TELEPORTING VIRTUAL MACHINES

MASTER SYSTEM AND NETWORK ENGINEERING

Authors: Supervisors:
Harm Dermois Oskar van Deventer (TNO)
harm.dermois@os3.nl oskar.vandeventer@tno.nl
Carlo Rengo Jan Sipke van der Veen (TNO)
carlo.rengo@os3.nl jan_sipke.vanderveen@tno.nl
X
—— X
— X

UNIVERSITEIT VAN AMSTERDAM

February 8, 2015

Abstract

The research described in this paper is about Virtual Machine (VM) teleportation, a
way of copying Virtual Machines across two nodes that tries to minimize the bandwidth
usage between them. This “teleportation” technique heavily relies on using “similar”
sources of data, such as local copies of Virtual Machines on the destination node or
software repositories available on the Internet, to recreate the original Virtual Machine.

From the research done and the Proof of Concept written during a one-month project,
it can be concluded that with VM teleportation bandwidth is indeed saved and, in
particular cases, teleportation may even be faster than a normal copy.

Acknowledgements

We would like to thank Oskar van Deventer and Jan Sipke van der Veen for helping us
with our project. Their assistance and guidance during the whole research period have

been really valuable to us.
We would also like to thank TNO for giving us the opportunity to do this research at

their office in Delft and lending us the materials needed to perform the research.

ii

Contents

Abstract

Acknowledgments

U._Introduction
IL.1. KResearch questionl. e e e e e e

p. Bbackground
p.l. Migration techniqued e e e e e
p.2. Conhguration management and VNV provisioning

B. Methodology|

d.1. Functional copyl L e e
d.2. Physical tools and setup e e e
U3 Sottware toold

b "Results

b.l. Testing if the teleportation was successtuf
|9 Bandwidth resiltd

b lTime resnltd

A._>oftware tools

b. FPython code

. Bash code

10
10
12

13
13
13
14
16

17
18
19
19

26

1. Introduction

Virtual machines (VM) are a key unit of cloud infrastructures. Often, VMs need to
be moved or replicated between hosts, in a way similar to what happens in a Content
Delivery Network (CDN).

However, VMs are harder to distribute with current CDN technologies, which are
developed with static content in mind. Virtual machine disks are binaries of considerable
size and a small change in the VM filesystem will make a completely different binary, thus
making classic caching techniques not really useful. As nodes can be located anywhere
in the world, the transport of a whole Virtual Machine can take significant amounts of
time and data-transport capacity.

A hypothesis is that time and transport efficiency could be gained by transporting
only the user data (databases, files, etc...) and Operating System (OS) configuration
parameters, and rebuilding the VM from a locally available copy of the OS and installed
applications.

In this project, this hypothesis will be investigated by implementing a VM “teleporter”
as described above, as well as a system that transports a VM in bulk. The teleported
VM will be a “functional” copy B of the source: it should work, look and behave the
same, but it doesn’t have to be an exact replica (for instance, installed packages don’t
have to be the same versions of the source ones).

1.1. Research question

e Is it technically viable to implement a VM teleporting system that can be conve-
nient to setup in a real world scenario?

e Is the required data for transferring a virtual machine indeed less for a teleported
one than for a conventionally migrated one?

e Is a teleported VM indeed quicker up-and-running than a conventionally migrated
one?

Essential to the research question are a number of subquestions:

e When is a virtual machine considered to be a “functional copy” of another virtual
machine?

e How can data on a (virtual) disk be logically divided into user data and Operating
System data?

e Which best practices should be followed, in a virtual environment, to minimize
bandwidth consumption and speed-up the teleportation?

1.2. Context

VM teleportation only copies the data that is needed and lets the destination get parts
of the VM itself. This will reduce the amount of data that is being send from the source

to the destination. This might be desirable in situation where bandwidth is an issue.
Bandwidth issues can occur when servers are geographically far apart, or in regions
having poor network performance. In this situation sending as little data as possible is
preferred. VM teleportation might help in these cases by letting the destination server
get software packages itself. These packages are in most cases local and quick to retrieve.

Another use case might be a Virtual Machine Delivery Network (VMDN) which is
explained in detail in reference [l].

In general, use cases for VM teleportation involve having limited bandwidth between
the source and the destination nodes. Teleportation can also be used to speed up the
delivery of a VMs. These are situations where there are already other local VMs avail-
able. These cases can occur when there is a need for multiple applications which need
to be separated from each other even if they run on the same Operating System (OS).
This can also be used when you want to have more capacity for one application and run
multiple VMs with the same OS.

1.3. Scope

A Proof of Concept (PoC) will be written to “smartly” migrate a VM from one hypervisor
to another. Some limitations will be put as fringe cases, like external repositories and
retro-compatibility issues, will not be considered. The focus will be less on “unorthodox”
manual software installations and it is not the aim of the project to make a completely
generic solution. For the sake of simplicity, only common Linux distributions (Ubuntu
and CentOS) and Kernel-based Virtual Machine (KVM)[?] hypervisor will be taken
into account. Ubuntu and CentOS were chosen, because these distros are very popular
and we have experience using them. KVM was chosen because it requires no special
configuration to run and it is required for libguestfs (see BZ3). Despite the simplicity
desired, the aim of this project is to keep it as generic as possible, this is why the
decision of not writing on the teleported VM virtual disk has been made; for this reason
also some “handy” tools were deliberately avoided (see B2).

