38
6167
302e
6469
6174
206b

Hexdump

0016
005¢
6966
6f66
7369
2863
6674

3eee
03 ae
0800
7420
a26e
2920
2043

clfa
4000
4cae
0000
ab6a
0dOa
743 a
6e74
2858
3634
6b6f
666 f
656 ¢c
2074
6361
2c61
3b71
0doOa
653a
350d
6e67
650d
6565

780e
0000
dc40
5769
2036
3230
672

feff
3401
ab6a
4000
4745
486 f
3830
3a20
3131
3b20
2f32
782 f
2f32
6578
7469
7070
3d30
4163
2065
Oa4l
3a20
0a43
702d

feff
f501
dcce
6e64
2e33
3133
706 f

ffff
969d
0001
0002
5420
7374
3830
4d6f
3b20
7276
3031
3232
322e
742 f
6f6e
6c69
2e39
6365
6e2d
6363
677a
6f6e
616¢

are being transported in a ICMP message.

fEff
Ocb5
ce68
6f77
2e39
204d
7261

ffff
ds57c
d520
0000
2f20
3a20
0d0a
7a69
4c69
3a32
3030
2e30
300d
6874
2f78
6361
2c2a
7074
5553
6570
6970
6e65
6976

ffff
57d5
4d69
7320
3630
6963

34

0800
0064
6364
7374

4500
9164
6566
7576

ASCII dump

..... n‘6..%...E.
<O ... OA...d.d
h,..8b....abcdef
ghijklmnopqrstuv
wabcdefghi

Reply message

being carried by the ICMP packet.

0800
deb5
0880
ffff
4854
6c6f
5573
6cb6e
6e75
322e
3130
2049
O0adl
6d6c
6874
7469
2f2a
2d4c
2c65
742d
2c20
6374
650d

0800
629e
6372
5b56
305d
726 f

4500
9164
0000
0000
5450
6361
6572
612f
7820
3029
3120
6365
6363
2c61
6d6c¢
6f6e
3b71
616e
6e3b
456 e
6465
696 f
0a0d

4500
9164
6f73
6572
0dOa
736 f

carrying shell commands

.+...JGET./.HTTP
/1.1..Host:.loca
lhost :8080.. User
—Agent:. Mozilla/
5.0.(X11;. Linux.
x86-64;.1rv:22.0)
.Gecko/20100101.
Firefox /22.0.1Ice
weasel /22.0..Acc
ept:.text/html,a
pplication/xhtml
4+xml, application
/xml;q=0.9,%/x;q
=0.8..Accept—Lan
guage :.en—US,en;
q=0.5..Accept—En
coding:.gzip ,.de
flate .. Connectio
n:.keep—alive ...

message carrying HTTP

ASCII dump

if ...@... hMicros
oft . Windows . [Ver
si.n.6.3.9600]..
(c¢).2013. Microso
ft . Corpora

. Below

2 HTTP reverse shell

The information is encoded in Base64, and represents the df —h command, that requests for the available
space from the victim’s machine. Once the client gets this response message from the server, it will answer
back with a POST method, giving the information requested.

GET / HTTP/1.1

Host: 145.100.105.102
Accept—Encoding: identity
Content—Salt: 141—-1402260694.1
Next—Polling —In: 60

HTTP/1.0 200 OK
Server: BaseHTTP /0.3 Python/2.6.6
Date: Sun, 08 Jun 2014 20:52:41 GMT

ZGY gL We=

POST / HITTP/1.1

Host: 145.100.105.102
Accept—Encoding: identity
Content—Length: 496
Next—Polling —In: 60

RmlIsZXN5c3RIbSAGICAgIFNpemUgIFVzZWQgQXZhaWwgVXNIIJSBNb3VudGVkIGIuCidkZXYvc2RhMSAgICA
gICAgMTIHICA3LDZHICAgMTFHICAONCUgLwpub25lICAgICAgICAgICAgNCwwSyAgICAgMCAgNCwwSyAgID
AlIC9zeXMvZnMvY2dyb3VwCnVkZXYgICAgICAgICAgICAyLDBHICAOLDBLICAyLDBHICAgMSUgL2R1dgpOb
XBmcyAglCAgICAgICAgMzk1lTSAgMSwOTSAgMzkOTSAgIDEIICIydW4Kbm9uZSAgICAgICAgICAgIDUsSMEOg
ICAgIDAgIDUsMEOgICAwJSAvenVuL2xvY2sKbm9uZSAgICAgICAgICAgIDISMEcgIDE1MksgIDIsMEcgICA
xJSAvenVuL3NobQpub251ICAgICAgICAgICAgMTAwWTSAgIDM2SyAgMTAwWTSAgIDEIIC9ydW4vdXNlcgo=

