Cross-Realm Kerberos Authentication A study into implementations and compatibility

Esan Wit Mick Pouw Supervisor: Michiel Leenaars

A System and Network Engineering RP University of Amsterdam

July 3, 2014

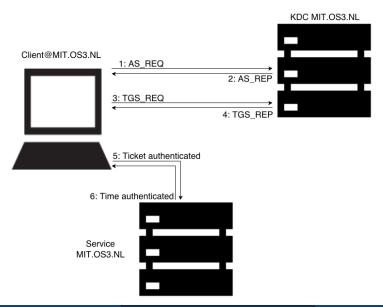
Introduction	Background	Approach and Results	Conclusion
Introduction			

- Around since ancient times ('80s)
 - Version 5 from 1993, revised in 2005
- Offers authentication in networks between clients and services
- Single Sign On
 - "Yesteryear's OAuth"
- Many implementations exist
 - Active Directory
 - Heimdal
 - MIT Kerberos
 - Shishi

Introduction	Background	Approach and Results	Conclusion
Previou	s research		

- Implementation of cross-realm referral handling in MIT Kerberos client
- Research by Cervesato et al. illustrated the possibility to impersonate users by rogue KDCs
- Much debate about cross-realm options
 - But very little in the way of implementations
- Specifying Kerberos 5 cross-realm authentication

The goal is to check the current status of Kerberos implementations and identifying possibilities for dynamic configuration to enable cross-realm authentication. E.g. using an @OS3.NL account to authenticate a user for their Facebook profile.

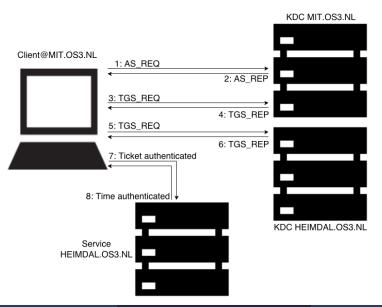

- Analyse the interoperability between implementations
- Research default behaviour for edge cases
- Research options for Cross Realm trust configurations
- Analyse cryptographic behaviour

- Authentication provider relying on trusted third party
- Based on shared secrets
- Tickets are encrypted so only the intended recipient can decrypt it
- Designed to provide authentication on untrusted networks
- Password is not send over the network
- Supports public key cryptography

Approach and Results

Conclusion

Kerberos Illustrated


Introduction

Background

Approach and Results

Conclusion

Kerberos Cross-Realm Illustrated

- Testing combinations of all implementations, focused on receiving a valid ticket
- Clients authenticated using password
- Services using keytab via GSS-API

Requirements

- Machines taking role of either client, service, or KDC.
- Configured DNS
- Patience

- Testing combinations of all implementations, focused on receiving a valid ticket
- Clients authenticated using password
- Services using keytab via GSS-API

Requirements

- Machines taking role of either client, service, or KDC.
- Configured DNS
- Patience
 - A lot of it

Testing basic functionality

		KDC		
Client	Active Directory	Heimdal	MIT	Shishi
Active Directory	\checkmark	X^1	X^1	X^1
Heimdal	1	\checkmark	1	\checkmark
MIT	1	\checkmark	✓	\checkmark
Shishi	\checkmark	\checkmark	1	1
Service	Active Directory	Heimdal	MIT	Shishi
Active Directory	✓	X^1	X^1	X^1
Heimdal	1	\checkmark	1	\checkmark
MIT	\checkmark	\checkmark	1	\checkmark
Shishi	X ²	X^2	X^2	X^2

Table: Compatibility between implementations

²Shishi GSSAPI not implemented yet, but service ticket can be requested

¹No service available for testing

Crypto compatibility

	Active Directory	Heimdal	MIT	Shishi
AES128/256-SHA1	✓	✓	1	✓
CAMELLIA128/256-				
CTS-CMAC			1	
DES3-CBC-SHA1		1	1	✓
DES-CBC-CRC ³	✓		1	✓
DES-CBC-MD5 ³	1		1	✓
DES-CBC-MD4 ³			1	1
RC4-HMAC-EXP ³			1	1
RC4-HMAC	1	✓	1	✓

Table: Ciphers implemented

³Considered weak[2]

Testing PKINIT compliance

- Use of public key cryptography for authentication and encryption
- Chain of trust maintained as standard X.509 certificates
- Any certificate authority
- Extended Key Usage (EKU)
 - X.509 Subject Alternative Name (SAN) extension
- Or if you're Microsoft:
 - dNSName containing a SAN of the hostname of the KDC

PKINIT Results

- Shishi no support.
- Windows has it's own format
- MIT EKU tested/confirmed
- Heimdal support for both formats, EKU tested/confirmed
 - Connecting to MIT KDC weak encryption, DH parameters

Kerberos uses DNS to find the KDC servers of a realm. This is accomplished by using SRV records and will make the realm configuration in the configuration

- _kerberos._tcp.ad.os3.nl. IN SRV 01 00 88 ad.os3.nl.
- _kerberos._udp.ad.os3.nl. IN SRV 01 00 88 ad.os3.nl.
- Behaviour was analysed under several configurations
- MIT Kerberos 5, Heimdal and Shishi clients all use DNS if realm is unknown⁴

 $^{^{\}rm 4}{\rm provided}$ a user specifies a realm when attempting to perform initial authentication

Cross-Realm setup

- All manually configured, no automatic options available
- Requires shared secret between KDCs
- All cross-realm trusts are one-way
 - Add a principal in the right direction
- Two-way trust is possible
 - Add principals for both directions

Cross-Realm requirements

	Active Directory	Heimdal	MIT	Shishi
Active Directory	✓	1	✓	X ⁵
Heimdal	1	\checkmark	✓	X ⁵
MIT	1	1	1	X 5
Shishi	X ⁵	X ⁵	X ⁵	X 5

Table: Cross compatibility

⁵Shishi does not support cross realm configuration

Conclusion

- The implementations adhere to the protocol
 - Most conflicts occur from other variables
- Much remains to be done to enable auto-configuration
 - Public key cryptography for communication between KDCs
- Heimdal and MIT Kerberos 5 are most compatible

Note:

Many documents are outdated when it concerns Kerberos

Future Work

- Finish Shishi
- Better debugging options in the implementations
- Improve interoperability between implementations
- Dynamic configurable trust
- Foreign trust policies
- Asynchronous Cryptography for Cross-Realm trust
 - PKCROSS started as draft but remains unfinished
 - $\bullet\,$ As of this week some activity again on the mailing list

Questions?

Takeaways in Kerberos

- Check your time
- KERBEROS LOVES CAPS (and so do config files)
- When in doubt, DNS!

Special thanks to Michiel Leenaars and Rick van Rein for their input and feedback during this project.

I. Cervesato et al. "Specifying Kerberos 5 Cross-realm Authentication". In: Proceedings of the 2005 Workshop on Issues in the Theory of Security. WITS '05. Long Beach, California, 2005, pp. 12–26. ISBN: 1-58113-980-2.

L. Hornquist Astrand and T. Yu. Deprecate DES, RC4-HMAC-EXP, and Other Weak Cryptographic Algorithms in Kerberos. RFC 6649 (Best Current Practice). Internet Engineering Task Force, July 2012.