It is also worth to mention that only cold (powered off) VMs with default virtual hard-
ware and no more than one virtual disk are used as candidates for the VM teleportation:
as only one month was given to do this research project, these decisions were made to
prevent potential technical problems, simplifying the setup of the test infrastructure and
quicken the writing of the PoC we use later in this project.

2. Previous work

This work is based on a Master thesis[l] which has been previously written as a TNO
project. This paper introduces Virtual Machine Delivery Networks (VMDNs) and pro-
poses three different strategies of implementing a VMDN.

The first strategy works with data clusters [3] while the second works with files and
cached files. The last strategy, which will be used in this project, is based on the concept
of “functional” copy B

Another interesting paper is [d], the result of which shows the possibility of live mi-
grating VMs over long geographical distances with a downtime comparable to intra-LAN
local migrations (about 5-10 times greater despite 1000 times higher round-trip times.
The research discussed in this paper, however, tries a different approach based on the
concept of “functional copy”’Bll and by testing a VM migration over ordinary WAN
channels.

3. Background

This section contains basic information for the topic discussed in this paper.

3.1. Migration techniques

Common hypervisors such as Xen, KVM and VMware can do live migration (that is,
without even powering off) of a VM, but the main requirement is to have the virtual
disk image file(s) locally accessible from both the nodes. More details are available in
[5] and [6].

For any other eventuality, different methods exist but, in short, they all do a normal
copy of the VM disk image file(s), plus other metadata (see [7]). For instance, KVM
tools can dump Virtual Machine information using the command virsh dumpxzml ([R]).
Another tool worth to be mentioned is VMware vCenter Converter [4], which can also
convert different types of virtual disk.

3.2. Configuration management and VM provisioning

Two of the most crucial aspect in VM teleportation are describing and building a VM.
While the former heavily relies on the concept of functional copy that is being described
subsequently in 871, the latter (also known as “provisioning”, a term that also involves
customizing) is something easily accessible with the current technologies and, mostly, is
just a matter of wisely using already available tools. Tools worth to be mentioned are
Puppet[10] and Vagrant[IT].

Puppet is a configuration management system that allows to define the state of an IT

infrastructure, then automatically enforces the correct state. The configuration of any
node of the infrastructure is kept in Puppet specific files which give information about
what software should be installed and the configuration of that software. These Puppet
files can also be used to configure a machine from scratch.
The downside of using this tool in the project is that each VM should have Puppet
installed along with the necessary configuration files. Not only does this require you
have to remove the installation afterwards. It also makes Puppet mandatory to be ran
on each VM. It will also make the VM teleportation software dependent on Puppet.
This undesirable in a market that advances this quickly. Although Puppet have some
utilities to show what packages are installed (useful for the description, see B), this is
no more than what common Linux OS package managers can show. One of the aims of
this project is to make the teleportation of a VM as generic as possible.

Vagrant is a tool used for VM provisioning. It is primarily used to quickly create
development environments. This is done thanks to a vagrant file which describes the
provisioning of the VM. Vagrant can work in conjunction with Puppet to build and
configure a Virtual Machine from a description. After some analysis of the tool, the
decision has been made to use more generic libraries, but the approach will be very
similar. Using more generic tools will give the teleportation software more control over
the VM. The tools/libraries chosen are described in B=3.

4. Methodology

As specified in 33, the source VM should not be changed. With this decision in mind the
following software tools have been chosen (see B23). This section gives an introduction
in the software tools used. These are tools that are generic and give some flexibility in
the choice of hypervisor to manage the VMs.

Because this project is a proof of concept, Python[l2] and Bash[I3] language have
been chosen to write the smart migrate software B. This is a good combination for this
project, as Python is a good language for fast prototyping and, since most tools used
are command-line tools which makes bash scripting very handy and useful to automate
the process.

4.1. Functional copy

In the introduction it is mentioned that the teleported VM should be a “functional copy”
of the original. Although not a strictly defined concept, it is safe to say that a functional
copy should “feel”, behave and work the same as the original.

It is hard to figure out if two VMs are functionally the same. There are many factors
which can change the way the VM behaves, like the version of the packages and their
configuration, some temporary files, even the filesystem support of certain features. In
the Proof of Concept a description is made with minimal set of information needed
to recreate the VM. This description file only shows which packages are installed and
not the exact version. Just having the name of the package should not give any prob-
lems in most cases, as the software repositories of well known distributions always take
backwards compatibility into account (their updates are just patches and bugfixing). It
would have been impossible to make the new VM install the exact version of the source
packages, because the repositories only maintain the last versions of them. All that can
be done other than just testing everything is trust that the distributions do their work
properly.

As described in 33, problems related with third party repositories will not be con-
sidered. The checks done is to see if main services of the VM are running properly
(e.g. does the website still look the same? is the database running and filled with the
same data?) were done manually. It would have taken too much time to automate this
controls, and it would have been out of the scope.

Ultimately, besides installing the same packages, our PoC copies all the data except
of the package contents. This “formula” of having the same user data and configuration
but possibly different minor version of system packages is our non scientific definition of
functional copy.