Where the information encoded represents the following output:

Filesystem Size Used Avail Use% Mounted on
/dev/sdal 19G 7,6G 11G 44% /

none 4,0K 0 4,0K 0% /sys/fs/cgroup
udev 2,0G 4,0K 2,0G 1% /dev

tmpfs 395M 1,4M 394M 1% /run

none 5,0M 0 5,0M 0% /run/lock

none 2,0G 152K 2,0G 1% /run/shm

none 100M 36K 100M 1% /run/user

35

3 HTTP_METHOD

This appendix shows the details of the HTTP_METHOD for the analyzed flows.

Table 24: HTTP_METHOD analysis

HTTP _RET_CODE Meaning # of flows %

200 OK 20932 52,1904%

0 Not documented 9111 22,7167%
302 Found 6910 17,2289%
206 Partial Content 1105 2,7551%
304 Not Modified 1070 2,6679%
301 Moved Permanently | 485 1,2093%
404 Not Found 145 0,3615%
403 Forbidden 142 0,3541%
204 No Content 61 0,1521%
400 Bad Request 47 0,1172%
201 Created 45 0,1122%
101 Switching Protocols | 27 0,0673%
303 See Other 7 0,0175%
504 Gateway Timeout 7 0,0175%
503 Service Unavailable 5 0,0125%
502 Bad Gateway 5 0,0125%
500 Internal Server Error | 1 0,0025%

1 Not documented 1 0,0025%
100 Continue 1 0,0025%

36

4 SQL queries for the proposed algorithms

This appendix shows some of the SQL queries used to implement the algorithms for the different tunneling
techniques discussed in this research.

4.1 ICMP tunnel

First, a view is created for every flow in order to create temporal columns such as the packets and bytes
rate, so it becomes easier to do calculations based on these fields. Then, the protocols are filtered with
the value 1, which is for ICMP. After having this view, it is possible to create another view for all previous
view to be able to have all flows with temporal columns in one single table.

CREATE VIEW ptunnel_view AS

SELECT
INETNTOA(ipv4_src_addr) AS src_addr,
INETNTOA(ipv4_dst_addr) AS dst_addr,
in_bytes ,
out_bytes,
(out_bytes / in_bytes) AS bytes_ratio,
in_pkts ,
out_pkts,
(out_pkts / in_pkts) AS pkts_ratio,
(in_bytes / in_pkts) AS in_bpp,
(out_bytes / out_pkts) AS out_bpp,
min_ttl
max_ttl ,
icmp_type

FROM
ptunnel_flow

'WHERE
protocol LIKE 1;

After having a view, we can select the flows that have the packets rate higher than the threshold
specified and also checking that this value is not 0.

SELECT
*
FROM
ptunnel_view
‘WHERE
pkts_ratio > 2 AND out_pkts != 0;

4.2 ICMP reverse shell

CREATE VIEW rev_icmp._view AS
SELECT

INET NTOA (ipv4_src_addr) AS SRC.ADDR,
INETNTOA(ipv4_dst-addr) AS DST_ADDR,
in_bytes ,
out_bytes ,
(out_bytes / in_bytes) AS bytes_ratio,
in_pkts,
out_pkts,
(out_pkts / in_pkts) AS pkts_ratio
(in_bytes / in_pkts) AS in_bpp,
(out_bytes / out_pkts) AS out_bpp,

min_ttl
max_ttl
FROM
rev_icmp_flow
‘WHERE
protocol = 1;

37

To filter out every flow that has a minimum TTL value less than 230:

SELECT
*
FROM
rev_icmp
WHERE
protocol =1
AND (min_ttl > 245 OR max_ttl > 245);

