
teleporting virtual machines
Research Project 1

Harm Dermois
harm.dermois@os3.nl
Carlo Rengo
carlo.rengo@os3.nl

Supervisors:
Oskar van Deventer (TNO)
Jan Sipke van der Veen (TNO)

Wednesday 4th February, 2015

Master System and Network Engineering
University of Amsterdam

virtual machine teleportation

What is VM “teleportation”?

∙ A classic VM copy across the Internet moves an unnecessary
quantity of bits

∙ Instead of copying the whole VM, a description of the source is
used to recreate it on the destination Hypervisor

∙ Like a “teleport”, the VM is broken down into logical parts
(software, configuration and user data) and reconstructed
somewhere else

∙ The new VM is not an exact replica, but it’s still a functional copy

1/22

virtual machine teleportation (2)

Why would you need VM “teleportation”?

∙ Slow network speed between source and destination (i.e.
endpoints very distant from each other) makes fetching data from
other sources desirable

∙ Might be used as a baseline for a VMDN (Virtual Machine Delivery
Network)

∙ As in a CDN (Content Delivery Network) an object might be moved
“next” to the end users for faster services responsiveness

∙ Might save bandwidth
∙ Might be faster

2/22

research questions

∙ Is it possible to implement a teleporting system in a real world
scenario?

∙ Is the data transferred less for a teleported VM than for a
conventionally migrated one?

∙ Is a teleported VM indeed quicker up-and-running than a
conventionally migrated one?

3/22

context & scope

∙ Focus on data transferred between source and destination
∙ Focus on time spent teleporting a VM (CPU and memory
consumption were not measured)

∙ Full control (root access) of source and destination servers
∙ Source VM is powered off for the sake of simplicity
∙ Every VM has only one virtual disk

4/22

approach

We wrote a Proof of Concept that:

∙ Analyzes local and remote VMs
∙ Can create a new VM from scratch
∙ Uses the most similar VMs (if any) to recreate the source
∙ Automatically installs any needed software on the destination VM
∙ Synchronizes any difference from the source to the destination VM

We wanted our PoC to:

∙ Be easy to install
∙ Use only common libraries (libvirt, libguestfs)
∙ Make no changes to the source VM
∙ Work (with some modifications) with hypervisors such as KVM, Xen
and VMware®

Note: At the moment, only CentOS and Ubuntu guests are supported
5/22

smart-migrate algorithm

algorithm description - steps

1. generateDescription() and fetchDescription() - Contact the source
Hypervisor and ask it to create a description of the VM (OS version
and packages installed)

2. listImages() and pickCandidate() - Look for a local VM with the
same distribution and version, clone the one with the least
amount of differences from the source VM. If there is no
candidate, create a VM from scratch.

3. swPrepare() and swInstall() - Install any missing distribution
package on the cloned/new VM and remove any extra package.

4. smartSync() - Copy user data (files, databases, etc...) and software
configurations

7/22

algorithm description (2)

pickCandidate() details:

∙ Only virtual disks/snapshots with same distribution and version
are taken into account

∙ Dry runs (no real transfer, only an estimation - very fast!) of
rsync to find the best candidate

∙ If no candidate is found, create a new VM

smartSync() details:

∙ Two runs of rsync
∙ The first one syncs everything but the installation folders
∙ The second one syncs all the files in the installation folders that
do not exist on the destination (software/libraries not installed by
a package manager).

8/22

setup

hardware setup

Local Hypervisor (Delft Brasserskade):

Model: Dell System XPS L702X
CPU: Intel®Core™i7-2620M CPU @ 2.70GHz (Dual Core)

Memory: 8GiB RAM SODIMM DDR3 Synchronous 1333
Disk: Seagate ST9500420AS - 500GB (non SSD)
OS: Ubuntu 14.04 64-bit with KVM

Remote Hypervisor (Amsterdam Science Park):

Model: Dell PowerEdge R210 II
CPU: Intel®Xeon®CPU E3-1220L V2 @ 2.30GHz (Dual Core)

Memory: 8GiB RAM DIMM DDR3 Synchronous 1333 MHz
Disk: Seagate ST1000NM0011 - 1TB (non SSD)
OS: Ubuntu 14.04 64-bit with KVM

10/22

source vms description

Two VMs with the following characteristics:

OS: CentOS 7.0 64-bit
Software: ISPConfig hosting panel (mostly distribution packages

plus some compiled software)
Data: A couple of website (and their databases)

Data(2): Same as above, but with 9GiB of random data divided
in small and big files.

Network: DHCP
Disk usage: 2GiB out of 30GiB
Disk usage(2): 11GiB out of 30GiB

11/22

teleportation results - 2gib vm

teleportation - time

13/22

teleportation - bandwidth consumption between hypervisors

14/22

teleportation results - 11gib vm

teleportation - time(2)

16/22

teleportation - bandwidth consumption betweenhypervisors(2)

17/22

conclusions and future work

conclusions

∙ It works, although more scenarios should be tested
∙ Very little metadata was sent between source and destination
∙ VM Teleportation can save bandwidth...
∙ VM Teleportation can be faster...
∙ but having similar local copies and snapshots is crucial to achieve
such results!

19/22

future work

Optimizations (Software can be definitively improved):

∙ Smarten the algorithm (i.e. sometimes a plain copy is just better)
∙ Implement parallelization
∙ Dump & restore database instead of copy
∙ Some functions in the algorithms can be precomputed
asynchronously

∙ Might also use tools such Puppet and Docker, or wrappers like
Vagrant

20/22

Thank you for listening!
Questions?

21/22

extras

Problems occured:

∙ Finding the required packages in a powered off VM
∙ Installing packages on a powered off VM

rsync commands in smartSync():

rsync -azAX --delete --stats --exclude={”/dev”,”/tmp”,”/proc”,\
”/sys”,”/var/tmp”,”/run”,”/mnt”,”/media”,”/lost+found”,”/usr”,\
”/lib”,”/etc/fstab”,”/lib32”,”/lib64”,”/boot”} \
$HYPERVISOR:$R_MNT_PATH/ $L_MNT_PATH

rsync -azAX --ignore-existing --stats --exclude={”/dev”,”/tmp”,\
”/proc”,”/sys”,”/var/tmp”,”/run”,”/mnt”,”/media”,”/lost+found”,\
”/boot”} $HYPERVISOR:$R_MNT_PATH/ $L_MNT_PATH

22/22

	Smart-migrate algorithm
	Setup
	Teleportation results - 2GiB VM
	Teleportation results - 11GiB VM
	Conclusions and future work