4.2. Physical tools and setup

Unfortunately, there wasn’t the possibility to test our PoC on production hypervisors
(with ideally various Virtual Machines having different Operating Systems and snap-
shots). Due to time constrains, the measurements shown in B are based on two different

VMs, built with the following characteristics:

(ON) CentOS Linux
Version 7.1

Architecture 64bit

Software installed Apache - Web server

ISPconfig - Hosting panel
Network configuration | DHCP

User data (1) 2 websites with database

User data (2) 2 websites with database, 9GiB random files
Disk usage (1) 2 out of 30GiB

Disk usage (2) 11 out of 30GiB

Table 1: Virtual Machines description

ISPConfig [T4] was chosen as the main software on the VMs because it has dependen-
cies, both from the CentOS repository, and from other software/libraries compiled by
hand, so it could be a good “benchmark” for our tests. The only difference in the second
Virtual Machine is the presence of 9GiB of extra data, that was randomly generated
(see O for more details). While creating the VM, snapshots were taken after each big
change made. This left us with the base image (minimal OS installation with updates)
and three snapshots.

These are the two hypervisors, the source and the destination of the teleportation:

Model Dell System XPS L702X

CPU Intel ®CoreT™i7-2620M CPU @ 2.70GHz (Dual Core)
Memory | 8GiB RAM SODIMM DDR3 Synchronous 1333

Disk Seagate ST9500420AS - 500GB (non SSD)

0S Ubuntu 14.04 64-bit with KVM

Table 2: Local Hypervisor - Delft Brasserskade

Model Dell PowerEdge R210 11

CPU Intel®@Xeon®CPU E3-1220L V2 @ 2.30GHz (Dual Core)
Memory | 8GiB RAM DIMM DDR3 Synchronous 1333 MHz

Disk Seagate ST1000NMO0011 - 1TB (non SSD)

0OS Ubuntu 14.04 64-bit with KVM

Table 3: Remote Hypervisor - Amsterdam Science Park

4.3. Software tools

This section shows the tools used for this project and what their purpose is within the
project.

Libvirt

“Libvirt [T5] is collection of software that provides a convenient way to manage virtual
machines and other virtualization functionality, such as storage and network interface
management”. This software collection includes an API library, a daemon (libvirtd),
and a command line utility (virsh). The Libvirt software is a crucial part of the project,
as its utilities are widely used in the Proof of Concept (see H). This generic collection of
software is not bound to a specific vendor, thus can be used with common hypervisors
such as Xen and KVM.

The collection also includes a tool called “virsh”, which can get information about Vir-
tual Machines available on the hypervisor; it is also used to create snapshots, deploying
and removing VMs.

QEMU

QEMUII6][T7] is a generic and open source machine emulator and virtualizer. QEMU is a
hosted VM monitor: it emulates CPUs through dynamic binary translation and provides
a set of device models, enabling it to run a variety of unmodified guest operating systems.
In this project it is used by KVM to run the virtual machines.

KVM

“KVM [7] is a full virtualization solution for Linux on x86 hardware containing virtual-
ization extensions (Intel VT or AMD-V)”.

Using KVM, one can run multiple virtual machines running unmodified Linux or
Windows images. Each virtual machine has private virtualized hardware: a network
card, disk, graphics adapter, etc... The tool used to provision the VM, Libguestfs, uses
KVM

Libguestfs

“Libguestfs[g] is a library and has tools for accessing and modifying VM disk images.”
It can access most of the common disk images such as raw image files and “qcow2” (copy
on write) image files, which are used in this project.

The tools used from libguestfs are the following:

e Python-guestfs is a python wrapper for the libguestfs tools. This wrapper allows
to call the libguestfs function inside the python scripts we wrote in the Proof of
Concept (PoC).

e virt-builder[T9] allows to create new images; it can accept a variety of option in
its command-line interface. By default, a minimal version of the chosen Operating
System is retrieved from the Internet, then unpacked and provisioned in a new
VM. Depending on the parameters, it can also install packages on the VM and
run scripts after its first boot.

e virt-install[T9] is another tool included in libguestfs. It is used to deploy and boot
a VMs on the hypervisor.

e guestmount is a tool that allows to easily mount a VM or even a snapshot, eventu-
ally following the whole chain of snapshot dependencies. During analysis and the
smart sync phase of the smart migrate B this tool is used.

1 - generateDescription()

(N 2 -fetchDescription()[\

v 6 - smartSync() v
—

TargetVM

m

S-swinstall() | jeeeeeee—————————- -5

4 - clope

I Good!

—

il

0s
repository

B
c—
_a- Wrong OS

c— How many

\ / 3 -pickCandidate() bytes are

missing?
7~ g

Local / Destination HV Remote / Source HV

Figure 1: Smart Migrate algorithm scheme

5. The proof of concept Smart migrate

“Smart migrate” is the name of the script that teleports a Virtual Machine. As men-
tioned before, the aim of teleporting a VM is to try to reduce the amount of data sent
between the source and the destination hypervisors.

5.1. Steps

“Smart migrate” is a bash script which calls a variety of tools and python scripts. Its
algorithm (see also fig.M) is divided in the following steps:

Generate Description: contact the source hypervisor and ask it to generate the descrip-
tion of the target VM for the teleportation.