4.3 DNS tunneling

CREATE VIEW dns_tunnel_view AS

SELECT
INET NTOA (ipv4_src_addr) AS SRC_ADDR,
INET NTOA(ipv4_dst-addr) AS DST_ADDR,
in_bytes ,
out_bytes ,
(out_bytes / in_bytes) AS bytes_ratio,
in_pkts ,
out_pkts,
(out_-pkts / in_pkts) AS pkts_ratio,
(out_bytes / in_bytes) AS in_bpp,
(out_bytes / out_pkts) AS out_bpp,
min_ttl ,
mx_ttl,
dns_query ,
dns_query-id ,
dns_query_type,
dns_ret_code

FROM
dns_tunnel_flow

‘WHERE
14 _dst_port = 53;

SELECT
dst_addr , COUNTI(%) AS counter
FROM
dns
GROUP BY dst_addr
ORDER BY counter DESC;

SELECT
MIN(in_pkts),
MAX(in_pkts),
AVG(in_-pkts),
STDDEV (in_pkts),
MIN(out_pkts),
MAX(out_pkts),
AVG(out_pkts),
STDDEV (out_pkts)
FROM
dns;

4.4 HTTP reverse shell

Creating view to filter every HTTP connetion.

CREATE VIEW rev_http_view AS
SELECT
INETNTOA(ipv4_src_addr) AS src_addr,
INET NTOA (ipv4_dst_addr) AS dst_addr,
in_bytes ,
out_bytes,

38

(out_bytes / in_bytes) AS bytes_ratio,
in_pkts ,
out_pkts,
(out_pkts / in_pkts) AS pkts_ratio
(in_bytes / in_pkts) AS in_bpp,
(out_-bytes / out_pkts) AS out_bpp,
min_ttl ,
max_ttl ,
tcp-_flags ,
http_url ,
http_method ,
http_-ret_code
FROM
rev_http_flow
'WHERE
14 _dst_port = 80
OR
14 _dst_port = 8080;

Select the distinct IP addresses.

SELECT
src_addr , dst.addr, COUNI(dst_addr) AS contar
FROM
normal.rev_http_view
'WHERE
tcp_flags = 27
GROUP BY dst_addr
ORDER BY contar DESC;

39

5 Algorithms flow diagram

This appendix, shows the flow diagrams for every detection algorithm.

5.1 ICMP-based tunneling techniques

Collected flows

Filter
ICMP traffic

Filter out
packet ratio =0

Valid ICMP
(Echo replies
and requests)

Reverse ICMP shell
suspicious traffic

Packet ratio
=2

Destination IP
address check

¥

Destination IP ICMP tunnel

Bytes transferred
address check MNormal ICMP flow

suspicious traffic check

¥

Bytes transferred
check

Figure 22: ICMP-based tunneling techniques

40

5.2

DNS-based tunneling techniques

Collected flows

Mormal ICMP
traffic

Suspicious DNS
tunneling traffic

A

¥

Destination IP
address check

YES

Filter
DNS trafiic

Destination IP
address
classification

¥

Packet distribution

per destination IP
address

Standard
deviation of
packets
=2

DNS query
types check

MNarmal
DNS trafiic

DNS
query
type =0

|

NO

Figure 23: DNS-based tunneling techniques

41

5.3 HTTP-based tunneling techniques

Collected flows

Filter
HTTP traffic

Filter
TCP_FLAGS
=27

Destination IP
address
classification

¥

POST/GET HTTP
methods per
destination IP address

Suspicious HTTP
reverse shell traffic

¥

HTTP return code
check

Y

Destination IP
address check

POST/GET
05 <ratin<15

Narmal HTTP
traffic

Figure 24: HTTP-based tunneling techniques

42

	Introduction
	Related work
	Research questions
	Approach
	Scope of the project
	Netflow overview

	Experiments and data gathering
	Experimental environment
	Covert channel techniques
	Data gathering

	Data analysis
	Protocol level
	Flow level
	Summary

	Implementation
	Proposed algorithms
	Data-set

	Results
	Conclusions
	Future work

	ICMP tunnel and reverse shell
	HTTP reverse shell
	HTTP_METHOD
	SQL queries for the proposed algorithms
	ICMP tunnel
	ICMP reverse shell
	DNS tunneling
	HTTP reverse shell

	Algorithms flow diagram
	ICMP-based tunneling techniques
	DNS-based tunneling techniques
	HTTP-based tunneling techniques