Fetch Description: download the generated description from the source hypervisor.
List Images: output a list of local VMs having the same Linux distribution and version.
Pick Candidate: find the best candidate for the teleportation from the list.

Create New Machine: create a new VM with a minimal installation.

10

Software Prepare: output a list of packages needed to be installed and/or removed from
the new VM.

Software Install: download and install/remove the packages from the list.

Smart Sync: copy to the new VM any specific data which cannot be downloaded /recre-
ated from another source. This data is referred as user data in this project.

Generate and Fetch Description

The generation and fetching of the description is an important part of the teleportation.
The description shows properties of the Virtual Machine that will be teleported, such as
the number of CPUs and network interfaces, as well as the list of distribution packages
installed. This description is exported and transferred as a JSON file which can be easily
parsed.

List Images

As described before, this step outputs a list of local Virtual Machine images having the
same Operating System and version as the source VM.

It is worth to mention that this process also takes in consideration any snapshots of any
VMs on the local hypervisor. It is safe to assume that the VM has only one OS installed,
as this is a common practise amongst systems administrators that deals with VMs.

Pick Candidate

Pick Candidate uses a list of images to decide which image is the most suitable to use
for the teleportation. It evaluates the image having the least amount of bits needed
to be copied from the source VM, by using the well-known rsync program with its
--dry-run[20] which, instead of a normal run, simulates a transfer and quickly outputs
the result. This step can be perfected as it does not take in consideration the amount
of packages that needs to be installed or removed.

Create New Machine

Create New Machine creates a new VM with the minimal installation of the same OS
of the source VM. This step is run only if there is no suitable candidate found by Bl
This new Virtual Machine will then act as precursor for the teleportation.

Software Prepare and Install

These two steps prepare the Virtual Machine for the installation/removal of the packages.
In this phase any extra repository from the source VM and a special installation script
are put on the new VM, which is booted in order to do the installation/removal (see
BE4). At the end of this process, the VM is shutted down.

11

Smart Sync

Smart Sync is the phase where the user data is transferred. This is done by using two
different run of rsync. The first is the used to transfer all the data excluding the direc-
tories where the packages are installed.

After this, another rsync is run to sync all the files that might have been created by
manual installation of compiled software (thus not available in the distribution reposi-
tories).

5.2. Experiments

To address the research questions the following experiments have been done. They have
been chosen to show how well smart migrate might perform with different local VMs on
the destination. From the worst case of having no local VM to use as a candidate, to
the best case of having an almost identical VM available in the destination hypervisors.
These are the cases chosen:

1. rsync of a raw disk image file (to simulate a normal migration).

2. rsync of a sparse disk image file (to simulate a normal migration).
3. Teleportation with no local VM available.

4. Teleportation with a local VM having a minimal installation.

5. Same situation as above, will all the packages updated to last version installed on

the VM.

6. Same situation as above, but with also all software packages required by the source
installed on the VM.

7. Same situation ad the previous experiment, but a different (non compatible) web-
server is installed on the candidate VM

8. A local VM with the same software installed (including extra repository ones).

All experiments have been done with a minimal set of candidate images on the desti-
nation hypervisor. The source and destination servers are the same in each experiment.
No bandwidth throttling has been enforced, the maximum download speed from the
source to the destination is 10 MB/s (during our measurements it was pretty stable).
Each experiment has been done five times to make an average.

In order to do timing measurement, the command /usr/bin/time has been run on
each part of the teleportation software (see H). With this the wall-clock, user and system
time have been measured. The amount of data sent was also logged from the rsync
commands called during the teleportation.

12

6. Results

6.1. Testing if the teleportation was successful

After teleporting the a VM a check was done to see if it was still functioning. After
checking the VM it was confirmed that the websites (see table) were running correctly
with the same content. The installed packages list was the same as the source, even the
libraries, configuration and software manually compiled on it were present. ISPConfig
was running and there was no error message displayed. Although we're still far from
automatically determining if the teleportation always outputs a functional copy, from
our tests it can be concluded that the VM was successfully teleported.

6.2. Bandwidth results

VM teleportation with minimal data, average of 5 runs
Bandwidth 10 MB/s

Sparse disk image

Raw disk image

Local VM with
same software

Local VM with
another webserver

Local VM with
same disto packages

Local VM
minimal installation

No local VM available

[

T T T T T 1
200 400 600 800 1000 1200
Number of MB received

Figure 2: Teleportation of 2GiB VM - bandwidth consumption

Fig. B shows the results of VM standard copy and teleportation while having different
local VMs on the destination hypervisor. By looking at fig. B the number of bytes
between the host and client is greatly reduced. This is because the only thing that
is send between the two parties is the difference in user data. Since the user data to
migrate are configuration files and some small websites, the difference is great.

Needless to say, the more similar the destination VM gets to the source, the less the
amount of data transferred, but in every case it is significantly less than the with the

normal copies. More data is transferred for the sparse disk image because the latter
consists of three snapshots that, apparently, brings some overhead.

For the user data only a few optimization can be done to decrease the amount of data
needed to be send. All the information needs to be transferred and checked against
the original data. The user data is all unique data and should be exactly copied. One
noteworthy exception is the data that is stored in a database: in most cases, dumping this
information to text file, transferring it compressed and having the destination restoring
it, would probably decrease the amount of data transferred.

VM teleporiation with 9 GB of data, average of 5 runs
Bandwidth 10 MB/s

Sparse disk image

Raw disk image

Local VM with
same software

Local VM with
same disto packages

Local VM
minimal installation

No local VM available

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of MB received

o

Figure 3: Teleportation of 11GiB VM - bandwidth consumption

Fig. B shows that with “large” amounts of user data the bandwidth saved with the
smart migrate is not very big. This is because all the data that is being transferred is
unique and the only source of that data is the remote VM. The only way to improve
this is by having a local VM on the destination having at least partly the same data.

6.3. Time results

Fig @ shows the results of the same tests as in Fig. B, but from the time point of view.
The time spend during syncing is correlated to the amount of user data on the source
VM, and can only be decreased by improving the bandwidth or having similar local
copies of the data. The less bandwidth between the two hypervisors, the faster the
teleportation. In places where the bandwidth is not good this might be an option, also

14

VM teleportation with minimal user data, average of 5 runs
Bandwidth 10 MB/s

B generateDescription
Sparse disk image _ B fetchDescription
O listimages
B pickCandidate
H swinstall
Local VM with E smartSync
same software E Normal file copy

Local VM with
another webserver

Local VM with
same disto packages

Local VM
minimal installation

No local VM available

T T T T T T T
100 200 300 400 500 600 700 800 900
Time (s)

o

Figure 4: Teleportation of 2GiB VM - execution time

because of the distribution of common distribution repositories, taking not much time
to download their compressed packages.

It is clear from looking at figure @ that, as long as you have local VMs similar to
the source VM, the time spend doing the teleportation is decreased. This shows that
algorithm is working as intended. Another thing to notice is that the time spend doing
the teleportation heavily depends on the amount of images where the candidate needs
to be picked from. It may be noticed that the “Local VM with another webserver” bar
has a far longer pick candidate phase than the other teleportation experiments: this is
because in the local hypervisor there were three snapshots to analyze instead of just
one(see section B2), the time spend is about three times as much compared to the other
experiments. In this graph it is also clear to see that in some cases, namely the cases
where there is no similar VM on the destination, just copying the machine will give a
much better result than the teleportation. This shows that teleportation can be faster
only in certain situations.

Fig.H shows that there is a time benefit only with local VMs having mostly the same
Operating System structure. Worth to mention is that all phases before smart sync
take relatively less time as the user data increases. As there is no particular benefit with
most situations here, it can’t be stressed enough that the advantages of the teleportation
heavily relies on having similar data locally available.

15

VM teleportation with 9 GB data, average of 5 runs
Bandwidth 10 MB/s

generateDescription
fetchDescription
listimages
pickCandidate
swPrepare

swinstall

smartSync

Normal file copy

Sparse disk image

Raw disk image

Local VM with
same software

Local VM with
same disto packages

Local VM
minimal installation

No local VM available

T T T T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000 1100 1300 1500 1700

Time (s)

Figure 5: Teleportation of 11GiB VM - execution time

6.4. Problems

Following are the most significant problems encountered during the project.

A relevant one was installing packages on a powered off VM, which should be done
effortlessly by the tool virt-builder (see B=3). However, some packages apparently
require the machine to be powered on, thus making impossible to install /remove all the
packages without booting the VM (and slowing down the whole process). The suspicion
is that some packages require services that are only available when the VM is booted,
further analysis should be done. Installing packages on first boot did not give any
problem, after having created some apposite scripts.

A problem similar to what described above was found, but this time the culprits
were the repositories. Some of the packages that need to be installed might not be
in the standard repos, but are available in third party ones (this often the case with
CentOS, where very popular and maintained “extra” repositories are not uncommon
to be installed). If these repositories are not installed the retrieval of some packages
might fail. To solve this problem, the smart migrate algorithm takes care of copying any
extra repository information and keys from the source to the destination VM before the
installation script is run.

16

7. Conclusions

In our project the viability of VM teleportation has been tested. With the Proof of
Concept it has been shown that there is a way to create a functional copy of a VM using
VM teleportation.

From the results we can conclude that, in cases where there are very similar VMs on
the destination VM, teleportation can even be faster than a normal copy. If there is
no VM or a very minimal one however, a plain file copy is just faster. The results also
show that bandwidth is saved in each experiment conducted. The amount of sent data
depends on the difference in packages between the source VM and the candidate that is
chosen on the destination. Even in the worst case scenario where there is no candidate
available the amount of data send between the two parties is less.

This makes VM teleportation a viable way of transferring VMs between servers. This
could be applied in applications like a VMDN, where multiple similar/same VMs might
be transferred to the same destination.

17

8. Future work

The experiments that have been done were limited due to time constrains. Experiments
need to be done with other Virtual Machines. Testing the algorithm in a real case
scenario, with production VMs, would definitively give a better indication of how well
the algorithm does and in which situations it will work better or worse.

We believe that the concept of “functional copy” is worth to receive a more for-
mal/strict definition, as it is a crucial basis for further developing.

The algorithm should also be improved. One suggestion is about the installation of
the software and the subsequent sync, which can be run in parallel as the former does
not depend on the data being transferred during the sync. Also, the “pick candidate”
phase can be improved: the script now mounts any possible candidate disk, one by one,
they can instead be mounted at the same time and the rsync “dry runs” can be run in
parallel. A threshold can also be put in place that if the image passes a certain threshold
of bytes that have to be received (i.e. a bigger quantity comparing to the previously
analysed candidate), then the algorithm immediately discard that image and save time.
The algorithm can be smarten also by making it actually decide if the VM teleportation
is worth doing, or if it should (e.g. if the bandwidth between two endpoints is excellent)
just copy the virtual machine instead.

During this project only time and bandwidth consumed during the teleportation were
considered. Further experiments might also take CPU and memory usage into account
and see their impact on the hypervisors.

The Proof of Concept is, at the moment, a combination of Python and Bash scripts.
An improvement would be writing everything in Python and make it more uniform.
Also, the improved software should follow a client-server architecture, which is desirable
in such environments.

18

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

A. Software tools

Table of software

Software Version

Libguestfs 1.24.5

KVM 2.0.0 (Debian 2.0.04dfsg-2ubuntul.10)
Kernel 3.13.0-44-generic

python-guestfs | 1:1.22.7-1 (ubuntu package)

libguestfs-tools | 1:1.24.4-1 (ubuntu package)

virsh 1.2.2

Table 4: These are the versions of the software used

B. Python code

The most important python functions used in for the smart migrate.

import guestfs

import jsonpickle

from collections import namedtuple
from subprocess import check_output
import parsers

import os

import re

from vm_info import VM_Info

def

def

def

decode_description(description):

f = open(description)

vm_i = f.read(Q)

vim_i = jsonpickle.decode(vm_i)

vin_i = namedtuple(’VM_info’, vm_i.keys()) (xvm_i.values())
return vm_i

compare_descriptions(descriptionl, description2):
dl = decode_description(descriptionl)
d2 = decode_description(description2)
return difference_lists(dl.packages, d2.packages)

difference_lists(ll, 12):
add = list(set(l1l).difference(l2))

19

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

59

60

61

62

63

64

65

66

67

def

def

def

def

The packages in dest which are not in source
remove = list(set(l2).difference(ll))
return add, remove

compare_package_lists_from_image (imgl,img2):

g = guestfs.GuestFS(python_return_dict=True)

vml = inspect_vm(g, imgl)

g2 = guestfs.GuestFS(python_return_dict=True)

vm2 = inspect_vm(g2, imgl)

diff = list(set(vml.packages) — set(vm2.packages))
print diff

get_installed_packages(gfs, root):
pkm = gfs.inspect_get_package_management (root)
package_list = []
if pkm == "yum":
r_packages = gfs.sh("yum list installed")
packages = str(r_packages).splitlines()
first 2 line are for the column information
for p in packages[2:]:
#tmp += p.split(" ")[O] + ","
package_list.append(p.split(" ")[0])
elif pkm == "apt

The same as doing virt_insepctor returns a dict.

packages = gfs.inspect_list_applications2(root)
for p in packages:
tmp += app["app2_name"] + ","
package_list.append(p["app2 _name"])
else:
print "Unknown package manager"

return package_list

virt_builder_command(vm_i, output):

command = "virt—builder %s—%s —o %s —format qcow2 —root—
password " \
"password:password —hostname %s —size %sb" % (vm_i.distro
,vm_i.version, output, vm_i.hostname, vm_i.size)

return command

inspect_vm(disk):
g = guestfs.GuestFS(python_return_dict=True)
try:

g.add_drive_opts (disk, readonly=1)

20

68 except:

69 print "Image does not exist"

70 return

71 # Run the libguestfs back—end.

72 g.launch QO

73 roots = g.inspect_os ()

74 if len (roots) == 0:

75 Exception("No os found")

76

77 # TODO need to find a good way to inspect multiple vm’s at the
same time.

78 for root in roots:

79

80 ma_.v = g.inspect_get_major_version (root)

81 mi_v = g.inspect_get_minor_version (root)

82 os_type = g.inspect_get_type (root)

83 distro = g.inspect_get_distro (root)

84 pkm = g.inspect_get_package_management (root)

85 hostname = g.inspect_get_hostname(root)

86 # command give a new line. It is removed by removing the last

two lines.

87

88 size = check_output([’gemu—img’, ’info’, disk])

89 p = re.compile(r"\d+ bytes")

90 size = p.findall(size)[0][:—6]

91

92 vm_i = VM_Info(ma_v, mi_v, distro, os_type, pkm, hostname,
size)

93

94 # Sort keys by length shortest first, so that we end up

95

96 # mounting the filesystems in the correct order.

97 mps = ¢g.inspect_get_mountpoints (root)

98 def compare (a, b): return len(a) — len(b)

99 for device in sorted (mps.keys(), compare):

100 try:

101 g.mount (mps[device], device)

102 except RuntimeError as msg:

103 print "%s (ignored)" % msg

104

105 packages = get_installed_packages(g, root)

106 # add packages to the vm info

107 vm_i.packages = packages

108 encoded = jsonpickle.encode(vm_i, unpicklable=False)

21

109 #TODO chose another path for the description to be made.

110 f = open("./" + ".".join(disk.split("/")[—1].split(".")[:—1D)
+".description", "w")

111 f.write(encoded)

112 f.close()

113 # Unmount everything.

114 g.umount_all ()

115 return vm_i

116
117 |def inspect_vm_domain(domain):

118 g = guestfs.GuestFS(python_return_dict=True)

119 g.add_domain(domain, readonly=1)

120 # Run the libguestfs back—end.

121 g.launch QO

122 roots = g.inspect_os ()

123 if len (roots) == 0:

124 Exception("No os found")

125

126 # TODO need to find a good way to inspect multiple vm’s at the

same time.

127 for root in roots:

128

129 ma_.v = g.inspect_get_major_version (root)

130 mi_v = g.inspect_get_minor_version (root)

131 os_type = g.inspect_get_type (root)

132 distro = g.inspect_get_distro (root)

133 pkm = g.inspect_get_package_management (root)

134 hostname = g.inspect_get_hostname (root)

135 # command give a new line. It is removed by removing the last
two lines.

136 size = check_output([’stat’, '—c’, ’%s’, domain])[:—1]

137 inst_info = parsers.parse_install_info(domain)

138

139 vm_i = VM_Info(ma_v, mi_v, distro, os_type, pkm, hostname,
size)

140

141 # Sort keys by length shortest first, so that we end up

142

143 # mounting the filesystems in the correct order.

144 mps = ¢g.inspect_get_mountpoints (root)

145 def compare (a, b): return len(a) — len(b)

146 for device in sorted (mps.keys(), compare):

147 try:

148 g.mount (mps[device], device)

22

149

150

151

153

154

155

156

157

158

160

161

162

163

164

165

166

167

169

170

171

10

11

12

13

14

except RuntimeError as msg:
print "%s (ignored)" % msg

packages = get_installed_packages(g, root)
add packages to the vm info
vm_i.packages = packages
encoded = jsonpickle.encode(vm_i, unpicklable=False)
#TODO chose another path for the description to be made.
f = open("./" + domain +".description”, "w")
f.write(encoded)
f.close()
Unmount everything.
g.umount_all QO
return vm_i

def deploy_vm_command(vm_i, name):

ram = 2048
name = ".".join(name.split(".")[:—11)
command = "virt—install —mname %s —ram %d —disk %s —import" %

(vm_i.hostname, ram , name)

command = "virt—install —mname %s —disk %s —import" % (vm_i
[’hostname’], name)

f = open("virt_install_script.sh",’w’)

f.write(command)

The code for listing the VM and comparing descriptions.

import parsers
import utils

def find_snapshots_for_domain(domain):

return check_output(["virsh", "snapshot—list", domain, "—name"])
.split("\n")
def find_all_domains():
return check_output(["virsh", "list", "—all", "—mname"]).split("
\nn)
def get_snapshot_xml (dom, snap):
ret = check_output(["virsh", "snapshot—dumpxml", dom, snap])

print ret
return ret
def get_domain_xml (dom) :

23

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

def

def

def

ret = check_output(["virsh", "dumpxml", dom])
print ret
return ret

get_all_images():

s = set(Q)

dump all stuff

for dom in find_all_domains():

if dom == "":
continue
for snap in find_snapshots_for_domain (dom):
if snap == "":
continue

get the image path for a snapshot
s.add(parsers.get_file_for_snapshot(get_snapshot_xml (dom
,;snap)))

s.add(parsers.get_file_for_domain(get_domain_xml (dom)))
return s

list_all_images_compared(src):
src_info = utils.decode_description(src)
images = get_all_images()
ret = ""
print src_info.version, src_info.distro
list_remove = set()
for image in images:
try:
info = utils.inspect_vm(image)
except:
print"File %s could not be inspected" % image
list_remove.add(image)

continue

print info.distro,info.version

if info.distro != src_info.distro or info.version != src_info
.version:

list_remove.add(image)

images = images.difference(list_remove)
if images:
ret = "\n".join(images)

return ret

vm_compare (src):

24

58

59

60

61

62

63

64

65

66

67

68

69

70

71

dest_info = {}
src_info = utils.decode_description(src)
make all the descriptions
list.ar = {}
for image in get_all_images():
temp_info = utils.inspect_vm(image)
Check if this image is relevant.

if temp_info.distro == src_info.distro and temp_info.version

== src_info.version:
dest_info[image] = temp_info
make the difference between.
for image, info in dest_info.iteritems():
add, remove = utils.difference_lists(src_info
list_ar[image] = [add,remove]
return list_ar

,info)

25

10

11

12

13

14

C. Bash code

rsync command to analyze differences between two Virtual Machines:

HYPERVISOR=$1
R_MNT_PATH=$2
L_MNT_PATH=$3

rsync —azAXn —delete ——stats-——exclude:{"/dev","/tmp",”/proc","/sys"
,"/var/tmp","/run","/mnt"," /media","/lost+found"," /usr","/1ib","/
etc/fstab","/1ib32","/1ib64"," /boot"} $HYPERVISOR:$R_MNT_PATH/
$L_MNT _PATH

rsync commands to missing data from source to destination VM:

HYPERVISOR=$1
R_MNT_PATH=$2
L_MNT_PATH=$3

rsync —azAX —delete ——stats-——exclude:{"/dev”,"/tmp","/proc","/sys",
"/var/tmp","/run","/mnt"," /media","/lost+found"," /usr","/1lib","/
etc/fstab","/1ib32","/1ib64"," /boot"} SHYPERVISOR:$R_MNT PATH/
$L_MNT_PATH

rsync —azAX ——ignore—existing-——stats-——excludez{"/dev","/tmp","/proc
","/sys”,”/var/tmp”,"/run","/mnt","/media","/lost+found","/boot”}
$HYPERVISOR: $R_MNT_PATH/ $L_MNT_PATH

Script for generating random data:

#!/bin/bash

rm —rf /root/TEST 2> /dev/null

mkdir /root/TEST

cd /root/TEST

for i in ‘seq 1 10°; do dd if=/dev/urandom of=512MB_$i bs=64M count

=8; done
for i in ‘seq 1 10°‘; do dd if=/dev/urandom of=256MB_$i bs=64M count
=4; done

mkdir lmega

dd if=/dev/urandom of=masterfile bs=64M count=4
split —bytes=1M masterfile 1lmega/lmb

mkdir 256kilo

dd if=/dev/urandom of=masterfile bs=64M count=8
split —bytes=256KB masterfile 256kilo/256kb

rm —f masterfile

26

References

N

Maarten Fonville. The Virtual Machine Delivery Network. 2014.

Kernel Based Virtual Machine. URL: http://www.linux-kvm.org/page/Main_|
Page (visited on 01/07/2014).

Data cluster. URL: http://en.wikipedia.org/wiki/Data_cluster (visited on
01/09/2014).

Franco Travostino et al. “Seamless live migration of virtual machines over the
MAN/WAN?”. In: Future Generation Computer Systems 22.8 (2006), pp. 901-907.

Performing VM migration under Xen. URL: http://wiki . xen . org/ wiki /
Migration (visited on 02/03/2014).

vMotion. URL: http://www.vmware.com/products/vsphere/features/vmotion
(visited on 02/03/2014).

XenServer migrate machines between hosts. URL: http://serverfault . com/
questions/396116/xenserver-migrate-machines-between-hosts (visited on

02/03/2014).

Creating virsh dump files. URL: https://access.redhat.com/documentation/
en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_
Guide/sect-vish-dump.html (visited on 02/03/2014).

vCenter Converter. URL: http://www. vmware . com/ it/ products/ converter
(visited on 02/03/2014).

Puppet Homepage. URL: http://puppetlabs.com/ (visited on 01/07/2014).
Vagrant Homepage. URL: https://www.vagrantup.com/ (visited on 01/07/2014).
Welcome to Python.org. URL: https://www.python.org (visited on 02/07/2014).

Bash - GNU Project - Free Software Foundation. URL: www.gnu.org/software/
bash (visited on 02/07/2014).

ISPConfig. URL: http://www . ispconfig . org/page/home . html (visited on
02/03/2014).

Libvirt: The virtualization API. URL: http://1ibvirt.org/ (visited on 01/07/2014).
QEMU. URL: http://wiki.qgemu.org/Main_Page (visited on 01/26/2014).

QEMU - Wikipedia, the free encyclopedia. URL: http://en . wikipedia . org/
wiki/QEMU (visited on 01/27/2014).

libguestfs, library and tools for accessing and modifying VM disk images. URL:
http://libguestfs.org/ (visited on 01/26/2014).

virt-builder. URL: http://1libguestfs.org/virt-builder.1.html (visited on
01/26/2014).

rsync - Linuz man page. URL: www . gnu. org/sof tware/bash (visited on 02/07/2014).

27

http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://en.wikipedia.org/wiki/Data_cluster
http://wiki.xen.org/wiki/Migration
http://wiki.xen.org/wiki/Migration
http://www.vmware.com/products/vsphere/features/vmotion
http://serverfault.com/questions/396116/xenserver-migrate-machines-between-hosts
http://serverfault.com/questions/396116/xenserver-migrate-machines-between-hosts
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/sect-vish-dump.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/sect-vish-dump.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/sect-vish-dump.html
http://www.vmware.com/it/products/converter
http://puppetlabs.com/
https://www.vagrantup.com/
https://www.python.org
www.gnu.org/software/bash
www.gnu.org/software/bash
http://www.ispconfig.org/page/home.html
http://libvirt.org/
http://wiki.qemu.org/Main_Page
http://en.wikipedia.org/wiki/QEMU
http://en.wikipedia.org/wiki/QEMU
http://libguestfs.org/
http://libguestfs.org/virt-builder.1.html
www.gnu.org/software/bash

	Abstract
	Acknowledgments
	Introduction
	Research question
	Context
	Scope

	Previous work
	Background
	Migration techniques
	Configuration management and VM provisioning

	Methodology
	Functional copy
	Physical tools and setup
	Software tools

	The proof of concept Smart migrate
	Steps
	Experiments

	Results
	Testing if the teleportation was successful
	Bandwidth results
	Time results
	Problems

	Conclusions
	Future work
	Software tools
	Python code
	Bash code

